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Reaction lumping in metabolic 
networks for application 
with thermodynamic metabolic 
flux analysis
Lea Seep1, Zahra Razaghi‑Moghadam1,2 & Zoran Nikoloski1,2*

Thermodynamic metabolic flux analysis (TMFA) can narrow down the space of steady-state flux 
distributions, but requires knowledge of the standard Gibbs free energy for the modelled reactions. 
The latter are often not available due to unknown Gibbs free energy change of formation ,�f G

0 , of 
metabolites. To optimize the usage of data on thermodynamics in constraining a model, reaction 
lumping has been proposed to eliminate metabolites with unknown �f G

0 . However, the lumping 
procedure has not been formalized nor implemented for systematic identification of lumped reactions. 
Here, we propose, implement, and test a combined procedure for reaction lumping, applicable to 
genome-scale metabolic models. It is based on identification of groups of metabolites with unknown 
�f G

0 whose elimination can be conducted independently of the others via: (1) group implementation, 
aiming to eliminate an entire such group, and, if this is infeasible, (2) a sequential implementation to 
ensure that a maximal number of metabolites with unknown �f G

0 are eliminated. Our comparative 
analysis with genome-scale metabolic models of Escherichia coli, Bacillus subtilis, and Homo sapiens 
shows that the combined procedure provides an efficient means for systematic identification of 
lumped reactions. We also demonstrate that TMFA applied to models with reactions lumped according 
to the proposed procedure lead to more precise predictions in comparison to the original models. The 
provided implementation thus ensures the reproducibility of the findings and their application with 
standard TMFA.

Constraint-based modeling of genome-scale metabolic models have been used to identify patterns in steady-state 
flux distributions, pointing at design principles of metabolic networks1–3, and to design metabolic engineering 
strategies for manipulation of metabolic processes4–6. Moreover, approaches from the constraint-based modeling 
framework have been employed to integrate heterogeneous high-throughput data, including: gene expression 
levels7, proteome abundances8,9, and metabolite concentrations10–15.

Genome-scale metabolic models provide a mathematical representation of all documented biochemical reac-
tions that interconvert nutrients from the environment into extracted products and biomass16. A metabolic 
network is represented by a stoichiometric matrix, S , with m rows, representing metabolites, and n columns, 
denoting reactions. The entries of the stoichiometric matrix describe the role of a metabolite in a given reac-
tion, such that negative and positive entries indicate that the metabolite enters as a substrate and product of the 
reaction, respectively. Approaches in the constraint-based framework often invoke the steady-state assumption, 
whereby the concentrations of metabolites, expressed as linear combination of fluxes that contribute to their 
synthesis and degradation, do not change with time17. As a result, Flux Balance Analysis (FBA), as the promi-
nent approach on which the constraint-based framework rests, can provide predictions about steady-state flux 
distributions with the assumption that the biological system optimizes a particular task (e.g. maximizing cellular 
growth)17. However, fluxes directly depend on the concentration of enzymes and concentration of metabolites, 
leading to scenarios in which predictions of FBA do not consider constraints due to metabolite concentrations.

One approach that accounts for the effect of metabolic concentrations on metabolic fluxes is Thermodynamic 
Metabolic Flux Analysis (TMFA)11,18. This approach introduces additional constraints to ensure that the result-
ing steady-state flux distribution respects the laws of thermodynamics, thus restricting the space of feasible flux 
distributions. More specifically, TMFA allows a flux through a reaction only if associated change of Gibbs free 
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energy �G is negative19. The value of �Gj for each reaction rj , 1 ≤ j ≤ n , depends on concentrations of participat-
ing metabolites, xj , 1 ≤ j ≤ m , the respective stoichiometric coefficient sij , the standard Gibbs free energy �G0

j  , 
as well as the universal gas constant R and temperature T , as follows:

We note that �G0
j  can be obtained from the standard Gibbs free energy of formation of metabolites, �f G

0 , 
weighted by the respective stoichiometric coefficients with which the metabolites enter the reaction rj:

This approach has been extended to consider the contribution of different chemical groups, termed group 
contribution method20,21, and later, the contribution of pseudoisomeric groups22. However, for many metabolites 
�f G

0 is neither experimentally determined, due to the large experimental efforts and availability of chemical 
standards needed23, nor can be estimated by using the group contribution methods and extensions thereof22. 
The group contribution method is reported to not be applicable in the case of organic–inorganic complexes as 
well as for a small number but often encountered organic substructures21. As a result, the standard Gibbs free 
energy for more than a third of reactions in the entire KEGG database are missing since �f G

0 for the included 
metabolites are not available21,22. Moreover, in the most recent version of the ModelSEED database, more than 
half of the included metabolites have unspecified �f G

0 values24.
To overcome the challenge in TMFA, Henry et al. introduced the idea of determining a linear combination of 

reactions with undetermined �G0 , so-called lumping, to obtain reactions in which metabolites with unknown 
�f G

0 are eliminated, i.e. enter with stoichiometric coefficients of zero19. Hence, �G0 of the resulting lumped 
reaction is fully specified. However, besides the idea and the list of lumped reactions, the process of lumping was 
not further specified in the original study.

Let the reactions be partitioned into two classes, J lumped , composed of all lumped reactions, and Jmodel , con-
sisting of the reactions comprising the original model. Therefore, the lumped reactions are only introduced to 
impose more thermodynamic constraints, while the steady-state flux space remains unaltered (by solving Sv = 0 
for reactions in Jmodel ). Reactions whose lumping leads to a lumped reaction rk can only be thermodynamically 
feasible if the lumped reaction itself is feasible18. This is ensured by the following constraints:

where the binary variables yk and zj take the value 1 if the respective lumped reaction rk and the model reaction 
rj are thermodynamically feasible. Here, α denotes the linear combination of reactions which yield the lumped 
reaction and M is a big constant. Note that when yk = 0 , i.e. the lumped reaction is not thermodynamically 
feasible, then 

∑

j∈Jmodel αkjzj ≤
(

∑

j∈Jmodel αkj

)

− 1 , implying that at least one of the reactions forming the lumped 
reaction rk is inactive. Despite advances in applications of TMFA across different organisms and for various 
purposes, from estimation of realistic flux distributions19,25 to model reduction26,27, the procedure of reaction 
lumping has not been fully specified. We would like to note that the reaction lumping does not consider removal 
of reactions while retaining key functional properties, as applied in stoichiometric techniques for model reduc-
tion with application of thermodynamic constraints27,28 or without them29,30.

Here we introduce and precisely formulate an approach for reaction lumping and provide an efficient imple-
mentation that is applicable with genome-scale metabolic models. The proposed formulation of the approach 
identifies a maximal subset of metabolites that can be eliminated by lumping, leading to automation of this step 
in the application of the constraint-based approaches based on TMFA.

Methods
The calculation of standard Gibbs free energy, �G0 , of reactions is hindered by the presence of metabolites with 
unknown �f G

0 . Reaction lumping aims to identify a linear combination, α , of reactions involving at least one 
metabolite with unknown �f G

0 , such that the corresponding stoichiometric coefficient in the resulting lumped 
reaction is zero. As a result, �G0 of the lumped reaction can be calculated, thus facilitating the application of 
TMFA. The proposed approach considers the potentially intertwined relationship of metabolites with unknown 
�f G

0 within a metabolic network, and ensures that every lumped reaction that is eventually created includes 
only metabolites with known �f G

0.
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Lumping program.  Here, all reversible reactions are split into two irreversible reactions. If metabolites with 
unknown �f G

0 co-occur in the lumped reactions, a linear combination may not be able to eliminate all such 
metabolites of unknown �f G

0 at once, resulting in a lumped reaction for which �G0 can still not be calculated. 
To resolve this problem, we first define the notion of a group of metabolites with unknown �f G

0 . We consider 
the submatrix R of the stoichiometric matrix S that involves reactions whose �G0 cannot be determined due to 
the involvement of metabolites with unknown �f G

0 (Fig. 1a). These reactions can be represented by a bipartite 
graph composed of reaction and metabolite nodes. A metabolite node is connected to a reaction node if the 
corresponding metabolite participates in the reactions. To determine the groups of metabolites with unknown 
�f G

0 , first the metabolites with available �f G
0 are removed from the bipartite graph. The connected compo-

nents in the resulting graph correspond to the groups of metabolites with unknown �f G
0 . For instance, in 

Fig. 1a, metabolite A and B, with unknown �f G
0 form a group since no other metabolites of unknown �f G

0 
participate in the reactions r1 , r2 and r7 , that include these metabolites.

The resulting lumped reaction for a group, U  , of metabolites with unknown �f G
0 is given by the product 

y = Rα in which the stoichiometry of each metabolite u ∈ U  , specified with yu , is constrained to 0:

The formulation in Eq. (5) corresponds to minimizing the sum of absolute values of stoichiometric coefficients 
of the lumped reaction, implemented by a well-established transformation of variables31. We make sure that every 
reaction involving the metabolite u ∈ U (of unknown �f G

0 ), which we aim to eliminate, is associated a positive 
coefficient in the linear combination (Eqs. (8) and (9)). The reactions that are combined in the lumped reaction 
are given by the support of α , with the difference of y+ and y− denoting the stoichiometric coefficients of the 
lumped reaction (Eqs. (6) and (7)). Clearly, the lumping program can be iteratively applied for each metabolite 
with unknown �f G

0 (i.e. |U|= 1), which we refer to as naïve iterative procedure, or for a group of metabolites 
with unknown �Gf  (i.e. |U|> 1).

The set R of reactions to be lumped is specified by the user. In the tests we conduct, we exclude biomass and 
exchange reactions from R since the biomass reaction is synthetic and the exchange reactions are often poorly 
supported with evidence. Exclusion of the biomass reaction from the set R was done to prevent an infeasible 
lumped reaction that would lead to blocking of the biomass reaction (see constraint in Eq. (2), for yk = 0 ). In the 
provided implementation, we include the option to enable or disable lumping of (internal) transport reactions. 
The presented result allow lumping of transport reactions, whereby adjustment for transport across membrane 
is performed for lumped reactions that cross compartments.

Group implementation.  With the group implementation, we aim to eliminate all metabolites in a group at 
once by checking if the stoichiometric coefficients for the metabolites in the group can be set to zero by a linear 
combination that satisfies the constraint in Eqs. (6)–(9). If this is possible, a single linear program suffices to 
find a lumped reaction that eliminates the metabolites in the group (Fig. 1b—blue part). An example where the 
group procedure can be applied is given by the group U1 on Fig. 1a (bottom). Here, the lumping of r1 , r2 , and r7 
simultaneously eliminates the metabolites A and B, forming U1, by solving a single linear program.

The group lumping fails to find a lumped reaction if the feasible space of the linear program is empty, i.e. there 
exists no linear combination that can eliminate the metabolites with unknown �f G

0 in the group U  (Fig. 1b). 
If this is the case, we proceed with sequential lumping. For instance, the group U2, of metabolites E, G, and H, 
cannot be eliminated at once using the group implementation. The reason is that the linear system:

does not have a solution which satisfies the constraint that α3 is of value at least 1 since r3 contains a metabolite 
from the group U2. However, metabolite G (corresponding to the second row) can be eliminated by using the 
same linear system, by a linear combination of reactions r4 , r5 , and r6.

Sequential implementation.  The sequential implementation starts each iteration with a single metabo-
lite u with unknown �f G

0 from a given group U  of such metabolites. Here, we form a subset of metabolites 
with unknown �f G

0 , denoted by U ′ which initially contains only u . The sequential implementation then aims 
to identify a linear combination of reactions that eliminates all metabolites in U ′ , which is updated iteratively. If 
such a linear combination exists, the sequential implementation checks if the lumped reaction involves any other 

(5)min
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∑

y+ + y−

(6)Rα = y+ − y−
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Figure 1.   Reaction lumping workflow. Starting with a model involving reactions with unknown �G0 , a subset 
R of the underlying stoichiometric matrix is extracted involving only those. Then the lumping procedure 
identifies linear combinations of reactions to arrive at a lumped reaction whose �G0 can be calculated. (a) 
Proposed procedure identifies the reactions in R (pink shaded) based on the involvement of metabolites without 
∆f G

0 (here marked with *). In a second step, all metabolites with unknown ∆f G
0 are partitioned based on 

shared appearance in at least one reaction. A group is defined as connected component within a bipartite 
graph having metabolite with unknown ∆f G

0 . nodes and all reactions those metabolites participate in. Here, 
two groups, U1 and U2, are found. U1 consists of metabolites A and B , while U2 includes G, E and H . (b) 
The proposed procedure tests if all metabolites within a group can be eliminated at once; if no solution can be 
found each metabolite in the group is evaluated on its own. Each lution here is preliminary; it must be checked 
whether there are any other metabolites in the group still involved (which would hinder the �G0 calculation). If 
the latter hold true, such metabolites are added sequentially while each previous solution is placed in R.
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metabolite, say w , of unknown �f G
0 . In such a case, the found lumped reaction y is added to the matrix R and 

metabolite w is added to the set U ′ . Clearly, then, we need to reiterate the solving of the linear program to ensure 
that all metabolites in the updated set U ′ are eliminated (Fig. 1b—magenta part).

Note that in solving the linear program in Eqs. (5)–(9), we do not consider the existence of several alternative 
solutions, to prevent backtracking. This is justified by our aim to eliminate a maximal rather than the maximum 
number of metabolites with unknown �f G

0 via reaction lumping. However, this may have implications in con-
straints in TMFA applications. The sequential implementation necessitates solving of several linear programs 
with an increasing size of R . The latter is due to the fact that in each iteration R is extended with the currently 
found solution. For instance, let us consider group U2 consisting of three metabolites that cannot be eliminated 
by the group implementation. The sequential solution procedure would first search for a linear combination that 
eliminates metabolite E. While the linear combination y = r3 + 2r4 + r5 removes metabolite E, it also involves 
metabolite G which is also of unknown �f G

0 . Thus, the set U ′ is enlarged to now include metabolite E and G 
and the matrix R is augmented with the found solution y . The solution to the next linear program identified 
y + 2r6 as a linear combination that eliminates metabolite G ; however, the solution includes the metabolite H 
of unknown �f G

0 . The final iteration is performed with the set U ′ = {E,G,H} and the matrix R enlarged again 
by previously found linear combination; however, no solution that eliminates all three metabolites in U ′ can be 
identified in this case. Proceeding with metabolite G , two iterations are needed to identify the lumped reaction, 
r4 + r5 + r6, that eliminates G. Similarly to E, no linear combination eliminates metabolite H while constraining 
metabolite E and G to zero which are added to U ′ in the proceedings to find a lumped reaction. In total eight 
linear programs need to be solved to exhaustively check if any metabolites of group U2 can be eliminated. In 
contrast to the group implementation, the sequential implementation is capable to identify a lumped reaction 
that eliminates the metabolite G with unknown �Gf  . Furthermore, in contrast to the group implementation, 
which eliminates the group U1 in a single linear program, the sequential implementation requires solving four 
linear programs to arrive at the same solution.

Combined procedure.  The combined implementation applies first the group and then sequential imple-
mentation on each of the groups of metabolites resulting from the partition. Therefore, it ensures maximizing 
the number of metabolites with unknown �Gf  that can be eliminated via lumping while solving a fewer number 
of linear programs (Fig. 1b). In effect, this approach takes the advantages of the speed of the group implementa-
tion, due to the reduced number of programs to be solved, and the exhaustive search of the sequential lumping.

TMFA and variability analysis.  We implemented TMFA by allowing the concentrations to range between 
1  µM and 20  mM. In the case of E. coli the range for Glycerophosphoglycerol (g3pg), Sn-Glycero-3-phos-
phoethanolamine (g3pe), and water in the cytosol had to be relaxed to 1 µM – 1.4 ∗ 1055 M, 1 µM-6003 M and 
14.92 pM-20 mM, respectively, for both the original model and the model with lumped reactions. Addition-
ally, for the model with lumping, the upper boundary of Nicotinamide adeneine dinucleotide (nadh) had to 
be expanded to 41.2 mM to obtain 90% of optimal biomass from FBA. Note that similar relaxations need to be 
performed in applications of TMFA with other models18,32. We then determined the variability of �Gj for every 
reaction j , by calculating the minimum and maximum values it takes in the original model and the model with 
the lumped reactions at 90% of the optimal biomass from FBA.

Technical details of the implementation.  The lumping procedure was implemented in MATLAB (v 
9.6.033), requiring MATLAB’s solver ‘intlinprog’ as it outperformed other solvers within a benchmark showcase34. 
All options in the solver were left to default apart from ‘MaxTime’ which was set to 120 s (which is roughly 10 
times greater than the longest duration observed in all investigated cases). The time limit had no influence on 
the outcome as it never caused a premature stop. The statistical analysis was conducted in R (v. 4.0.2) requiring 
the packages ggplot235, ggnewscale36, gridExtra37, RColorBrewer38, mdthemes39 and cowplot40. Figures 1 and 3 
were created using LucidChart41. All computations were done on a Desktop PC with AMD Ryzen 5 processor 
(6 × 3.60 GHz) and 32 GB DDR4 RAM.

Results
Our proposed lumping procedure is designed to identify lumped reactions for any model with incomplete ther-
modynamic data to enforce stricter thermodynamic constraints, see Eqs. (1)–(4). As stated above, the existing 
applications of TMFA11,18 do not specify how to systematically find such combination of reactions that lead to 
elimination of metabolites of unknown �f G

0 . The proposed combined procedure can be applied to genome-
scale models, independent of the extent of available information and its output can be directly used with existing 
implementation of TMFA42.

Lumping decreases the number of reactions with undetermined �G
0.  We applied the combined 

lumping procedure with the genome-scale models of three organisms E. coli43, B. subtillis44
, and H. sapiens27. 

For every model, each reversible reaction is split into two irreversible reactions. The genome-scale model E. coli 
iJR904 contains 1303 reactions and 756 metabolites of which 38 and 26 are not annotated with �G0 and �f G

0 , 
respectively. This model was selected since it represents one of the most complete models regarding thermody-
namic data. Lumping is applied on the reduced matrix of size 73 metabolites and 32 reactions. Note, that matrix 
R does not include the biomass reaction and exchange reactions (“Methods”). The complete set of metabolites 
without any �f G

0 information was partitioned into 12 groups in an automated fashion, based on joint occur-
rence in at least on reaction (“Methods”). The model of B. subtilis iBsu1103 contains 2774 reactions and 1381 
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metabolites, of which 2025 and 434 are of unknown �G0 and �f G
0 , respectively. This is a representative of a 

model which includes little thermodynamic data. Lumping was applied on the reduced matrix of dimension 
1346 × 1971. The complete set of metabolites with unknown �f G

0 was divided into 7 groups in an automated 
fashion (“Methods”). A recent model of H. sapiens redHuman compromises 11,139 reactions and 4521 metabo-
lites of which 3145 and 1032 are of unknown �G0 and �f G

0 , respectively. The model was selected to test the 
effect of model size on the performance of the procedure. All metabolites with unknown �f G are split into 280 
groups by following our implementation (“Methods”).

By applying the proposed lumping procedure, we were able to investigate the extent to which metabolites 
with unknown �f G

0 could be removed, thus leading to more reactions with specified �G0 . For all three mod-
els we could eliminate a sizeable proportion of metabolites with unknown �f G

0 (Fig. 2). In the iJR904 model, 
elimination of 0.5% metabolites (with unknown �f G

0 ) led to a decrease of 1.4% of reactions with unknown 
�G0(the percentages are with respect to the total number of metabolites and reactions). The decrease was not 
due to being able to estimate the unknown �G0 , but rather to the inclusion of lumped reactions in the model 
for which �G0 could be readily determined from the provided thermodynamics data. For instance, inorganic 
triophosphate (PPPI) cannot be removed, by lumping, from the cytosol due to the reactions in which it occurs 
(Fig. 3a). In the model of iBsu1103, 15.4% of metabolites (with unknown �f G

0 ) could be eliminated, leading 
to a decrease of 19.7% for the reactions with unspecified �G0 . Therefore, our procedure eliminated more than 
half of the metabolites with unknown �f G

0 . For example, two metabolites with unknown �f G
0 can be removed 

from this model by lumping five reactions (Fig. 3b). Similarly, for the redHuman model, 15.4% of metabolites 
with unknown �f G

0 could be eliminated, leading to a decrease of 16.4% in reactions with known �G0 . Thus, 
irrespective of the relative amount of available information regarding �f G

0 , our proposed lumping procedure 
identified combinations of reactions with unidentified �G0 which eliminates the maximal number of metabolites 
with unknown �Gf .

Figure 2.   Application of lumping on genome-scale metabolic models. The percentage of reactions with 
unknown �G0 is in three GEMs, (a) iJR904, (b) iBsu1103, and (c) redHuman, reduced after lumping due to 
elimination of metabolites with unknown ∆f G

0 . Shown is the percentage of unknown �G-values in relation to 
the total number of present metabolites (mets) and reactions, respectively, (rxns) before and after the lumping 
procedure was applied. The number of eliminated metabolites with unknown ∆f G

0 is with respect to the total 
number of metabolites. The investigated genome-scale models have low, high and medium number of unknown 
�G0 and ∆f G

0 , respectively, and pertain to organisms of increasing complexity.
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Combined procedure is more efficient in comparison to the sequential implementation 
alone.  A lumping procedure that naively attempts to eliminate every metabolite of unknown �f G

0 would 
rely solely on the iterative procedure. This approach would require solving at least one linear program per metab-
olite of unknown �f G

0 to identify a lumped reaction that eliminates the metabolite. The novelty of our solution 
consists of reducing the number of linear programs to be solved, by proposing the combined procedure that 
relies on the group and sequential implementation executed on each group of metabolites (see “Methods”). The 
group implementation has the potential to speed up the elimination of the metabolites in a group by solving a 
single linear program. Here, we first investigated the advantages provided by the combined procedure measured 
by the difference between the total duration and number of linear programs solved in comparison to the naïve 
usage of the sequential procedure. We also compared the time spent on solving the linear programs within the 
group and sequential component of the combined procedure (Table 1).

The combined procedure for the iBsu1103 model required solving 1006 linear program in 196 s. The linear 
program which took the least amount of time required 0.09 s, while the slowest required 14.31 s (Table 1). The 
lumping based on the sequential implementation only necessitated solving of three linear program fewer in com-
parison to the combined procedure, the duration of which ranges from 0.12 to 0.33 s. The entire procedure relying 
on the sequential implementation took only 179 s and was faster by 17 s in comparison to the combined (Table 2).

Despite the better performance (in time) for the sequential procedure on the iBsu1103 model, the potential 
of the combined implementation was demonstrated on the case of the redHuman model. Here, the combined 
procedure required solving 2650 linear programs in 2659 s. The fastest linear program took 0.19 s, while the 
slowest required 13.59 s. The lumping based only on the sequential procedure required 4500 linear programs, 
with time that ranged from 0.19 to 0.9 s. In comparison to the combined procedure, the application of only the 
sequential took 772 s longer and required solving 1850 more linear programs (Table 2).

Figure 3.   Real world examples of failure and success of lumping. An example for (a) failure taken from the 
iJ906 model and (b) success taken from the iBsu1103 model of proposed lumping procedure is shown. Colored 
metabolites indicate the respective missing ∆f G

0 and hence target of lumping. Within each example the same 
color corresponds to the same metabolite. Bold numbers indicate a multiplicative coefficient.

Table 1.   Comparison of the combined and sequential implementation. The comparison is carried out on two 
genome-scale models, iBsu1103 and redHuman. Shown are the number of linear programs (LPs), total time 
for the execution of the procedure, and the minimum and the maximum time (in seconds) needed to solve a 
single linear program within the entire procedure.

No. LPs Total time (s) Min time of LP (s) Max time of LP (s)

iBsu1103

Sequential only 1003 179 0.12 0.33

Combined 1006 196 0.09 14.31

redHuman

Sequential only 4500 2005 0.19 0.90

Combined 2650 1233 0.19 13.59
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Next, we investigated the contribution of the group and sequential implementation to the combined proce-
dure. The proposed combined lumping procedure required 280 and 2370 linear programs for the group and the 
sequential implementation parts, respectively, taking all together ~ 20 min (Fig. 4a). An overall trend is apparent 
that, in most cases, the fewer linear programs for the group implementation took longer than the linear programs 
for individual linear programs in the sequential approach (Fig. 4a). The most prominent outliers in terms of 
the time needed to solve the linear programs corresponded to the largest groups, of size 200 for the redHuman 

Table 2.   Properties of the investigated genome-scale metabolic models. Shown are the number of metabolites 
and the number of those with unknown ∆f G

0, the number of reactions and the number of those with 
unknown �G0 , the dimensions of the matrix R of reactions used in the lumping procedure, and the number of 
metabolite groups.

Model No. metabolites (unknown �f G
0) No. reactions (unknown �G0) R dimension No. groups

iJ906 756 (26) 1303 (38) 73 × 32 12

iBsu1103 1381 (434) 2774 (2025) 1346 × 1971 7

redHuman 4521 (1032) 11,139 (3145) 1993 × 3016 280

Figure 4.   Analysis of time efficiency of the proposed combined procedure. The inclusion of the group 
procedure in the combined lumping procedure is capable to remove a group of metabolites with solving only 
one linear program instead of a succession of at least one program per metabolite in the group. Boxplots show 
the distribution of time needed per linear program separated into the group and sequential procedure with 
outlier (dots) displayed if the value lies beyond 1.5*IQR of respective quantile. The insets show the number of 
metabolites in respective group—the colours matching those in the bigger graph, which displays the progress 
of the lumping procedure. (a) During the lumping of redHuman 280 group and 2041 sequential programs were 
needed. The groups are ordered and coloured by their group size. If a group-program can find a solution all 
metabolites in respective group are removed, resulting in a sudden drop, marked here by light green lines (241 
successful). Otherwise, the group program was followed by the sequential program for each metabolite in the 
group. (b) During the lumping of iBsu 7 group (4 successful) and 888 sequential programs were needed. Here, 
the majority of metabolites form a single group, for which respective LP does not find a solution, leading to a 
stepwise decrease in the number of removed metabolites.
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model and of size 419 for the iBsu1103 model, taking 14.31 and 13.59 s, respectively. For the redHuman model, 
the group implementation was infeasible for the largest group, but succeeds to lump groups of sizes 77 and 58. 
This led to the removal of 135 metabolites with unknown �f G

0 by solving only two linear programs, one for 
each of the two groups. In addition, the number of groups to which the group implementation yields a solution 
increases with the decreasing size of the groups.

The iBsu1103 model has a higher degree of missing thermodynamic data, leading to groups of sizes as large 
as 419 (out of 434) metabolites with missing �f G

0 (Fig. 4b). As only seven groups were found, the trend of the 
group implementation taking longer to calculate was not as striking as for the redHuman model, but was still 
present with respect to the median time (0.199 vs 0.162). The group implementation was not feasible for the 
largest group, but the corresponding linear program took 13.59 s to solve. As a result, for each metabolite in this 
group, the sequential implementation had to be employed. The metabolites with unknown �f G are eliminated 
stepwise compared to the sudden drop, displayed in the redHuman model (Fig. 4b). The linear programs for the 
group implementation in the case of the smaller, remaining groups are feasible (Fig. 4b). As there were only seven 
groups present, no reliable trend regarding group size and success could be further established.

The application of the combined procedure on the two models demonstrated that the group implementation 
provides speed-up due to a reduced number of linear programs to solve. In addition, our results showed that 
the group procedure adds marginal increase in running time, in case it needs to be followed by the sequential 
procedure.

Benefits of the lumping procedure in TMFA applications.  To demonstrate the advantages of using 
the models that consider lumped reactions, based on the proposed procedures, we implemented TMFA for the 
models of E. coli and B. subtilis (see “Methods”). We then computed the range of values that �Gj takes for every 
reaction j in the original model and the model with lumped reactions at the optimal biomass obtained from 
TMFA. This analysis allowed us to classify the reactions into irreversible and reversible based on the sign that the 
maximum �Gj takes. The reversible reactions could further be divided into those whose range is reduced upon 
lumping and those whose ranges show shifts between the two models.

In the case of E. coli’s model, we found that the lumping changed the number of irreversible reactions from 
353 in the original model to 350 in the one that also considered the lumped reactions to impose thermodynamic 
constraints (Table 3). As a result, the number of reversible reaction was reduced from 707 in the original to 
704 in the model with lumped reactions (Table 3). The reactions deemed irreversible in the E. coli model with 
lumped reactions include: UAG2E, DAPabc, and ACMAMUT (see Supplementary Figure S1). Expectedly, the 
consideration of lumped reactions decreased the ranges of 116 reversible reactions (see Supplementary Figure S2).

In the case of B. subtilis’ model, we observed that there is no change in the number of irreversible and revers-
ible reactions with and without consideration of lumped reaction (Table 3). However, the ranges of Gibbs free 
energy were substantially reduced for 101 reactions (see Supplementary Figure S3). Therefore, we conclude that 
the lumping procedure does have an effect on the findings from TMFA and can be effectively used to obtain 
more constrained predictions, particularly for metabolite concentrations (that are interlinked with the values 
of Gibbs free energy).

Discussion
The idea of reaction lumping has been introduced to provide additional constraints for reactions with unknown 
�G0 , but can be linearly combined into an overall lumped reaction whose �G0 can be easily determined based 
on the thermodynamic data for the modelled components. The applications of TMFA are in part hampered by 
the lack of good coverage of thermodynamic data19,32,45, leaving the flux solution space less constrained. Here, 
we proposed an algorithm which fills the gap between the introduction of the idea of reaction lumping and the 
TMFA approach that imposes special constraints to the lumped reactions. Our procedure starts with the identi-
fication of groups of metabolites with unknown �f G

0 , identified by inspecting the connected components of the 
bipartite metabolite reaction graph. The identification of lumping reactions can thereby be solved independently 
on each of the groups using the combined lumping procedure. The combined lumping procedure consists of solv-
ing one linear program, for the group implementation, and a series of linear programs that are iteratively solved, 
for the iterative implementation. The group component can be interpreted as a shortcut, by testing whether all 
metabolites in a group can be eliminated at once. In addition, the proposed combined procedure maximizes the 
number of metabolites with unknown �f G that can be eliminated via reaction lumping.

In general, the linear program in the group implementation takes a longer time to solve due to the larger 
number of constraints it includes. Although the sequential procedure starts with smaller linear programs, requir-
ing shorter time to be solved, the iterative process leads to an increasing number of such program that include 

Table 3.   Distribution of reversible/irreversible reactions with and without lumping. Shown are the numbers or 
reversible and irreversible reactions for the models iJ906 and iBsu1103 with and without lumping. A reaction is 
defined as irreversible if respective �G-range is strictly negative, which is determined with a variability analysis 
ensuring optimal biomass.

Model

No. irreversible reactions No reversible reactions

Without lumping With lumping Without lumping With lumping

iJ906 350 353 707 704

iBsu1103 3 3 1678 1678
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a larger number of both constraints and variables. The total duration, thus, depends on the particularities of 
the analyzed model. In our comparative analysis we presented a case when the combined procedure performs 
worse than the naive sequential implementation applied alone. In this case, only few groups of metabolites with 
unknown �f G

0 were found, including a dominant group that includes almost all such metabolites. The situation 
differs in the scenario where the groups of metabolites with unknown �Gf  are more evenly distributed, leading 
to the advantages of the combined procedure.

The recently published toolbox to conduct TMFA, called matTFA, states that any reaction involving metabo-
lites with unknown �f G

0 “will not be constrained with thermodynamics”42. Our proposed group lumping 
procedure investigates whether such reactions can be constrained with thermodynamics. The shown decrease of 
reactions with unknown �G0 , with respect to the total number of reactions, corresponds to a gain in constraints 
which has the potential to further restrict the solution space without the need of any additional data.

Our comparative analysis on three genome-scale models that differ in terms of size and complexity of the 
modelled metabolic pathways shows that the lumping procedure is time-efficient, systematic, and results on 
reproducible findings. The proposed combined procedure clearly defines how lumped reactions are formed and 
ensures that �G0 can be calculated for each lumped reaction. In contrast, previous studies only provide a list of 
lumped reactions, without specifying how they were obtained, thus not ensuring reproducibility18. The repro-
ducibility of our findings is further guaranteed by the provided implementation of the proposed procedure and 
accessibility of all data, following the FAIR principles. The implementation is general to allow the identification 
of lumped reactions in any metabolic model complying with the input specifications. Therefore, the systematic 
way for identification of lumped reactions by the proposed combined procedure has the potential to further 
propel the applications of TMFA, due to the increasing availability of quantitative metabolomics data46. Indeed, 
our application of TMFA with and without consideration of lumped reactions in two genome-scale models shows 
that the lumping procedure provides for more constrained predictions of metabolic phenotypes.

The provided procedure allows some flexibility with respect to the choice of reactions to be lumped. In our 
analysis, we did not consider synthetic and exchange reactions in the lumping, and future efforts will be dedicated 
to the consideration of these cases. In addition, follow-up studies will be dedicated to investigative the effect of 
alternative solution in the detection of lumped reactions on the possibility to maximize the number or metabolites 
with unknown �f G

0 that can be eliminated by the proposed combined procedure.

Data availability
All data and source code are available at: https://​github.​com/​LeaSe​ep/​React​ionLu​mping.
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