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INTRODUCTION

Obsessive-compulsive disorder (OCD) is a relatively fre-
quent mental disorder, with a lifetime prevalence of approxi-
mately 2–3%.1 Patients with OCD are characterized by recur-
rent unwanted thoughts, images, or impulses and repetitive 
behaviors to relieve anxiety, often accompanied by obses-
sions.2,3 OCD causes serious difficulties in daily life; thus, nu-
merous studies have been carried out to clarify its patho-
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physiology.4 Through such research, the cortico-striato-
thalamo-cortical (CSTC) circuit has emerged as a prevailing 
model of the neural underpinnings of OCD.3,5-7 Based on 
convergent findings from neuroimaging studies, the hyper-
active CSTC circuit in patients with OCD has been suggested 
as a cause of recurrent and exaggerated concerns about dan-
ger, order, hygiene, or harm and subsequently drives patients 
to respond with compulsive behaviors aimed at neutralizing 
the anxiety.8

The striatum is one of the most important components of 
the CSTC circuit. This structure receives and coordinates mul-
tiple inputs from the cortical areas and delivers them to the 
thalamus.9-11 Through this relay function, the striatum is in-
volved in extensive cognitive and executive functions such as 
verbal and spatial working memory, response inhibition, task 
switching, and motor planning.9,12-14 As the roles of the stria-
tum in OCD have been emphasized, much has been revealed 
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about striatal structures in OCD patients. Previous studies 
have reported mixed results regarding volumetric changes of 
the striatum. Scarone et al.15 and Pujol et al.16 observed that the 
right caudate and bilateral ventral putamen had greater vol-
ume in patients with OCD than in healthy controls (HC), 
while Kang et al.17 and Riffkin et al.18 did not find any signifi-
cant changes in striatal volume in OCD patients. White matter 
structure has also been assessed with diffusion tensor imaging 
(DTI). Fan et al.19 demonstrated reduced fractional anisotropy 
(FA) and increased radial diffusivity (RD) of the white matter 
around the left striatum in OCD. That team also confirmed 
that the RD value was negatively correlated with scores on the 
compulsive subscale of the Yale-Brown Obsessive Compulsive 
Scale (Y-BOCS).

Following studies on structural change, functional aspects 
have also been identified using resting-state functional mag-
netic resonance imaging (rs-fMRI). A number of studies 
have examined striatal functional connectivity (FC) in pa-
tients with OCD using the striatum as a seed region of inter-
est (ROI). Many such studies have reported stronger FC be-
tween the ventral caudate and the orbitofrontal cortex 
(OFC), anterior cingulate cortex (ACC), dorsomedial pre-
frontal cortex (DMPFC), and dorsolateral prefrontal cortex 
(DLPFC) in OCD patients than in HCs.20-23 In addition, 
some such studies have demonstrated weaker FC between 
the dorsal caudate and the DLPFC and ventrolateral prefron-
tal cortex (VLPFC) in OCD patients than in HCs.22,23 Among 
these significant alterations, the FC between the ventral cau-
date and OFC was positively correlated with patients’ Y-
BOCS scores.20,22 However, numerous inconsistent results 
have also been reported. Harrison et al.22 discovered that 
OCD patients showed weakened FC between the ventral pu-
tamen and inferior frontal cortex and between the ventral 
caudate and superior temporal cortex compared to HCs.20,22 
Chen et al.24 observed strengthened FC between the left cau-
date and several cortical areas including the superior/middle 
temporal gyrus, middle/inferior occipital gyrus, and post-
central gyrus in patients with OCD. More recently, Vaghi et 
al.23 found that the FC between the dorsal caudate and the 
parietal cortex is weaker in OCD patients than in HCs.

The results of studies on striatal FC in patients with OCD 
are still inconsistent. We speculated that the different striatal 
seeds used in each study might have contributed to this issue. 
The striatum is a heterogeneous structure that consists of 
several subregions, each of which is involved in different 
neurocognitive functions in connections with corresponding 
cortical areas.2,9,10 Therefore, it is important to divide the stri-
atum into functionally and structurally meaningful subre-
gions when examining corticostriatal FC. Di Martino et al.9 
parcellated the striatum into 12 subdivisions based on exten-

sive neuroimaging studies, and this parcellation has been 
widely used to investigate corticostriatal dysfunctions in psy-
chiatric disorders.9,25-27 In OCD, Posner et al.28 applied these 
12 striatal seeds for the first time to assess the corticostriatal 
FC alterations. That team observed that patients with OCD 
exhibited weakened FC between the ventral striatum and the 
ACC and OFC and between the dorsal caudal putamen and 
the supplementary motor area in comparison with HCs. On 
the other hand, the FC between the dorsal caudate and the 
prefrontal cortex (PFC) and inferior parietal cortex were 
stronger in OCD patients than in HCs. Furthermore, the in-
vestigators identified that the FC between the inferior ventral 
striatum and the ACC was negatively correlated with Y-
BOCS scores. Notably, the directions of most findings in that 
study were the opposite of previous observations. Although 
the researchers explained this discrepancy with their un-
medicated patients and the use of different striatal seeds, fur-
ther evidence is needed to validate their results. In addition, 
a multiple comparison problem needs to be addressed in FC 
analysis using multiple striatal seed regions, despite not hav-
ing been considered in most previous striatal FC studies, in-
cluding that of Posner et al.28

In the present study, we aimed to identify corticostriatal 
dysfunction and its role as a neural correlate of psychiatric 
symptoms in patients with OCD using a fine 12-seed striatal 
parcellation.9 We first intended to investigate whether the 
findings of Posner et al.28 would be replicated in our patients 
even after a Bonferroni correction for multiple comparisons. 
Additionally, we expected to discover some additional corti-
cal areas with altered FC to striatal subregions, which might 
not have been found in earlier studies that did not use finely 
parcellated striatal subregions as seed ROIs. Finally, we hy-
pothesized that altered striatal FC would be correlated with 
symptomatic severity in OCD patients, serving as a neural 
correlate of psychiatric symptoms of OCD.

METHODS

Subjects
A total of 23 OCD patients and 23 HCs who were matched 

for age, gender, and handedness participated in this study. 
All patients with OCD were recruited from the outpatient 
clinic at Seoul National University Hospital (SNUH) and 
fulfilled the Diagnostic and Statistical Manual of Mental 
Disorders-IV (DSM-IV) criteria for OCD. The severity of 
clinical symptoms was evaluated by the Y-BOCS, Hamilton 
Rating Scale for Depression (HAM-D), and Hamilton Rat-
ing Scale for Anxiety (HAM-A).29-31 Twenty patients were 
drug naïve, and 3 were on medication at the time of fMRI 
scanning. One of the 3 patients was taking 100 mg/day 
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fluoxetine, another was taking 20 mg/day escitalopram, and 
the third was taking 100 mg/day sertraline. The exclusion 
criteria for both HCs and patients included any history of 
head injury, substance abuse (except smoking), seizure dis-
order, serious medical illness, and mental retardation [in-
telligent quotient (IQ)<70].

This study was conducted according to the Declaration of 
Helsinki and was approved by the Institutional Review Board 
of SNUH (H-1902-142-101). Each subject received a com-
plete description of the study and provided written informed 
consent before participation. For the minors who participat-
ed in this study, informed consent was obtained from both 
the participants themselves and their parents. 

Image acquisition
Functional and structural images were obtained with a 

3.0-tesla Trio MRI scanner (Siemens Magnetom Trio, Erlan-
gen, Germany) with a 12-channel head coil. T1-weighted 
structural images were acquired with the following parame-
ters: echo time (TE)=1.89 ms; repetition time (TR)=1670 ms; 
field of view (FOV)=250 mm; flip angle=9°; matrix=256×256; 
voxel size=1.0×0.98×0.98 mm3; and 208 slices. Resting-state 
fMRI images were acquired with the following parameters: 
TE=30 ms; TR=3,500 ms; FOV=240 mm; flip angle=90°; ma-
trix=128×128; voxel size=1.9×1.9×3.5 mm3; and 35 slices. 
During the functional imaging session, subjects were instruct-
ed to relax and keep their eyes closed but not to fall asleep. A 
questionnaire was administered to the participants after the 
scan to ensure that they had not fallen asleep. We used head 
cushions and asked subjects to move as little as possible during 
image acquisition to minimize motion artifacts.

Image preprocessing
We preprocessed the brain images using the CONN tool-

box version 18b (CONN18b; https://www.nitrc.org/proj-
ects/conn) implemented in the software package Statistical 
Parametric Mapping version 12 (SPM12; http://www.fil.ion.
ucl.ac.uk/spm/software/spm12/). The first 4 functional im-
ages were discarded for initial signal stabilization. The re-
maining images were realigned to correct head motion, and 
exclusion criteria for excessive head motion (i.e., transla-
tion>2 mm and rotation>2° in any direction) were applied. 
After motion correction, the functional images were pro-
cessed by slice-timing correction and subsequent coregistra-
tion to structural images in each subject. The structural im-
ages were segmented into gray matter (GM), white matter 
(WM) and cerebrospinal fluid (CSF). Then, both functional 
and structural images were spatially normalized to the Mon-
treal Neurological Institute (MNI) space and resampled to 
2×2×2 mm3 voxels. The normalized functional data were 

spatially smoothened with a 6 mm full width at half-maxi-
mum (FWHM) Gaussian kernel.32 The smoothed images 
underwent nuisance regression using the CompCor method 
and were also processed by linear detrending and temporal 
bandpass filtering (0.008–0.09 Hz).33

Functional connectivity analysis
We created 3-mm spherical striatal seeds in the dorsal cau-

date (DC), ventral caudate (VC), nucleus accumbens (NAc), 
dorsal rostral putamen (DRP), dorsal caudal putamen (DCP), 
and ventral rostral putamen (VRP) bilaterally, referring to the 
coordinate information from previous studies (Table 1).8,26 Us-
ing the seed ROIs, we measured connectivity strength using 
Pearson’s bivariate correlation analysis between the BOLD 
time series of the ROIs and other voxels in the rest of the brain. 
An independent t-test was conducted to compare the connec-
tivity strength between groups. We applied an uncorrected 
height threshold of p<0.005 and a false discovery rate (FDR)-
corrected cluster-level threshold of p<0.05 to find clusters that 
differed between groups at or above a minimum significance 
level.34 Furthermore, we used a Bonferroni correction to ad-
dress a multiple comparison issue arising from the use of 12 
striatal seeds.35 Finally, a stringent FDR-corrected threshold of 
p<0.05/12 was set for statistically significant clusters. CON-
N18b was used for all the FC analyses.

Statistical analysis
Fisher’s exact or the independent t-test was used to com-

pare demographic characteristics between OCD patients and 
HCs. We conducted Pearson’s correlation analysis between 
striatal FC values, which were found to be altered in OCD 
patients compared to HCs, and measures of symptom severi-
ty, such as Y-BOCS, HAM-D, and HAM-A scores, within 
OCD patients. Statistical significance was defined for each 
test as a p<0.05. All statistical analyses except the group com-
parisons of FC were conducted using IBM SPSS Statistics 23 
(IBM Corp., Armonk, NY, USA).

Table 1. MNI coordinates of 12 striatal subregion seeds

Seed name
MNI coordinates (mm)

x y z
Dorsal caudate ±13 15 9
Ventral caudate ±10 15 0
Nucleus accumbens ±9 9 8
Dorsal rostral putamen ±25 8 6
Dorsal caudal putamen ±28 1 3
Ventral rostral putamen ±20 12 -3
MNI: Montreal Neurological Institute 
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RESULTS

Demographic and clinical characteristics of the 
subjects

There was no significant demographic difference between 
OCD patients and HCs. The clinical characteristics of the 
patients, including duration of illness and Y-BOCS, HAM-D, 
and HAM-A scores, were measured to facilitate interpreta-
tion of our results. We summarize the subjects’ demographic 
and clinical characteristics in Table 2.

Functional connectivity analysis
FC between the left DCP and the right intracalcarine cor-

tex (ICC) was stronger in OCD patients than in HCs, while 
FC between the left DCP and the left putamen was weaker in 

patients than in HCs. FCs between the right VRP and the 
right inferior frontal gyrus (IFG), left supramarginal gyrus 
(SMG), right postcentral gyrus (PCG) and right SMG/angu-
lar gyrus (AG) were stronger in patients than in controls. The 
details of the significant regions are summarized in Table 3 
and Figure 1. The striatal FC results with significant group 
differences before Bonferroni correction are presented in 
Supplementary Table 1 (in the online-only Data Supplement).

Correlation analysis
We found a negative correlation between the FC of the 

right VRP with the right SMG/AG and Y-BOCS compulsion 
scores (r=-0.420, p=0.046) (Figure 2A) in patients with 
OCD. In addition, connectivity between the right VRP and 
right PCG in OCD patients had a significant negative corre-

Table 2. Demographic and clinical characteristics of subjects

OCD (N=23) HCs (N=23) Statistics*(t or χ2) p-value
Age (years) 24.74±5.42 22.57±3.48 -1.62 0.113
Gender (male/female) 19/4 19/4  0.00 1.000
Handedness (left/right) 1/22 1/22  0.00 1.000
IQ 110.39±15.61 109.87±16.53 -0.11 0.913
Education years (years) 13.70±1.96 13.22±3.46  0.58 0.568
Onset age (years) 18.05±6.33 - - -
Duration of illness (years) 6.68±4.89 - - -
Y-BOCS score

Total 23.43±6.79 - - -
Obsession 12.00±4.00 - - -
Compulsion 11.43±3.42 - - -

HAM-D 12.61±6.89 - - -
HAM-A 13.00±7.08 - - -
*numerical data were assessed by an independent t-test if the variances were equal or by Welch’s t-test otherwise; Fisher’s exact test was used 
for categorical data. OCD: obsessive-compulsive disorder, HCs: healthy controls, IQ: intelligence quotient, Y-BOCS: Yale-Brown Obsessive 
Compulsive Scale, HAM-D: Hamilton Rating Scale for Depression, HAM-A: Hamilton Rating Scale for Anxiety

Table 3. Group comparisons of striatal functional connectivity between OCD patients and HCs

Seed Brain region
Cluster size  

(voxels)
Connectivity strength FDR-and  

Bonferroni-corrected p
MNI coordinates (mm)

HC OCD x y z

Dorsal caudal  
  putamen (left)

OCD>HC
Right intracalcarine cortex 341 -0.10 0.04 0.001 2 -76 4

HC>OCD
Left putamen 192  0.26 0.11 0.043 -28 4 4

Ventral rostral  
  putamen (right)

OCD>HC
Right inferior frontal gyrus 231 -0.02 0.11 0.025 56 18 -6
Left supramarginal gyrus 220 -0.05 0.08 0.025 -52 -42 32
Right postcentral gyrus 187 -0.02 0.12 0.049 60 -14 22
Right supramarginal/angular gyrus 160 -0.05 0.09 0.049 68 -40 28

FDR: false discovery rate, MNI: Montreal Neurological Institute, OCD: obsessive-compulsive disorder, HCs: healthy controls
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lation with HAM-A scores (r=-0.542, p=0.008) (Figure 2B).

DISCUSSION

In the current study, we examined resting-state corticostria-
tal FC alterations and their relationship with symptom severi-

ty using a fine 12-seed striatal parcellation in OCD patients. 
We found that the FC values of the left DCP and right VRP 
with extensive cortical regions including the ICC, IFG, SMG/
AG, and PCG were significantly stronger in patients than in 
HCs. Moreover, the FC values between the right VRP and 
right SMG/AG and between the right VRP and right PCG 

Figure 1. t-statistic maps of the significant FC of the left DCP (A) and right VRP (B) in patients with OCD compared to healthy controls. The 
FC between the left DCP and the right intracalcarine cortex was stronger in patients with OCD than in healthy controls (red through yellow; 
A-1), whereas the opposite was true of the FC between the left DCP and the left putamen (shades of blue; A-2). The FC values between 
the right VRP and the right inferior frontal gyrus (B-1), left supramarginal gyrus (B-2), right postcentral gyrus (B-3) and right supramarginal/
angular gyrus (B-4) were stronger in patients with OCD (red through yellow). All clusters survived false discovery rate and Bonferroni cor-
rection, with p-values<0.05/12. FC: functional connectivity, DCP: dorsal caudal putamen, VRP: ventral rostral putamen, OCD: obsessive-
compulsive disorder.
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tients with OCD. FC: functional connectivity, OCD: obsessive-compulsive disorder, VRP: ventral rostral putamen, Y-BOCS: Yale-Brown Ob-
sessive Compulsive Scale, PCG: postcentral gyrus, HAM-A: Hamilton Rating Scale for Anxiety.  
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were negatively correlated with scores on the compulsive sub-
scale of the Y-BOCS and on the HAM-A, respectively.

Strengthened FC between the right VRP and right SMG/
AG and right PCG in OCD patients was a notable finding of 
the present study. The SMG/AG is responsible for a number of 
cognitive functions that are impaired in OCD patients, includ-
ing visuospatial cognition, attention, awareness, and conflict 
resolution.36-38 The PCG is a brain region belonging to the sen-
sorimotor network, and it has been established that most pa-
tients suffering from OCD also have significant impairment of 
sensorimotor functions such as sensory gating.39-43 Further-
more, numerous prior studies have demonstrated that patients 
with OCD have greater GM volume, gyrification, and meta-
bolic rates than HCs in both the SMG/AG and the PCG.44-51 
These previous findings corroborate our present finding that 
alterations in the FC of the SMG/AG and PCG are associated 
with the pathophysiology of OCD. However, both FC values 
were negatively correlated with two measures of clinical symp-
tom severity: Y-BOCS compulsion scores and HAM-A scores. 
These negative correlations may imply that the strengthened 
FC observed in OCD patients may be involved in a compensa-
tory mechanism for obsessive-compulsive symptoms rather 
than contribute to the pathogenesis. The abovementioned in-
creases in the volume and metabolic rate of the SMG/AG and 
PCG in patients with OCD also support this inference. How-
ever, since there is little scientific understanding of compensa-
tory mechanisms in OCD, further research is required to 
prove such a claim.

Compared with HCs, patients with OCD exhibited strength-
ened FC between the right VRP and the right IFG in the pres-
ent study. The IFG, especially the right IFG, is already known 
to be an important region for response inhibition.37,52,53 A re-
sponse inhibition deficit has been widely reported in patients 
with OCD using tasks such as go/no-go and stop-signal reac-
tion time.54-58 Therefore, it could be inferred that the IFG might 
be engaged in the pathophysiology of OCD, causing its FC 
with the striatum to be altered in OCD patients. However, the 
results of other studies searching for structural and functional 
alterations of the IFG in OCD were not consistent. Specifically, 
depending on the study, the GM volume was greater49 or 
smaller59,60 in OCD patients than in HCs. Resting-state FC be-
tween the IFG and ventral putamen was weaker in patients 
with OCD than in HCs.20 Thus, the IFG has not yet been suffi-
ciently investigated in OCD, despite the importance of its 
function, response inhibition. Thus, further studies should be 
carried out to specify the role and clinical significance of this 
region in OCD.

We also revealed that patients with OCD show stronger 
FC between the DCP and ICC than HCs do. In recent stud-
ies, the role of the parieto-occipital regions in OCD patho-

physiology has received much attention. Such studies have 
claimed that the occipital regions are associated with deficits 
in visuospatial processing, which are consistently shown in 
OCD patients.61-63 Thus, the ICC, part of the primary visual 
cortex, could be altered in patients with OCD. Indeed, sever-
al papers have reported structural and functional changes in 
the calcarine cortex in OCD patients.24,64-67 Among those 
studies, Chen et al.24 demonstrated strengthened FC between 
the caudate nucleus and calcarine sulcus in patients with 
OCD, which is in line with our result. Although a lack of 
knowledge restricts more specific interpretation of this find-
ing, this study could provide additional information for fu-
ture studies, given the increasing attention to the role of the 
occipital lobe in OCD.

One of the most unexpected findings of the current study 
was the lack of significant alterations in areas where such 
changes were previously reported, such as the OFC, ACC, and 
PFC. This discrepancy may be attributed to our patients’ clini-
cal characteristics, which are significantly different from those 
of subjects in previous studies. In most preceding studies, the 
mean duration of illness was more than 10 years (Supplemen-
tary Table 2 in the online-only Data Supplement). In contrast, 
the mean duration of illness in our patients was 6.68 years. Re-
cently, several studies have shown that the progression of OCD 
may accompany structural changes in the brain due to the neu-
roplasticity of the human brain.16,59,68-73 Therefore, the compara-
tively short duration of illness in our patients could be a possi-
ble explanation for the inconsistency. In addition, Chen et al.,24 
whose patients have a shorter mean duration of illness than our 
patients (5.54 years), reported results to ours. Those researchers 
were also unable to observe any significant FC alteration with 
commonly reported areas, but they found stronger FCs with 
cortical regions outside the traditional CSTC circuit, such as 
the temporal gyrus, calcarine sulcus, and PCG. These results 
support the inference about the relationship between our in-
consistent results and the duration of illness. Furthermore, un-
like most previous studies, we applied the Bonferroni correc-
tion for rigorous statistical analysis. This methodological 
difference might also cause the inconsistency in results. Indeed, 
when we did not correct for multiple comparisons, some results 
similar to previous findings were obtained, such as stronger FC 
between the right DC and subcallosal cortex/OFC in OCD pa-
tients than in HCs.

When interpreting the results of the present study, one 
must further consider several issues. First, 3 out of 23 pa-
tients were taking selective serotonin reuptake inhibitors 
(SSRIs). It is well known that psychotropic drugs, including 
SSRIs, can affect the FC pattern of the brain.74,75 However, 
there have been several reports that SSRIs tend to normalize 
the pathological changes in patients’ brains.76-80 Thus, medi-
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cation is at least unlikely to increase the risk of false positive 
errors. The small number of subjects could be another limi-
tation of this study. A small sample size lowers the reproduc-
ibility and reliability of findings.81 If a future study with a 
large number of subjects is conducted, more accurate and re-
liable results can be obtained regarding the striatal FC altera-
tions in OCD.

In conclusion, although we could not replicate the report-
ed results of Posner et al.28 and other previous studies using a 
fine striatal parcellation with 12 seeds, we discovered signifi-
cantly altered FC between the striatal subregions and exten-
sive cortical regions in patients with OCD, even with a strin-
gent Bonferroni correction for multiple comparisons. In 
addition, the altered FC of the striatal subregions showed a 
significant relationship with the severity of compulsive and 
anxiety symptoms in patients with OCD. Therefore, the find-
ings of the present study suggest that altered striatal FC could 
be a neural correlate of symptom severity in OCD patients. 
We expect that these findings will provide an improved un-
derstanding of the role of striatal FC in the pathophysiology 
of OCD. Future studies with large sample sizes and medica-
tion-naïve patients are necessary to support the results of the 
current study.
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The online-only Data Supplement is available with this ar-

ticle at https://doi.org/10.30773/pi.2019.0206.
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Supplementary Table 1. Group comparisons of striatal functional connectivity between OCD patients and HCs before the Bonferroni cor-
rection

Seed Brain region
Cluster size 

(voxels)
Connectivity strength

FDR–corrected p
MNI coordinates (mm)

HC OCD x y z
Dorsal caudate 
  (right)

OCD > HC  
  Subcallosal/orbitofrontal cortex

141 -0.05 0.10 0.042 -6    32 -28 

Dorsal caudate (left) OCD > HC  
  Left angular gyrus

145 -0.90 0.04 0.036 -58 -58   38 

Dorsal caudal OCD > HC
  putamen (left) Right intracalcarine cortex

Left cuneal cortex
341
119

-0.10
-0.09

0.04
0.04

<0.001
0.028

  2
-2

-76
-78

    4
  32

HC > OCD
Left putamen
Right putamen

192
125

0.26
0.34

0.11
0.20

0.004
0.027

-28
  28

    4
    2

    4
    6

Ventral rostral OCD > HC
  putamen (right) Right inferior frontal gyrus 231 -0.02 0.11 0.002   56   18  -6

Left supramarginal gyrus 220 -0.05 0.08 0.002 -52 -42   32
Right postcentral gyrus 187 -0.02 0.12 0.004   60 -14   22
Right supramarginal/angular gyrus
Left temporal pole

160
106

-0.05
-0.02

0.09
0.13

0.004
0.049

  68
-54

-40
  14

  28
 -2

FDR: false discovery rate, MNI: Montreal Neurological Institute, OCD: obsessive-compulsive disorder, HCs: healthy controls 



Supplementary Table 2. Previous literatures investigating cortico-striatal functional connectivity using striatal seeds in patients with obses-
sive-compulsive disorder

Author Year Number of subjects (patients/controls) Age (years) Duration of illness (years)* Y-BOCS
Harrison et al.1 2009 21/21 26.2±3.4 8.7±5.7 -
Sakai et al.2 2011 20/23 30.9±9.3 -   24.6±5.71
Harrison et al.3 2013 74/74 33.1±8.3 11.5±9.4 21.8±6.3
Posner et al.4 2014 23/20 30.9±8.8 14.8* 25.9±4.2
Chen et al.5 2016 30/30 26.23±5.69   5.54±4.04 23.77±6.85
Vaghi et al.6 2017 44/43   37.5±12.1 12.11±9.44    22±4.2
*duration of illness was estimated by subtracting average age of onset from average age. Y-BOCS: Yale-Brown Obsessive Compulsive Scale 

REFERENCES

1. Harrison BJ, Soriano-Mas C, Pujol J, Ortiz H, López-Solà M, Hernández-Ribas R, et al. Altered corticostriatal functional connectivity in obsessive-compul-
sive disorder. Arch Gen Psychiatry 2009;66:1189-1200.

2. Sakai Y, Narumoto J, Nishida S, Nakamae T, Yamada K, Nishimura T, Fukui K. Corticostriatal functional connectivity in non-medicated patients with ob-
sessive-compulsive disorder. Eur Psychiatry 2011;26:463-469.

3. Harrison BJ, Pujol J, Cardoner N, Deus J, Alonso P, López-Solà M, et al. Brain corticostriatal systems and the major clinical symptom dimensions of obses-
sive-compulsive disorder. Biol Psychiatry 2013;73:321-328. 

4. Posner J, Marsh R, Maia TV, Peterson BS, Gruber A, Simpson HB. Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop 
in unmedicated adults with obsessive-compulsive disorder. Hum Brain Mapp 2014;35:2852-2860.

5. Chen Y, Juhás M, Greenshaw AJ, Hu Q, Meng X, Cui H, et al. Abnormal resting-state functional connectivity of the left caudate nucleus in obsessive-com-
pulsive disorder. Neurosci Lett 2016;623:57-62.

6. Vaghi MM, Vértes PE, Kitzbichler MG, Apergis-Schoute AM, van der Flier FE, Fineberg NA, et al. Specific frontostriatal circuits for impaired cognitive flexi-
bility and goal-directed planning in obsessive-compulsive disorder: evidence from resting-state functional connectivity. Biol Psychiatry 2017;81:708-717.


