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Abstract: Inducible gene expression systems are favored over stable expression systems in a wide
variety of basic and applied research areas, including functional genomics, gene therapy, tissue
engineering, biopharmaceutical protein production and drug discovery. This is because they are
mostly reversible and thus more flexible to use. Furthermore, compared to constitutive expression,
they generally exhibit a higher efficiency and have fewer side effects, such as cell death and delayed
growth or development. Empowered by decades of development of inducible gene expression
systems, researchers can now efficiently activate or suppress any gene, temporarily and quantitively
at will, depending on experimental requirements and designs. Here, we review a number of most
commonly used mammalian inducible expression systems and provide basic standards and criteria
for the selection of the most suitable one.
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1. Introduction

Classic genetic studies are based on correlating genetic alterations with the resulting phenotypes.
Several important signaling pathways, including mTOR [1,2], apoptosis [3], autophagy [4] and Hippo [5,6]
pathways, have been discovered by classic genetics. Given the fact that some lethality-causing genes
or essential genes are impossible to overexpress or knock out, fine-tuning their expression is necessary
for the analysis of their function [7]. Moreover, the irreversible manipulation of gene expression often
drives compensatory adaptation in higher organisms [8,9]. Therefore, the ability to switch the gene
expression on and off or to modulate the level of gene expression in a quantitative and temporal way
can preferentially reveal the direct consequence of a certain genetic change and provide an additional
filter to exclude other side- and off-target effects. This is especially beneficial when working with
mammalian cells that are maintained and controlled by highly intricate genetic networks.

Initially, endogenous hormone- or stress-responsive promoters were considered prevalent to
achieve temporal induction of gene expression [10–15]. This strategy has gradually been vetoed
due to their leaky expression and lack of specificity in all physiological conditions. For example,
metallothionein promoter that originates from the equine kidney is not only regulated by heavy
metals but also by hypoxia, oxidative stress, and hormones, making it inappropriate for studies
involving these biological processes [16–18]. To overcome these drawbacks, discoveries of bacterial
operons have inspired scientists to transfer these prokaryotic genetic elements into mammalian cells.
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The first successful attempt with prokaryotic operons was made in 1987, when the Escherichia coli
Lac operator-repressor (LacR/O) system was used to switch on gene expression by adding isopropyl
β-D-thiogalactopyranoside (IPTG) into mouse cells [19]. Since then, tremendous efforts have been
made to develop many advanced inducible systems, which have been exploited to overexpress, knock
down and regulate, knocking out specific genes temporarily. These developments and recent progress
in the field are discussed below.

2. Tetracycline-Controlled Operator System

2.1. Induction of Target Gene

The above-described lacR/O-based systems were soon found to be too limited due to their
inefficiency and moderate potency in mammalian cells. Even though a chimeric lacR-VP16 has been
described to activate a minimal promoter almost 1000-fold at elevated temperatures in the presence of
IPTG [20], the temperature dependence and the inherent IPTG-related problems were found to limit
the usability of this approach.

Soon after, another bacterial regulatory element, the Tn10-specified tetracycline-resistance operon
of E. coli, was found to exhibit a superior performance and became a popular tool to control mammalian
gene expression [21,22]. Currently, there are three configurations of this system: (1) The repression-based
configuration, in which a Tet operator (TetO) is inserted between the constitutive promoter and gene
of interest and where the binding of the tet repressor (TetR) to the operator suppresses downstream
gene expression. In this system, the addition of tetracycline results in the disruption of the association
between TetR and TetO, thereby triggering TetO-dependent gene expression (Figure 1A). (2) Tet-off

configuration, where tandem TetO sequences are positioned upstream of the minimal constitutive
promoter followed by cDNA of gene of interest. Here, a chimeric protein consisting of TetR and
VP16 (tTA), a eukaryotic transactivator derived from herpes simplex virus type 1, is converted into a
transcriptional activator, and the expression plasmid is transfected together with the operator plasmid.
Thus, culturing cells with tetracycline switches off the exogenous gene expression, while removing
tetracycline switches it on (Figure 1B). (3) Tet-on configuration, where the exogenous gene is expressed
when tetracycline is added to the growth medium. Even though tetracycline is nontoxic to mammalian
cells at the low concentration required to regulate TetO-dependent gene expression, its continuous
presence is suboptimal in a variety of experimental setups. Moreover, the regulation is usually slow
when the effector has to be removed by multiple washes [23]. Thus, a mutant tTA with four amino acid
substitutions, termed rtTA, was developed by random mutagenesis of tTA [24,25]. Unlike tTA, rtTA
binds to TetO sequences in the presence of tetracycline, thereby activating the silent minimal promoter
(Figure 1C).

Based on the three configurations described above, several additional optimizations have been
made. One of these was an attempt to further reduce the leakage of the system. In the repression-based
configuration, transcriptional repressor domains, such as the Krüppel-associated box (KRAB) of
human KOX1 [26,27], have been fused with tetR to reduce the leakage. In the Tet-on configuration,
newly engineered rtTAs with few mutations make them exponentially active and sensitive. More
importantly, these rtTA variants show no activity in the absence of doxycycline (a synthetic tetracycline
derivative) [28]. Recently, another mutation, TetRI194T, on top of the above rtTAs, was shown to have
an even more superior performance [29]. However, there is still a major drawback associated with the
tetracycline-induced operator system. That is that upon continuous cell culture, some cell lines can
spontaneously lose their inducibility, especially after successive selection rounds [30]. Finally, it should
also be noted that tetracycline-derived contaminants that are often present in cell culture serums can
cause problems with tetracycline-based expression systems. These can, however, be avoided using
tetracycline-free fetal bovine serum.
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Figure 1. Schematic representations of tetracycline-controled operator systems. A. Repression based 
configuration. B. Tet-off configuration. C. Tet-on configuration. DNABD: DNA binding domain, AD: 
activating domain, TetO: tetracycline operator, Dox: doxycycline, TetR: tet repressor. 

Based on the three configurations described above, several additional optimizations have been 
made. One of these was an attempt to further reduce the leakage of the system. In the repression-
based configuration, transcriptional repressor domains, such as the Krüppel-associated box (KRAB) 
of human KOX1 [26,27], have been fused with tetR to reduce the leakage. In the Tet-on configuration, 
newly engineered rtTAs with few mutations make them exponentially active and sensitive. More 

Figure 1. Schematic representations of tetracycline-controled operator systems. (A) Repression based
configuration. (B) Tet-off configuration. (C) Tet-on configuration. DNABD: DNA binding domain, AD:
activating domain, TetO: tetracycline operator, Dox: doxycycline, TetR: tet repressor.

2.2. Induction of Knockdown or Knockout of Target Gene

Tetracycline-controlled inducible operator systems can also be combined with RNA interference
and CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated
protein 9) to knock down and knock out gene expression, respectively, in mammalian cells. RNA
interference (RNAi) has emerged as an essential tool to achieve knockdown of gene expression [31,32].
It employs a small double-strand RNA processed by endoribonuclease DICER to trigger RNA-induced
silencing complex (RISC)-dependent mRNA degradation, thereby leading to the subsequent decline of
corresponding protein [33]. This can be activated by two means: the delivery of synthetic siRNAs,
which induces a transient knockdown of protein expression, or by expressing short hairpin RNA
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(shRNA), which can be processed by RNAi machinery into siRNA in vivo. Stable transfection of shRNA
expressing plasmids into mammalian cells can constitutively knock down specific gene expression [33].
However, in the case where a gene’s knockdown has a deleterious effect on target cells, the inducible
expression of shRNA achieved by repression based configuration becomes a more reliable approach [34].
A minor adjustment has to be made to avoid the leaky expression of shRNA driven by RNA-Pol
III-dependent promoters (H1 or U6) in the absence of tetracycline, which is two tetracycline operons
that need to be placed flanking the TATA box [35,36]. Corresponding lentiviral systems have also been
developed for cells that are difficult to transfect [34].

The CRISPR-Cas9 technology has recently revolutionized gene editing. Cleavage of specific DNA
site catalyzed by Cas9 endonuclease followed by error-prone non-homologous-end-joint repair can
efficiently result in gene knockout [37,38]. Original protocol to generate knockout cells by CRISPR
technology requires the selection of positive and negative clones for phenotypic comparison. More
than two-three weeks of culturing under selection pressure fosters cells adapted to the loss of the
gene of interest. This adaptation may also involve uncontrolled irreversible changes in other genes,
if these are advantageous for the survival of the knockout cells. Moreover, the frequently observed
clonal variation can make it challenging for researchers to draw reliable conclusions by analyzing the
phenotypes of single-cell-derived clones. Thus the inducible expression of Cas9 driven by rtTA can
overcome these drawbacks. Comparing non-induced and induced cells within a short time-frame
tends to reveal the direct effects caused by the loss of the gene of interest [39,40].

3. Cumate-Controlled Operator System

3.1. Induction of Target Gene

For particular genetic epistasis analyses, simultaneous or sequential manipulation of the expression
of different genes is a fundamental approach. However, such genetic manipulations are hard to achieve
in mammalian cells due to the inability to generate genetic cross at will in model animals. Therefore,
additional operator systems can be combined with the tetracycline system to establish more complicated
genetic setups in mammalian cells (Table 1). Here we introduced the cumate-controlled operator
system as an example. This operator originates from the p-cmt and p-cym operons in Pseudomonas
putida. The corresponding repressor contains an N-terminal DNA-binding domain recognizing the
imperfect repeat between the promoter and the beginning of the first gene in the p-cymene degradative
pathway [41]. Similarly to a tetracycline-controlled operator system, the cumate operator (CuO) and its
repressor (CymR) were engineered into three configurations: (1) The repressor configuration, which is
realized by placing CuO downstream of a constitutive promoter, where the binding of CymR to CuO
efficiently suppresses downstream gene expression. The addition of cumate releases CymR, thereby
triggering downstream gene expression (Figure 2A). (2) Activator configuration, where chimeric
molecular (cTA) is formed via the fusion of CymR and VP16. In this configuration, a minimal promoter
was placed downstream of the multimerized operator binding sites (6xCuO). Again, gene expression
controlled by the minimal promoter was activated by removing cumate from the medium (Figure 2B).
(3) Reverse activator configuration, for which after the random mutagenesis and screening, cTA mutant
(rcTA) that binds to CuO upon addition of cumate was generated. In this configuration, the addition of
cumate triggered downstream gene expression [42] (Figure 2C).

3.2. Induction of Knockdown of Target Gene

Cumate-controlled operator system was also further developed for inducible knockdown of
gene expression. This system was further developed by System Biosciences (SBI) (Patent NO.: US
8,728,759 B2, US 7,745,592 B2), which provides plasmids and technical instruction as a service. Several
successful examples of using this system have been reported, for example a small GTPase, Rheb, which
is required for activation of cell growth regulator mTOR1, was characterized by knocking it down by
cumate-controlled operator plasmid [43].
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Figure 2. Schematic representations of cumate-controlled operator systems. (A) Repression configuration.
(B) Activator configuration. (C) Reverse activator configuration. CymR: cumate repressor, CuO: cumate
operator, rcTA: reverse chimeric transactivator.

4. Protein–Protein Interaction-Based Chimeric System

Protein–protein interaction-based chimeric systems provide another strategy to achieve tunable
and temporal control of gene expression. This strategy takes advantage of two fundamental observations
that have emerged from basic studies of gene expression and signal transduction. It is based on
the observation that the DNA-binding domains and activation domains of transcription factors can
function independently and retain activity as a heterologous single protein [44,45]. It additionally
takes advantage of the fact that many protein–protein interactions can be triggered by chemicals or
physical stimuli, such as blue light.

4.1. Induction of Target Gene by Control of the Interaction between FKBP12 and mTOR

The first trial of this concept was made by utilizing the rapamycin-induced interaction between
FKBP12 (FK506 binding protein 12) and mTOR [46]. Rapamycin and its analog FK506 bind to a cytosolic
protein FKBP12 [47]. This complex further binds to mTOR, forming a tripartite complex [48–50].
Therefore, fusing FKBP12 and mTOR with a DNA-binding domain of ZFHD1 [51] and the activation
domain of NF-κB p65 protein [52], respectively, bridges both domains to drive expression of the gene



Cells 2019, 8, 796 6 of 16

of interest in a rapamycin-dependent fashion (Figure 3A) [46]. Due to the immunosuppressive and the
cell cycle inhibitory effect of FK506 and rapamycin [48], a new synthetic compound, FKCsA, which is a
heterodimer of FK506 and cyclosporin A (an immunosuppressant complexed with protein cyclophilin),
was developed and was shown to exhibit neither toxicity nor immunosuppressive effects [53]. To trigger
gene expression, the addition of FKCsA to cells hinges FKBP12 fused with the Gal4 DNA-binding
domain (Gal4DBD) and cyclophilin fused with VP16, thereby activating expression of the gene of
interest downstream of upstream activation sequence (UAS, Gal4DBD binding site) (Figure 3B) [53].
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Figure 3. Schematic representations of protein–protein interaction based systems. (A) Inducible
system dependent on rapamycin induced interaction between FKBP12 and FRAP. (B) Inducible system
dependent on FKCsA induced interaction between FKBP12 and cyclophilin. (C) Inducible system
dependent on ABA induced interaction between PYL1 and ABI1. (D) Inducible system dependent on
blue light induced VVD dimer formation. (E) Photoactivatable-Tet-OFF/ON system dependent on blue
light induced interaction between Cry2 and CIB1. Gal4DBD: Gal4 DNA binding domain, ABA: abscisic
acid, TetR: tet repressor.
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The above-described rapamycin-based systems hold some drawbacks that limit their applications.
The major concern is the essential function of endogenous mammalian target of rapamycin complex 1
(mTORC1) in the control of metabolism and growth of mammalian cells [54,55], which can be inhibited
by either rapamycin or its analogs. Thus, inhibition or any disturbance of mTORC1 signaling severely
changes the metabolic status of cells [56]. An additional problem is the slow kinetics of ceasing the
expression after removing rapamycin [57].

4.2. Induction of Target Gene by Control of the Interaction between PYL1 and ABI1

Besides the rapamycin system, abscisic acid (ABA)-regulated interaction between two plant
proteins was exploited to regulate gene expression in a temporal and quantitive manner in mammalian
cells. The two proteins are PYL1 (abscisic acid receptor) and ABI1 (protein phosphatase 2C56), which
are important players of the ABA signaling pathway required for stress responses and developmental
decisions in plants [58,59]. According to the crystal structure of PYL1-ABA-ABI1 complex [60–62],
interacting complementary surfaces of PYL1 (amino acids 33 to 209) and ABI1 (amino acids 126 to
423) were chosen for chimeric protein construction. Similarly, Gal4DBD was fused with ABI1 and
VP16 with PYL1. Thus after transfecting this ABA-activator cassette and UAS-driven reporter into
mammalian cells, ABA significantly induced the reporter’s production (Figure 3C) [63]. Compared to
the rapamycin system, the ABA system has two compelling advantages: first, ABA is present in many
foods containing plant extracts and oils—its lack of toxicity is supported by an extensive evaluation by
the Environmental Protection Agency (EPA), secondly, since the ABA signaling pathway does not exist
in mammalian cells, there should be no competing endogenous binding proteins as in the rapamycin
systems. To further avoid any catalysis of possible unexpected substrates by ABI1, a mutation critical
for its phosphatase activity was introduced into the chimeric protein [63].

4.3. Induction of Target Gene by Light Sensitive Protein–Protein Interactions

Recently, two light-switchable transgene systems were developed by taking advantage of
light-induced protein–protein interactions. The first one got inspiration from the molecular
basis of the circadian rhythm of fungi. Vivid (VVD), a photoreceptor and light-oxygen-voltage
(LOV) domain-containing protein from Neurospora crassa, forms a rapidly exchanging dimer upon
blue-light activation [64,65]. Thus, the chimeric protein consisting of VVD and Gal4 residues
1-65 dimerizes and becomes a transcriptional activator under blue light-illumination, while the
active dimer disassociates in the absence of blue light. This means that the expression of the
reporter downstream of UAS can be switched on and off in a spatiotemporal manner utilizing blue
light (Figure 3D). Moreover, mutagenesis optimization of VVD further reduced the background
expression to a minimal level, making the system even more feasible [66]. Another light-switchable
transgene system (photoactivatable (PA)-Tet-OFF/ON) exploits the Arabidopsis thaliana-derived blue
light-responsive heterodimer formation, consisting of the cryptochrome 2 (Cry2) photoreceptor and
cryptochrome-interacting basic helix-loop-helix 1 (CIB1) [67,68]. Photolyase homology region (PHR) at
Cry2′s N-terminal part is the chromophore-binding domain that binds to Flavin adenine dinucleotide
(FAD) by a noncovalent bond. CIB1 interacts with Cry2 in blue light-dependent manner. Thus, to make
an inducible expression system, PHR was fused with the transcription activation domain of p65,
and CIB1 was fused with the DNA binding, dimerization and Tetracycline-binding domains of TetR
(residues 1-206) [29]. Accordingly, the reporter gene can be switched on with blue light illumination,
while switching off can be achieved in two ways, either by the absence of the blue light or tetracycline
addition (Figure 3E). Meanwhile, a tetracycline insensitive mutation, H100Y [69], was established to
make it purely dependent on illumination. Applying the same chimeric structure, but replacing TetR
with rtTA, the reporter gene can be switched on with either blue light illumination or tetracycline,
and switched off either by absence of the blue light or removal of tetracycline [29]. Generally, two
advantages of light-switchable transgene systems overwhelm all other systems. One is their rapid
on and off cycle. Due to the nature of circadian rhythm, the two above-mentioned protein–protein



Cells 2019, 8, 796 8 of 16

interactions are dynamic, leading to a fast response and turnover. Even short pulses of light for 1–2
min are sufficient to induce luciferase expression, which has been shown to peak 1.1 h later and
decline to the background level 3 h later [29]. The other advantage is its precise spatial induction.
Illumination within restricted areas or cell populations can be realized with advanced illumination
sources, by which the reporter expression can be selectively induced in certain cells or subcellular
regions of interest. These unique features will not only greatly facilitate the future cell-cell behavior
studies, but also provide vast potential for clinical gene therapy. This system is, however, not without
problems, as overexposure to blue light can induce oxidative stress to cells and tissues and have
especially harmful effects in sensitive tissues, such as corneal epithelium [70,71].

5. Tamoxifen Controlled Recombinase System

Site-specific recombinase (SSR) has been a major tool for the generation of conditional and
tissue-specific knockout and knockin mice since the 1990s [72,73]. Cre from bacteriophage P1 [74] and
FLP from Saccharomyces cerevisiae [75] are the most commonly used enzymes to orchestrate site-directed
recombination. Cre and Flp recombinases recognize the 34-bp nucleotide sequence named loxP [76] or
FRT [77], respectively, and precisely catalyze the excision or inversion of the gene between the two loxP
or the two FRT sites [78]. In order to modulate the recombinase activity, the ligand-binding domain
(LBD) of the estrogen receptor (ER) was fused with Cre [79] or Flp [80], resulting in chimeric proteins that
can be activated by anti-estrogen tamoxifen or its derivative 4-OH tamoxifen (4-OH-TAM) [81]. Taking
advantage of these regulatable recombinases, either single or two plasmid systems were developed to
achieve inducible gene expression. The first successful case was done in mouse embryonic cells [82].
Two plasmids were transfected together. One was Cre-ER constitutive expressing plasmid, the other
contained gene trap sequence flanked by LoxP, followed by β-galactosidase (LacZ) open reading frame.
As a consequence, expression of LacZ could only be restored when Cre-loxP-mediated recombination
was triggered and the gene trap sequence was excised [82]. By these means, the reporter gene could
be induced not only in undifferentiated embryonic stem cells and embryoid bodies, but also in all
tissues of a 10-day-old chimeric fetus or specific differentiated adult tissues [83]. In another example,
to induce enhanced green fluorescent protein (EGFP) expression in baby hamster kidney (BHK) cells
and to simplify the plasmid construction, Cre-ER cDNA flanked by LoxP sites were inserted between
phosphoglycerate kinase (PGK) promoter and EGFP encoding sequence. In this system, Cre-ER
functions as a gene trap to block the transcription of EGFP without 4-OH-TAM. Ignition of recombinase
activity by 4-OH-TAM melts off the Cre-ER cassette and restores EGFP expression driven by PGK
promoter [81]. To exclude the effect exerted by endogenous steroids, three distinct ERs are mostly
exploited: (1) mouse ERTM with a G525R mutation [84], (2) human ERT with G521R mutation [80] and
(3) human ERT2 containing three mutations G400V/M543/L544A [85].

6. Riboswitch-Regulatable Expression System

All the above-mentioned systems are dependent on exogenous proteins. They have two inborn
drawbacks. One is that exogenous proteins hold the risk of inducing immunogenic reactions in vivo.
The other is that construction and transfection of large-sized plasmids required for these systems can
burden the host cells. To overcome these shortcomings, a riboswitch-regulatable expression system
has emerged and has been further developed to achieve inducible gene expression/knockdown in
mammalian cells since 2009 [86]. This system takes advantage of bacteria-derived RNA aptamers linked
with hammerhead ribozymes (aptazymes). Aptamer acts as a molecular sensor and transducer for the
whole apparatus, while ribozyme responds to the signal with conformation change and mRNA cleavage.
For example, Gram-positive bacteria’s aptazyme can directly sense excessive glucosamine-6-phosphate
(GlcN6P) and cleave mRNA of the glms gene, whose protein product is an exzyme that converts
fructose-6-phosphate (Fru6P) and glutamine to GlcN6P [87]. Most natural aptazymes don’t function in
mammalian cells. To date, only a few synthetic aptazymes have been screened out and applied for
efficient control of gene expression in mammalian cells [86,88–90]. These aptazymes, responding to
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tetracycline, theophylline, guanine, etc. were engineered to both knock down and overexpress the
gene of interest. In a recent review written by the pioneer of riboswitch regulatable expression system,
Yohei Yokobayashi summarized extensively the diversity of the regulatory mechanisms harnessed by
riboswitch [91]. Therefore, we will not cover this topic in more detail here. Although the potential of
riboswitch is inspiring, most of the aptazymes do not make a comparable induction fold as the other
systems, as described in Table 2. Moreover, leaky expression and basal knockdown are common for
this system. Therefore, further optimization and development are expected to be made in the future.

7. Closing Remarks and Future Perspectives

7.1. How to Choose the Right System for the Experiment

Since the 1980s, tremendous progress has been made to control gene expression in a temporal
and tunable manner. It has mainly branched in three directions: one is to manipulate chimeric
transcription factor’s activity, the second is to modulate recombinase’s activity, and the third is to
regulate ribozyme’s activity by an aptamer. By virtue of their nature, most systems in the first and third
category are reversible but lack spatial regulation, while the second category is irreversible. Therefore,
the majority of the efforts have been put in optimization and development of the systems utilizing the
chimeric transcription factors. In this case, the chimeric transcription factor often consists of either the
endogenous nuclear hormone receptor, or engineered operator, or a counter partner of protein–protein
interaction, together with an activation domain fusion protein whose association with the former part
can be triggered by various inducers.

To date, tetracycline/cumate-controlled operator systems are preferred for routine inducible-
expression/knockdown experiments due to the easiness of their handling, high efficiency, and negligible
side effects. However, different options of configurations, promoters and activating domains still
complicate the selection. The Tet-on and the reverse activator configuration of cumate system are usually
prioritized due to their negligible leakiness. The Tet-off configuration and activator configuration of
cumate system are preferably selected when experiments need to avoid the presence of tetracycline
and cumate in the culture medium. Promoters and activating domains determine the strength of the
induction. In the case of induction of a specific gene, minimal constitutive promoters are employed. So
accordingly, human elongation factor 1α promoter (EF1A) and CMV promoter are recommended for
higher induction, while human Ubiquitin C promoter (UBC) and PGK promoter are recommended for
medium or lower induction [92]. In the case of induction of shRNA, there is no dramatic difference
between the use of H1 or U6 promoter (REFERENCE MISSING). Regarding activating domains,
parental and tandemly reiterated VP16 and p65 are mostly used. Of these, p65 was shown to be a
stronger transcription activator compared to VP16 [93]. Thus, different combinations of promoter
and activating domains can be used to achieve inductions with differing extents, depending on
experimental requirements. Maximum induction of a certain gene by tetracycline/cumate-controlled
operator systems can be up to 100–1000 folds when the endogenous protein is lowly expressed [94].

For more complicated induction requirements, such as repetitive and spatial inductions,
light-switchable systems provide better options. With these systems, the maximum induction
rate of the gene of interest ranges from 50 to 100 folds [29], making them almost comparable with
tetracycline/cumate-controlled operator systems.

To further compare the reviewed induction systems, an overview of the cons and pros of each
system is displayed in Table 2. Not one of the systems is perfect in every aspect, as the most suitable
should be the one with a maximum advantage critical for experimental purpose and with minimum
compromise of other features. The availability of the different inducible-expression systems are
presented in Table 3.
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7.2. Future Perspectives

One important lesson we can learn from the development of regulatable expression systems
is that the more we know about how genes are regulated in different organisms, the better we
can take advantage of this knowledge and harness it for research. Even though the tools we have
now are satisfactory for many purposes, more advanced regulatable expression systems could still
expand our research possibilities. e.g., for the light-switchable system, chimeric transcription factor
responding to lights of different wavelengths could be developed by functional screening after random
and/or designed mutagenesis. For the protein–protein interaction-based chimeric transcription factor,
a selection of a pair of proteins that can be associated and disassociated by different drugs or stimuli in
a sequential manner could make the induction even more precise and controlled.

Table 1. Bacterial operators other than LacO, TetO and CuO.

Regulator Protein Origin Inducer Association or
Disassociation Reference

AlcR A. nidulans Acetaldehyde Association [95]

ArgR C. pneumoniae l-Arginine Association [96]

BirA E. coli Biotinyl-AMP Association [97]

EthR M. tuberculosis 2-Phenylethyl butyrate Dissociation [98]

HdnoR A. nicotinovorans 6-Hydroxy nicotine Dissociation [99]

HucR D. radiodurans Uric acid Dissociation [100]

MphR(A) E. coli Macrolides Dissociation [101]

PIP S. pristinaespiralis Streptogramins Dissociation [26]

Rex S. coelicolor NADH Dissociation [102]

RheA S. albus Heat Dissociation [103]

ScbR S. coelicolor SCB1 Dissociation [104]

TraR A. tumefaciens 3-oxo-C8-HSL Association [105]

TtgR P. putida Phloretin Dissociation [106]

Table 2. Brief comparison of reviewed induction systems (listed according to inducer).

Inducer Reversability Maximum
Induction Overexpression Knockdown

or Knockout
Spatial

Regulation

Tetracycline Yes 100-1000X Yes Yes No

Cumate Yes 100-1000X Yes Yes No

Rapamycin Yes 100-1000X Yes NT No

FKCsA Yes 100-1000X Yes NT No

ABA Yes 100-1000X Yes NT No

Tamoxifen No 30-50X Yes Yes No

Blue light Yes 50-100X Yes NT Yes

riboswitch Yes 5-9X Yes Yes No

NT: not tested, ABA: abscisic acid.
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Table 3. Commercially available and Addgene-stored plasmids (those with modified tags are
not included).

Plasmid Name Type of System Purpose Company/Addgene Resource NO.

pTRE3G Operon Overexpression Takara 631167, 631168

pCMV-Tet3G Operator Overexpression Takara 631168

pEF1a-Tet3G Operator Overexpression Takara 631167

pLVXTRE3G Operon & lentiviral Overexpression Takara 631187, 631363

pcDNA™4/TO Operon Overexpression Thermo Fisher K1020-01

pcDNA™5/TO Operon Overexpression Thermo Fisher V103320

pcDNA6/TR Operator Overexpression Thermo Fisher V103320

pEGSH
Fly heat shock

promoter driven
casssette

Overexpression Agilent 217461

pERV3 Fly ecydysone
receptor Overexpression Agilent 217460

pF12A RM Flexi® Operon Overexpression Promega C9431

pF12K RM Flexi® Operon Overexpression Promega C9441

pCDH-CuO-MCS-IRES-GFP-EF1α-
CymR-T2A-Puro Operon & lentiviral Overexpression SBI QM812B-1

PB-Cuo-shMCS-IRES-GFP-EF1α-
CymR-Puro Operon Knockdown SBI PBQMSH812A-1

Tet-pLKO-neo/puro Operon Knockdown Addgene 21915, 21916 [107]

pCW57.1 Operon Overexpression Addgene 41393

pLVUT-tTR-KRAB Operator &
lentiviral Knockdown Addgene 11651 [108]

pSLIK-neo Operon & lentiviral Knockdown Addgene 25735 [109]

pPRIME-TET-GFP-FF3 Operon & lentiviral Knockdown Addgene 11662 [110]

pTet-IRES-EGFP Operon Overexpression Addgene 64238 [111]

pCAG-CreERT2 Recombinase Overexpression Addgene 14797 [112]
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