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Abstract

Background: Insulin-like growth factor-1 (IGF-I) signalling is important for cancer initiation and progression. Given
the emerging evidence for the role of the stroma in these processes, we aimed to characterize the effects of IGF-I
on cancer cells and stromal cells separately.

Methods: We used an ex vivo culture model and measured gene expression changes after IGF-I stimulation with
cDNA microarrays. In vitro data were correlated with in vivo findings by comparing the results with published
expression datasets on human cancer biopsies.

Results: Upon stimulation with IGF-I, breast cancer cells and stromal fibroblasts show some common and other
distinct response patterns. Among the up-regulated genes in the stromal fibroblasts we observed a significant
enrichment in proliferation associated genes. The expression of the IGF-I induced genes was coherent and it
provided a basis for the segregation of the patients into two groups. Patients with tumours with highly expressed
IGF-I induced genes had a significantly lower survival rate than patients whose tumours showed lower levels of
IGF-I induced gene expression (P = 0.029 - Norway/Stanford and P = 7.96e-09 - NKI dataset). Furthermore, based
on an IGF-I induced gene expression signature derived from primary lung fibroblasts, a separation of prognostically
different lung cancers was possible (P = 0.007 - Bhattacharjee and P = 0.008 - Garber dataset).

Conclusion: Expression patterns of genes induced by IGF-I in primary breast and lung fibroblasts accurately predict
outcomes in breast and lung cancer patients. Furthermore, these IGF-I induced gene signatures derived from
stromal fibroblasts might be promising predictors for the response to IGF-I targeted therapies.
See the related commentary by Werner and Bruchim: http://www.biomedcentral.com/1741-7015/8/2

Background
There is a considerable amount of evidence that the
insulin-like growth factor (IGF) family is important for
cancer development and progression and IGF signalling
is known to involve complex regulatory networks with
numerous interacting ligands, receptors and binding
proteins [1,2]. IGF-I, the first ligand of the family, may
act as a tissue growth factor in an autocrine or paracrine
manner or as a circulating hormone [3]. An elevated
IGF-I level in the plasma is linked to an increased risk
of developing ductal carcinoma in situ of the breast,

invasive breast cancer, colorectal cancer, prostate cancer
and lung cancer [4-9].
IGF-I signalling is crucial for tumour progression

because it is involved in cell proliferation, differentiation,
migration and survival [2,3,10-13]. On the molecular
level, IGF-I is one of the factors that enables cells to
pass the G1-S checkpoint in the cell cycle [14]. Normal
mammary epithelial cells can be maintained and will
proliferate with IGF-I in serum free cell culture media,
underscoring the IGF-I’s importance for the growth of
breast epithelial cells [15,16]. In combination with mam-
mogenic hormones, IGF induces ductal growth in mam-
mary gland explant cultures [17]. Furthermore, IGF-I
and IGF-II can suppress apoptosis of mammary
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epithelial cells induced by serum withdrawal [12]. In
vivo, the involution of mammary glands is delayed in
mice over-expressing human IGF-I due to reduced
alveolar apoptosis [18]. During mammary gland develop-
ment, IGF-I synergizes with estrogen in terminal end
bud formation [19]. Finally, both IGF-I and IGF-II pro-
vide cancer cells with radioprotection and resistance to
chemotherapeutic agents [20,21].
Further highlighting the importance of the IGF-I axis,

the IGF-I receptor (IGF-IR) is crucial in cancer develop-
ment and progression. The IGF-IR was found to be
over-expressed and highly activated in malignant breast
tumours compared with normal breast tissue [22,23].
Patients bearing an oestrogen receptor negative breast
tumour have a worse prognosis when their tumour is
positive for IGF-IR [24]. The functional importance of
IGF-IR has been shown in vitro by inhibiting the recep-
tor signalling which results in cancer cell apoptosis. In
vivo, the inhibition of IGF-IR signalling prevents tumour
formation in nude mice [1,25]. Moreover, IGF-IR-defi-
cient fibroblasts cannot be transformed by viral or cellu-
lar oncogenes [26], supporting the importance of IGF-IR
signalling in tumourigenesis.
That IGFs are involved in breast cancer migration and

invasion has been demonstrated using dominant-nega-
tive IGF-IR constructs in MDA-435 breast cancer cells
in vitro and in vivo [27]. Another experiment revealed
that IGF-I stimulates cell motility, but not proliferation,
in MDA-231BO cells in which the predominant adaptor
protein for IGF-IR is the insulin receptor substrate 2
(IRS2) instead of the insulin receptor substrate 1 (IRS1).
Further evidence supporting the involvement of IGF-IR
and IRS2 axis in motility and metastasis comes from in
vivo data. The mating of mice expressing the PyV-MT
(polyomavirus middle T) oncogene, which induces
breast cancer, with IRS2 null animals instead of wild-
type animals results in their offspring showing a
decrease in the formation of metastasis [28]. Thus, IGF-
I is emerging as an important factor in tumourigenesis
as a cell death inhibitor and a proliferation enhancer. Its
involvement in tumour progression, metastasis and
resistance to anti-neoplastic therapies makes it a pro-
mising drug target which is currently being examined in
numerous clinical trials [29].
So far, the attention on IGF-I has focused on mito-

genic and tumourigenic signalling in cancer cells
[9,29,30]. With the increasing knowledge of the role of
the tumour stroma in cancer initiation and progression,
the role of IGF-I signalling in the stroma is of equal
interest. In tumours, most of the IGF-I mRNA is loca-
lized in the stromal cells [31], especially fibroblasts [32],
whereas most of the IGF-IR mRNA is in the tumour
cells [33] which indicates that IGF-I produced in the
stroma influences the tumour cells. However, there is

evidence that IGF-I also influences the stroma. Stromal
cells respond to IGF-I stimulation with increased prolif-
eration, as do fibroblasts [34,35] and microvascular
endothelial cells [36].
In addition to the response of the tumour cells to

IGF-I, we specifically focused on the response of the
stromal cells to this growth factor. Bendall et al. recently
showed that the IGF-IR axis is involved in the establish-
ment of the stem cell niche [37]. Blocking IGF-II/IGF-
IR reduces the survival and clonogenicity of human
embryonic stem cells (ES). Similarly, IGF-II alone is suf-
ficient to maintain human ES cells in culture. In this
system, IGF-II was expressed by autologously human-
ES-cell-derived fibroblast-like cells.
In our study, we explore the role that IGF-I stimula-

tion plays in cancer and stroma cells. We study the
molecular changes that occur in primary normal and
cancer-associated fibroblasts when they are stimulated
with IGF-I. Furthermore, we hypothesized that gene
expression changes in this system might be of prognos-
tic significance in human cancer.
In this report, we show that primary normal and car-

cinoma-associated breast fibroblasts are sensitive to
IGF-I. In addition, fibroblasts of different origin show a
unified response to IGF-I. We also demonstrate that
genes up-regulated in primary breast and lung fibro-
blasts may have prognostic significance in human breast
cancer and lung adenocarcinomas.

Results
Effects of IGF-I on gene expression in breast cancer cells
and stromal fibroblasts
In order to characterize the effects of IGF-I on tumour
and stromal cells, we stimulated pre-starved MCF-7
cells and CCL-171 fibroblasts with 50 ng/ml IGF-I (a
concentration within the physiological range) for 24 h.
We then profiled gene expression changes using human
exonic evidence-based oligonucleotide (HEEBO) micro-
arrays. After stimulation, total RNA was extracted and
amplified using a modified Eberwine procedure. The
amplified RNA was labelled with the fluorescent dye
Cy5 and pooled with Cy3 labelled reference RNA [38]
and then the pooled RNA was hybridized onto HEEBO
microarrays. After hybridization and washing, the arrays
were scanned on a fluorescent microscope scanner and
the raw data files were stored in the Stanford Microar-
ray Database [39].
In order to establish the system, we characterized the

response of both cell types to IGF-I separately. In both
cell types, we observed a remarkable change in the gene
expression profile following IGF-I stimulation (Figure 1).
As the interaction between IGF-I and stromal cells in
the tumour microenvironment has not yet been studied,
we first characterized the IGF-I-induced genes in
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CCL-171 cells. The most prominent change after stimu-
lation was a greater than 1.5-fold induction (mean: 2.35,
standard deviation: 0.45) in the expression level of 370
genes (Additional file 1). The fibroblast derived IGF-I
signature contains TTK, NEK2, PBK, SPBC24, RAC-
GAP1, CLASP1, HECTD3, RCC2, MAD2L1, CDCA8,
PTTG1, BIRC5, PKMYT1, HCAP-G, CCNB1, CENPF,
CDC20, CKS2, SPAG5, PLK1, BUB1B, CCNF, KIF11,
CDC25C, DLG7, BRRN1 and CDCA5, genes that are

known to be involved in proliferation, cell cycle and
mitotic cell division.
In order to check, in an unbiased way, what features the
members of the IGF-I induced signature share and to
verify the significance of enrichment of a specific gene
ontology, we used the GO TermFinder tool [40]. The
analysis revealed that the fibroblast derived IGF-I signa-
ture is significantly enriched for genes involved in biolo-
gical processes such as M phase, mitotic cell cycle,
mitosis and cell cycle, with a P value equal to ≈ 1.03e-
10 and cell division with P ≈ 1.03e-8 (Table 1 and Addi-
tional file 2). In addition, among the 370 unique genes
up-regulated by IGF-I we found genes that are involved
in angiogenesis, the p53 pathway and integrin and Wnt
signalling. The mRNA expression level of six soluble
factors already recognized in cancer biology (POSTN,
TNC, CSPG2, LOXL1, ATRN, FBS1) increases in
response to IGF-I stimulation, suggesting that these fac-
tors play some role in stimulating tumour cell prolifera-
tion and metastasis.
We selected the MCF-7 cell line, the well-known repre-
sentative of the luminal type breast cancer, to assess the
global gene expression effects of IGF-I stimulation. IGF-
I stimulation increased the mRNA expression level of
numerous genes (such as BMP7, ID1, ID3, SRF and
VEGF) that play a role in tumour biology as well as
genes with ontologies assigned to protein metabolism
(RPS6KA4, PSMC4, MAPK6, LMAN2L, RPL8, EIF5 and
CEBPB), responses to a protein stimulus and to
unfolded protein (HSP90AA1, HSPE1, HSPA1A,
DNAJA1, HSPA4, HSP90AB1, HSPH1, and DNAJB1).
In contrast to the upregulation of genes involved in the
proliferation that we found in CCL-171 cells, the gene
expression pattern in MCF-7 cells stimulated with IGF-I
is not significantly associated with the cell cycle or
proliferation.
After comparing these gene expression patterns, we

hypothesized that the mesenchymal stromal cells and
malignant epithelial cells exhibit distinct gene expression
changes in response to IGF-I stimulation. In order to
test this hypothesis, we compared the gene expression
profiles of CCL-171 and MCF-7 cells with, and without,
IGF-I stimulation. Within each cell type, we subtracted
the expression profile of unstimulated cells from IGF-I
stimulated cells and then filtered and merged the pro-
files and performed a hierarchical clustering of the
genes. The results were visualized with a heat map
using TreeView software [41], which showed that the
IGF-I stimulus induced some common and some dis-
tinct effects on gene expression in the two cell types
(Figure 1). This is easily explained when we consider the
differences in the distinct default gene expression pro-
files of the two cell types, including the well-known
markers for epithelial and mesenchymal cells

Figure 1 The effects of insulin-like growth factor-1 (IGF-I) on
gene expression in CCL-171 fibroblasts and MCF-7 tumour
cells. Unsupervised hierarchical clustering of genes deregulated in
CCL-171 and MCF-7 cells upon IGF-I stimulation. The gene
expression levels were normalized to the non-stimulated specimens
as described. Genes are presented in rows and experiments in
columns. The red and green colours provide information about up-
or down-regulation, respectively. The intensity of the colour renders
quantitative information about the change in expression level. IGF-I
stimulation induces some common and some distinct effects on the
gene expression profiles in different cell types. (A) Genes specifically
up-regulated in MCF-7 cells involved in: epidermal growth factor
and fibroblast growth factor signalling; protein metabolism and
modification; nucleoside, nucleotide and nucleic acid metabolism.
(B) Genes specifically up-regulated in CCL-171 cells include
transcription factors and transferases, in addition to genes involved
in Wnt and TGF-b signalling.
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(Additional file 3). The two gene clusters with discor-
dant gene expression changes (Figure 1) were examined
with the GO TermFinder tool. Genes that are up-regu-
lated in CCL-171 and down-regulated in MCF-7 cells
belong to the following ontologies: Wnt and TGF-b sig-
nalling and nucleic acid binding (transcription factors
and transferases). Genes that are up-regulated in MCF-7
and down-regulated in CCL-171 cells are involved in
protein metabolism and modification, as well as nucleo-
side, nucleotide and nucleic acid metabolism. This list
also contains genes involved in epidermal growth factor
and fibroblast growth factor signalling.
Thus, we concluded that, when epithelial and

mesenchymal cells are exposed to IGF-I, they show
some concordant and some discordant gene expression
changes. Based on these observations, and given that the
role of IGF-I in the stromal compartment is not yet well
characterized, we further focused on the IGF-I response
in stromal cells.
In order to characterize the gene expression pro-

gramme induced in fibroblasts upon IGF-I stimulation,
we extended our survey to primary breast fibroblasts.
Rinn et al. [42] reported that fibroblasts from different
body sites have unique default gene expression profiles,
which led us to believe that distinct fibroblasts may
respond differently to stimulation with IGF-I. Therefore,

we felt that it would be important to analyse primary
breast fibroblasts from breast cancer patients in order to
examine the role that these stromal cells play in breast
cancer.
After obtaining informed consent from three patients

with oestrogen and progesterone receptor positive and
HER-2/neu negative invasive ductal adenocarcinoma of
the breast, tissue specimens were obtained during breast
tumour excision. An experienced breast pathologist dis-
tinguished tumour tissue from adjacent normal tissue.
Carcinoma associated fibroblasts (CAF) and normal
fibroblasts obtained from normal breast tissue of the
same patient were cultured separately. The desired pur-
ity of the cell culture was obtained by serial passaging
and separation with magnetic beads targeting fibroblast-
specific antigens. Both cell types, CAF and normal fibro-
blasts, were stimulated with IGF-I and gene expression
profiles were observed. We confirmed that the profiled
cells were, indeed, mesenchymal fibroblasts because they
showed an elevated expression of fibroblast markers,
such as fibronectin 1 (FN1) and cadherin 2 (CDH2), and
lacked E-cadherin (CDH1) expression (Additional file 4).
The expression level of these specific markers did not
change upon IGF-I stimulation (data not shown). All of
the primary fibroblasts had a slightly higher IGF-IR
mRNA expression level (mean: 1.6-fold; standard

Table 1 Gene ontology terms for genes up-regulated in CCL-171 cells by insulin-like growth factor (IGF-I).

Gene ontology term Cluster frequency Gene frequency in background Corrected
P-value

FDR False positives

M phase 42 out of 325 genes, 12.9% 67 out of 2133 genes, 3.1% 1.84E-16 0.0% 0.0

Cell cycle phase 45 out of 325 genes, 13.8% 82 out of 2133 genes, 3.8% 1.46E-14 0.0% 0.0

Cell division 38 out of 325 genes, 11.7% 69 out of 2133 genes, 3.2% 5.07E-12 0.0% 0.0

M phase of mitotic cell cycle 32 out of 325 genes, 9.8% 52 out of 2133 genes, 2.4% 1.06E-11 0.0% 0.0

Cell cycle process 50 out of 325 genes, 15.4% 113 out of 2133 genes, 5.3% 2.13E-11 0.0% 0.0

Nuclear division 31 out of 325 genes, 9.5% 51 out of 2133 genes, 2.4% 4.65E-11 0.0% 0.0

Mitosis 31 out of 325 genes, 9.5% 51 out of 2133 genes, 2.4% 4.65E-11 0.0% 0.0

Cell cycle 57 out of 325 genes, 17.5% 143 out of 2133 genes, 6.7% 7.11E-11 0.0% 0.0

Organelle fission 31 out of 325 genes, 9.5% 52 out of 2133 genes, 2.4% 9.95E-11 0.0% 0.0

Mitotic cell cycle 39 out of 325 genes, 12.0% 86 out of 2133 genes, 4.0% 7.94E-09 0.0% 0.0

Organelle organization 67 out of 325 genes, 20.6% 217 out of 2133 genes, 10.2% 4.21E-07 0.0% 0.0

Cellular component organization 91 out of 325 genes, 28.0% 358 out of 2133 genes, 16.8% 1.78E-05 0.0% 0.0

Microtubule-based process 21 out of 325 genes, 6.5% 40 out of 2133 genes, 1.9% 2.56E-05 0.0% 0.0

Regulation of mitotic cell cycle 17 out of 325 genes, 5.2% 31 out of 2133 genes, 1.5% 2.40E-04 0.0% 0.0

Spindle organization 10 out of 325 genes, 3.1% 14 out of 2133 genes, 0.7% 2.70E-03 0.4% 0.1

Microtubule-based Movement 10 out of 325 genes, 3.1% 15 out of 2133 genes, 0.7% 0.01 0.6% 0.1

Mitotic cell cycle checkpoint 9 out of 325 genes, 2.8% 13 out of 2133 genes, 0.6% 0.01 0.6% 0.1

Regulation of cell cycle 27 out of 325 genes, 8.3% 79 out of 2133 genes, 3.7% 0.01 0.6% 0.1

Biological regulation 152 out of 325 genes, 46.8% 785 out of 2133 genes, 36.8% 0.04 0.6% 0.1

Microtubule cytoskeleton organization 12 out of 325 genes, 3.7% 24 out of 2133 genes, 1.1% 0.05 0.7% 0.1

Detailed list of gene ontology terms specifically up-regulated in CCL-171 fibroblasts upon IGF-I stimulation in comparison to background file including all genes
deregulated by IGF-I. Bonferroni corrected p values for of the output from GO::Termfinder for process ontology are listed.
FDR, false discovery rate.
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deviation: 0.24) compared to reference mRNA isolated
from a pool of 11 cell lines [38], indicating that they
might be responsive to IGF-I stimulation. The IGF-IR
mRNA expression level decreased after IGF-I stimula-
tion (mean: 0.6-fold; standard deviation: 0.09). In order
to systematically identify significant gene expression
changes upon IGF-I stimulation in primary cells, we
applied a two-class significance analysis of microarray
(SAM) data [43]. One class was formed by fibroblasts
starved in low serum medium and the other class con-
sisted of the same cells stimulated with IGF-I. SAM ana-
lysis revealed 208 gene IDs up-regulated and 300 gene
IDs significantly repressed in stimulated cells (false dis-
covery rate [FDR] ≤ 0.05%, Additional file 5). The 208
up-regulated genes were used to create the breast fibro-
blast derived IGF-I signature (Figure 2A). By comparing
the gene function with the GO Termfinder, we observed
that the genes up-regulated by IGF-I in primary breast
fibroblasts (Additional file 5) share similar features to
those up-regulated in IGF-I-stimulated CCL-171 cells
(Additional file 1), suggesting that they are involved in
the same processes (proliferation, cell cycle and mitosis
- Additional file 6, Table 2). Contrary to our expecta-
tions, we did not find any significant differences in the
response to IGF-I between CAF and normal fibroblasts.
Taken together, primary fibroblasts coming from breast
cancer and the normal breast, as well as CCL-171 fibro-
blasts, respond to IGF-I stimulation and display up-reg-
ulation of similar gene signatures involved in cell
proliferation and mitotic cell division.
In order to verify that the gene expression profile is

reflected by a phenotypic alteration upon IGF-I stimula-
tion, we examined the proliferation rate of the fibro-
blasts. The cells were seeded and starved in low serum
medium for 48 h in order to exclude any effects of fetal
bovine serum (FBS) from regular cell growth culture
conditions. The cells were then stimulated with IGF-I,
and the cell proliferation was assessed with a colouri-
metric method using WST-1. Primary breast fibroblasts
(Figure 2C), both normal and CAF, grew significantly
faster when stimulated with IGF-I rather than unstimu-
lated cells (P < 0.0001 for 24, 48 and 72 h, t-test, two-
sided; P < 0.0001, analysis of variance [ANOVA]). A
similar response to IGF-I stimulation was observed in
CCL-171 fibroblasts as presented in Figure 2B (P <
0.0001 for 24, 48 and 72 h, t-test, two-sided; P < 0.001,
ANOVA).
Taken together, these suggest that primary fibroblasts

stimulated with IGF-I induce expression of genes
involved in cell proliferation and mitotic cell division.
Relevance of the fibroblast derived IGF-I induced gene
signature in vivo
In order to verify the relevance of our in vitro experi-
ments, we checked the expression of the breast

fibroblast derived IGF-I signature in microarray data of
early stage breast cancer biopsies from 295 patients
from the Netherlands Cancer Institute (NKI), which are
publicly available [44]. In the NKI dataset, the expres-
sion of the genes belonging to breast fibroblast derived
IGF-I signature was coherent, providing a basis for seg-
regation of the tumours into two groups. In one group
the signature was up-regulated and in the other group
the signature was down-regulated (left and right side of
Figure 3A, respectively). As visualized with Kaplan-
Meier plots (Figure 3B), the patients with early stage
breast cancers with a high expression level of the breast
fibroblast derived IGF-I signature had a significantly
higher risk of developing metastasis than the patients
with a low expression level (P = 6.75e-05, 52% versus
73% after 10 years, hazard ratio (HR): 2.24, 95% confi-
dence interval [CI]: 1.5-3.4; top panel). In parallel, the
overall survival rate was significantly lower for patients
with up-regulation of the breast fibroblast derived IGF-I
signature (P = 7.96e-09, 55% versus 86% after 10 years,
HR: 4.03, CI: 2.4-6.8; middle panel). The same coordi-
nated behaviour and segregation of tumours could also
be observed in a set of advanced breast cancers from
Norway/Stanford [45,46]. In a univariate analysis,
patients with high expression levels of IGF-I induced
genes had a significantly shorter disease-specific survival
than patients with low expression levels (P = 0.0219,
HR: 2.6, CI: 1.1-6.2, data not shown). In addition, as the
classification of data based on hierarchical clustering
was suggested to be unstable and codependent on many
factors like presence of missing values [47], we validated
the results using continuous scoring and stratified the
patients of the NKI dataset based on a score derived
from the average expression level of breast fibroblast
derived IGF-I signature. In agreement with the results
obtained by hierarchical clustering, the continuous scor-
ing divided the early breast cancer patients (NKI data-
set) [44] into two groups with significantly different
outcomes (distant metastasis-free survival: P = 3.6e-07
and overall survival: P = 3.5e-09; Additional file 7).
On the molecular level, an interaction of IGF-I with the
oestrogen receptor (ER) has been described. Therefore,
we performed a multivariable analysis corrected for ER
status (positive versus negative) in the early and
advanced breast cancer datasets. The breast fibroblast
derived IGF-I signature was able to stratify breast cancer
patients into groups with significantly different out-
comes even when corrected for ER status. The results of
the multivariable analysis were significant (overall survi-
val: P = 1.6e-09, time to metastasis: P = 2.2e-4 in the
NKI dataset and disease specific survival in the Norway/
Stanford dataset P = 8.6e-5, respectively). In both data-
sets, the combination of ER negative receptor status and
up-regulation of the breast fibroblast derived IGF-I
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Table 2 Gene ontology terms for genes up-regulated in breast fibroblasts by insulin-like growth factor-1 (IGF-I).

Gene Ontology term Cluster frequency Gene frequency in
background

Corrected
P-value

FDR False
positives

M phase 36 out of 186 genes, 19.4% 175 out of 8918 genes, 2.0% 2.00E-23 0% 0.00

Cell cycle phase 37 out of 186 genes, 19.9% 223 out of 8918 genes, 2.5% 1.18E-20 0% 0.00

Cell cycle process 41 out of 186 genes, 22.0% 314 out of 8918 genes, 3.5% 4.69E-19 0% 0.00

Nuclear division 28 out of 186 genes, 15.1% 128 out of 8918 genes, 1.4% 1.64E-18 0% 0.00

Mitosis 28 out of 186 genes, 15.1% 128 out of 8918 genes, 1.4% 1.64E-18 0% 0.00

Cell cycle 46 out of 186 genes, 24.7% 425 out of 8918 genes, 4.8% 2.85E-18 0% 0.00

M phase of mitotic cell cycle 28 out of 186 genes, 15.1% 131 out of 8918 genes, 1.5% 3.21E-18 0% 0.00

Organelle fission 28 out of 186 genes, 15.1% 133 out of 8918 genes, 1.5% 4.99E-18 0% 0.00

Mitotic cell cycle 33 out of 186 genes, 17.7% 229 out of 8918 genes, 2.6% 3.30E-16 0% 0.00

Cell division 28 out of 186 genes, 15.1% 164 out of 8918 genes, 1.8% 1.88E-15 0% 0.00

Microtubule-based process 24 out of 186 genes, 12.9% 130 out of 8918 genes, 1.5% 8.42E-14 0% 0.00

Microtubule-based movement 13 out of 186 genes, 7.0% 47 out of 8918 genes, 0.5% 3.61E-09 0% 0.00

Spindle organization 10 out of 186 genes, 5.4% 27 out of 8918 genes, 0.3% 3.73E-08 0% 0.00

Cytoskeleton-dependent intracellular
transport

13 out of 186 genes, 7.0% 56 out of 8918 genes, 0.6% 4.11E-08 0% 0.00

Organelle organization 44 out of 186 genes, 23.7% 737 out of 8918 genes, 8.3% 6.24E-08 0% 0.00

Chromosome segregation 10 out of 186 genes, 5.4% 41 out of 8918 genes, 0.5% 3.83E-06 0% 0.00

Microtubule cytoskeleton organization 12 out of 186 genes, 6.5% 70 out of 8918 genes, 0.8% 8.84E-06 0% 0.00

Phosphoinositide-mediated signalling 8 out of 186 genes, 4.3% 27 out of 8918 genes, 0.3% 2.32E-05 0% 0.00

Mmitotic sister chromatid segregation 7 out of 186 genes, 3.8% 22 out of 8918 genes, 0.2% 9.41E-05 0% 0.00

Sister chromatid segregation 7 out of 186 genes, 3.8% 22 out of 8918 genes, 0.2% 9.41E-05 0% 0.00

Cellular component organization 50 out of 186 genes, 26.9% 1187 out of 8918 genes, 13.3% 3.40E-04 0% 0.00

Regulation of mitotic cell cycle 10 out of 186 genes, 5.4% 72 out of 8918 genes, 0.8% 1.03E-03 0% 0.00

Second-messenger-mediated signalling 8 out of 186 genes, 4.3% 44 out of 8918 genes, 0.5% 1.36E-03 0% 0.00

Regulation of cell cycle 16 out of 186 genes, 8.6% 197 out of 8918 genes, 2.2% 1.68E-03 0% 0.00

Cytoskeleton organization 16 out of 186 genes, 8.6% 198 out of 8918 genes, 2.2% 1.80E-03 0% 0.00

Protein polymerization 6 out of 186 genes, 3.2% 23 out of 8918 genes, 0.3% 2.63E-03 0% 0.00

Positive regulation of mitosis 4 out of 186 genes, 2.2% 7 out of 8918 genes, 0.1% 2.73E-03 0% 0.00

Amino acid biosynthetic process 6 out of 186 genes, 3.2% 25 out of 8918 genes, 0.3% 4.45E-03 0% 0.00

Chromosome localization 4 out of 186 genes, 2.2% 8 out of 8918 genes, 0.1% 0.01 0% 0.00

Establishment of chromosome localization 4 out of 186 genes, 2.2% 8 out of 8918 genes, 0.1% 0.01 0% 0.00

Cell cycle checkpoint 7 out of 186 genes, 3.8% 47 out of 8918 genes, 0.5% 0.02 0% 0.04

Establishment of localization in cell 24 out of 186 genes, 12.9% 472 out of 8918 genes, 5.3% 0.02 0% 0.04

Cellular localization 25 out of 186 genes, 13.4% 507 out of 8918 genes, 5.7% 0.03 0% 0.04

DNA metabolic process 17 out of 186 genes, 9.1% 275 out of 8918 genes, 3.1% 0.03 0% 0.06

Amine biosynthetic process 6 out of 186 genes, 3.2% 35 out of 8918 genes, 0.4% 0.03 0% 0.08

Serine family amino acid biosynthetic
process

3 out of 186 genes, 1.6% 5 out of 8918 genes, 0.1% 0.04 0% 0.08

Detailed information and P values for single biological processes up-regulated by IGF-I in primary breast fibroblasts in comparison to background file including all
genes used for significant analysis of mcroarray analysis as revealed by gene ontology term finder tool with a Bonferoni corrected P value higher than 0.05.
FDR, false discovery rate.
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signature had the worst outcome. Additionally, in early
stage breast cancer, the breast fibroblast derived IGF-I
signature was able to segregate ER positive breast cancer
patients into two groups with significantly different out-
comes (P = 1.6e-5, Figure 3B, lowest panel). In sum-
mary, we found that genes induced in primary breast
fibroblasts upon IGF-I stimulation predict the outcome
of breast cancer patients. Furthermore, the expression
signature distinguishes between patients with ER posi-
tive cancer who have significantly different prognoses.
Correlation of the IGF-I induced gene signature with
previously published prognostic gene expression
signatures
As the breast fibroblast derived IGF-I signature is a
prognostic marker in human breast cancer, we next
sought to see if the signature might be related to other
previously published gene-expression signatures, which

were useful prognosticators in the NKI dataset. To this
aim, we correlated the signatures based on their cen-
troids, which represent the average expression values of
all genes building the signature in a single tumour speci-
men, using the Pearson correlation test. First, we
checked the correlation of the breast fibroblast derived
IGF-I signature centroid to the wound signature cen-
troid [48], which was created based on the response of
fibroblasts to serum stimulation. The breast fibroblast
derived IGF-I signature, as presented in Figure 4, was
highly correlated to the wound signature (0.76). It was
also moderately correlated (0.69) to basal type breast
cancer [46]. Furthermore, the breast fibroblast derived
IGF-I signature was highly reverse-correlated to the
good-risk 70-genes signature (-0.74) [49]. The good-
risk70-genes signature was created n order to predict
freedom from metastasis in this same dataset. The

Figure 2 Effects of insulin-like growth-1 (IGF-I) stimulation on primary breast fibroblasts and CCL-171 fibroblasts. (A) Unsupervised
hierarchical clustering of genes differentially expressed in fibroblasts upon IGF-stimulation. Unsupervised hierarchical clustering of genes
differentially expressed between IGF-I stimulated and non-stimulated primary breast fibroblasts as discovered by SAM (genes with a false
discovery rate ≤ 0.05% are represented). Grey fields indicate missing expression values. The colour of dendrogram branches renders information
about sample stimulation; yellow = not stimulated and blue = stimulated with IGF-I (50 ng/mL). (B) IGF-I induced proliferation of CCL-171 cells.
Cell proliferation assay based on absorbance measurement of WST-1. Formazan absorbance correlates to the cell number. Average absolute
absorbance of replicates of CCL-171 cells stimulated with 50 ng/mL IGF-I in comparison to non-stimulated cells at different time points. Points
represent the average of six replicates per condition and correspond to the cell number. The vertical error bars denote the standard deviation.
Stimulation of CCL-171 cells with IGF-I induces significant, constant cell growth after 24, 48 and 72 h. (C) IGF-I induced proliferation of primary
breast fibroblasts. Cell proliferation assay based on absorbance measurement of WST-1. Points represent the average absolute absorbance of a
minimum of eight replicates of six primary fibroblasts (carcinoma associated fibroblasts and normal fibroblasts) after 24, 48 and 72 h. Error bars
correspond to the magnitude of the standard deviation. Stimulation of primary breast fibroblasts with IGF-I induces significant, constant cell
growth.
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detailed list of correlation values for all of the signatures
may be found in Additional file 8.
IGF induced genes are prognostic in lung cancer
Knowing that the gene expression signature derived
from primary breast fibroblasts in response to IGF-I sti-
mulation is relevant in vivo, and is a strong prognostic
factor in human breast cancer, we investigated this find-
ing to see if it could be generalized to other types of
human cancer. We felt that this was likely because of
the similarity between the IGF-I responses of primary
breast fibroblasts and CCL-171 lung fibroblasts. We
decided to check our hypothesis using the IGF-I derived
signature from CCL-171 in vitro in lung cancer datasets.
Global gene expression profiles of 67 human lung can-
cers were derived from 56 patients; 24 had survival data
published by Garber et al. [50] (GEO: GSE3398). As
shown in Figure 5A, in this dataset the expression of
the lung fibroblast derived IGF-I gene signature was

clear, even though the expression data for many genes
was missing. This provided a basis for segregation of the
tumours into two groups. The two groups were described
as having the core part (proliferation associated genes) of
the signature up-regulated or down-regulated (left and
right side of Figure 5A, respectively). As visualized by
Kaplan-Meier plots (Figure 5B), the patients with high
expression levels of IGF-I induced genes had a signifi-
cantly shorter overall survival (P = 0.008; n = 24, 60% ver-
sus 0% after 2 years, HR: 7.74, CI: 1.9-31.6). Thus, we
concluded that the lung fibroblast derived IGF-I signature
is a prognostic marker in lung cancer.
We then decided to validate our findings in a larger

and better-annotated dataset published by Bhattacharjee
[51], which contains microarray profiles of 203 tumours
with clinical annotation for 125 of them. In line with
our hypothesis, the expression of the lung fibroblast
derived IGF-I signature was coherent, providing a basis

Figure 3 Breast fibroblast derived IGF-I signature in early stage breast cancer. (A) Unsupervised hierarchical clustering of breast fibroblast
derived IGF-I signature in Netherlands Cancer institute dataset. The expression values of genes in the breast fibroblast derived IGF-I signature
revealed by signficant analysis of microarray were extracted from a published expression study of 295 early stage breast cancers from the
Netherlands Cancer Institute (NKI). Genes are presented in rows and experiments in columns. Breast fibroblast derived IGF-I signature stratifies
early breast cancer patients (NKI) into two groups with high (blue) or low (yellow) expression levels of genes representing the signature.
Horizontal bar below the figure represents positive (purple) or negative (orange) ER status. (B) Relationship of expression level of genes building
breast fibroblast derived IGF-I signature with distant metastasis free and overall survival. Kaplan-Meier curves representing the clinical outcomes
of tumors exhibiting high (blue curve) and low (yellow curve) expression levels of the IGF-I induced signature. The upper two figures represent
all patients and the bottom figure shows only patients with oestrogen receptor positive breast tumours.
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for segregation of the tumours into two groups. The
patients with a high expression level of the signature
(right side of Figure 5C) had a significantly shorter dis-
ease-free survival (P = 0.001; 45% versus 82% after 5
years, HR: 3.7, CI: 1.5-9.4) and overall survival (P =
0.007; 38% versus 66% after 5 years, HR: 2.1, CI: 1.2-3.8)
than the patients with low expression of the signature
(left side of Figure 5C). Both Kaplan-Meier curves are
shown in Figure 5D.

Taken together, these findings indicate that genes
induced by IGF-I in human lung fibroblasts are helpful
in predicting outcomes in human lung cancer. As the
signature derived from breast and lung fibroblasts upon
IGF-I stimulation is a prognostic marker for lung can-
cer, we suggest that the response of stromal fibroblasts
to IGF-I might be a universal feature of cancer.
In order to further validate the general effect of IGF-I

on fibroblasts, the ability of the breast and the lung

Figure 4 Correlation of the breast fibroblast derived insulin-like growth factor-I (IGF-I) signature with previously reported
prognosticators in breast cancer. Correlation of the good-risk 70-genes signature centroid [49], the wound signature centroid [60], the basal
type of breast cancer created by Soerlie [46] and the breast fibroblast IGF-I induced signature score in the Netherlands Cancer Institute dataset.
Pairwise scatterplot-matrix of four gene signatures. Pearson correlations for the signature are shown in the corners of the plots.

Rajski et al. BMC Medicine 2010, 8:1
http://www.biomedcentral.com/1741-7015/8/1

Page 9 of 18



fibroblast derived IGF-I signatures to be a prognostic
factor in a non-site matching dataset was crosschecked.
The breast fibroblast derived IGF-I signature was able to
stratify patients with lung cancer (Bhattacharjee dataset)
into two groups with significantly different rates of sur-
vival (overall survival with P = 0.043 and disease free
survival with P = 0.022, data not shown). Also in this
dataset, we validated the results obtained by hierarchical
clustering using a continuous score and found a

significant correlation (overall survival P = 0.005 and
disease specific survival P = 0.001; Additional file 9).
The lung fibroblast derived IGF-I signature was also

able to arrange breast carcinoma patients from the NKI
dataset into two groups with significantly different times
for metastasis free survival and overall survival (P =
7.9e-9 and P = 9.8e-6, respectively, data not shown).
N order to further cross validate the IGF-I signatures

derived from fibroblasts of different origins, the

Figure 5 Fibroblast derived insulin-like growth factor-I (IGF-I) signature divides lung cancer patients into two groups with significantly
different outcome. (A) Unsupervised hierarchical clustering of fibroblast derived IGF-I signature in Garber lung cancer dataset. The expression
values of genes in the fibroblast derived IGF-I signature were extracted from a published expression study by Garber [50]. Genes are presented
as rows and the experiments are presented as columns. Although some gene expression data are missing, the fibroblast derived IGF-I signature
stratifies lung cancer patients into two groups with high (blue) or low (yellow) expression levels of genes representing the signature. (B)
Relationship of expression level of genes building fibroblast derived IGF-I signature with overall survival in Garber data. Kaplan-Meier curves
denoting the clinical outcomes of the indicated tumours exhibiting high (blue curve) and low (yellow curve) expression levels of the signature.
(C) Unsupervised hierarchical clustering of fibroblast derived IGF-I signature in Bhattacharjee lung cancer dataset. The expression values of genes
in the fibroblast derived IGF-I signature were extracted from a published expression study by Bhattacharjee [51]. Genes are presented as rows
and the experiments are presented as columns. Fibroblast derived IGF-I signature stratifies adenocarcinoma patients into two groups with high
(blue) or low (yellow) expression levels of genes representing the signature. (D) Relationship of expression level of genes building fibroblast
derived IGF-I signature with overall survival and disease specific survival in Bhattacharjee dataset. Kaplan-Meier curves illustrating the clinical
outcomes of the indicated tumours exhibiting high (blue curve) and low (yellow curve) expression levels of the signature.
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correlation of the centroids for the signature obtained
from lung fibroblasts were correlated to the signature
derived from human primary breast fibroblasts (0.77; P -
value < 2.2e-16, Additional file 10) in the NKI breast
cancer dataset. The strong and significant correlation
supports their similarity.

Discussion
IGF-I has multiple effects on tumour initiation, develop-
ment and progression and its effects on the cancer cells
have been well described [13]. However, solid tumours
do not consist only of malignant epithelial cells; rather,
they form organ-like structures with a stroma consisting
of fibroblasts, inflammatory cells and endothelial cells.
Therefore, an endocrine or paracrine stimulus such as
IGF-I might influence both the tumour cells and the
stromal cells. The goal of this study was to characterize
the effects of IGF-I on the cancer cells and the stromal
fibroblasts in parallel. On the molecular level, cancer
cells and fibroblasts show distinct response patterns to
stimulation with IGF-I (Figure 1), including differential
expression of genes involved in proliferation, protein
metabolism and Wnt and TGF-b signalling. Focusing on
the effect of IGF-I on MCF-7 cells, we observed altera-
tions in protein metabolism. Similar changes in protein
metabolism, including up-regulation of genes involved
in transport and biosynthesis of amino acids, had
already been reported previously in a global gene
expression study of MCF-7 cells endogenously over-
expressing IGF-I [52]. Additionally, we noted an up-reg-
ulation of VEGF in MCF-7 cells treated with IGF-I.
VEGF is a known target gene for IGF signalling [52],
with well-described implications in tumour progression
and dissemination. Similar to our results, up-regulation
of genes involved in metabolism and biosynthesis have
been described in a comparable system of MCF-7 cells
stimulated with exogenous IGF-I [53]. Apart from the
similarities to the study by Creighton et al. [53], we also
found discrepancies in the gene expression profile of
proliferation-associated genes. The main reason might
be because of the gene-wise standardization of the unsti-
mulated samples applied in our setup which eliminated
the inherent pattern of proliferation in MCF-7 cells.
With a focus on the stroma, there are studies showing

that human dermal fibroblasts [35] and IMR90 fibro-
blasts [34] respond to IGF-I stimulation. Furthermore, it
has been shown that primary breast fibroblasts over-
express IGF-I and IGF-II (normal and malignant derived
fibroblasts, respectively) [31,54] but none of these stu-
dies focused on the effects of IGF-I signalling on global
gene expression. There was only one small study with
first generation microarrays profiling the global gene
expression effects of IGF-I stimulation in NIH-3T3
mouse fibroblasts, which showed an up-regulation of

proliferation-associated genes [55]. To the best of our
knowledge, we are the first to show microarray gene
expression profiles of primary human breast fibroblasts
in response to IGF-I. The gene expression changes
induced by IGF-I in fibroblasts contained several soluble
factors, such as POSTN, which was reported to be
involved in bone metastasis formation and angiogenesis
[56,57], TNC, which enhances tumour cell proliferation
[58], as well as LOXL1, a member of lysyl oxidase
family, similar to LOXL2, that might act on or in the
vicinity of epithelial cells during tissue remodelling.
LOXL2 has previously been reported to be involved in
an invasiveness process [59] and specifically expressed
by fibroblasts in tumour tissue [60]. The presence of
these factors indicates that the IGF-I activated stroma
enhances proliferation and the metastatic potential of
the cancer cells.
That one single stimulus has both common and dis-

tinct effects on cells of different origins has been shown
previously on the global gene expression scale for the
response to oxygen deprivation under hypoxic condi-
tions [61]. To the best of our knowledge, our experi-
ments are the first to make a direct comparison of the
effects of IGF-I on different cell types. Most interest-
ingly, among the genes that were upregulated only in
CCL-171 cells, and not in MCF-7 cells on IGF-I stimu-
lation, did we observe many transcription factors
(FUBP3, TEAD2, KLF16, SP3 and PIK3R3 involved in
insulin receptor signalling pathway, MKNK2, SH3BP2
and CIT) all taking part in cell surface receptor linked
signal transduction. Stromal cell specific genes among
the IGF-I induced genes were of interest when we corre-
lated this signature with in vivo data derived from whole
tissue biopsies consisting of cancer cells and stromal
cells. Signatures obtained from fibroblasts upon serum
stimulation [60], as well as growth factor derived signa-
tures, such as a TGF-b gene expression signature in
mouse hepatocytes [62], are well-described prognostica-
tors in human breast cancer. In our study, we confirmed
the validity and robustness of IGF-I derived signatures
from primary breast and lung fibroblasts in four differ-
ent human solid cancer datasets. Genes induced in pri-
mary breast fibroblasts upon IGF-I stimulation are
predictive of outcome in breast cancer patients. N addi-
tion, the signature allows for the stratification of ER
positive breast cancer patients into two groups with sig-
nificantly different prognoses. Prognostication in this
heterogeneous patient population is important for clini-
cal decisions about adjuvant therapies in patients with
ER positive breast cancer.
The ability to derive prognostic information from can-

cer stroma has already been shown by Finak et al. [63].
The gene expression signature of stromal cells obtained
by laser capture microdissection (LCM), the stroma
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derived prognostic predictor (SDPP), has been shown to
be a prognostic marker in breast cancer. However, Finak
et al. did not separate the different stromal components
and, therefore, could not associate this signature to a
specific cell type. In our study, we were able to specifi-
cally observe the effects of IGF-I on fibroblasts, which
might be advantageous as targeted therapies are
designed to specifically inhibit a signal at a particular
cell type. Using laser capture microdissection, Roepman
et al. managed to show that the genes expressed in the
stroma are highly correlated with metastasis formation
[64]. Specifically, they showed that 12% of the genes
associated with lymph node metastasis in head-neck
squamous cell carcinoma (HNSCC) are predominantly
expressed in the stroma, 25% are tumour cell specific
and the other genes are equally expressed in the tumour
and the stroma. We speculate that the involvement of
stroma-derived information might also be of importance
in breast and in lung cancer. In our signatures, we
found several of the genes that have been identified by
Roepman et al. as being predominantly expressed in the
stroma (ACTA1, TPM2, CDH2, COL5A1, COL5A2,
HNRPL, TCF3). These segregated the patients into two
groups with significantly different prognosis.
The IGF-I induced signatures in primary breast and in

lung fibroblasts are similar to each other (Additional file
10) and to important, previously published signatures
(Figure 4). The high reverse correlation of the IGF-I sig-
nature and the good-risk 70-genes signature supports
the power of the IGF-I derived signature as a negative
prognosticator in breast cancer. While the ‘good-risk
70-genes signature’ [49] was developed to predict free-
dom from metastasis in a top-down manner and vali-
dated in the same dataset of breast cancer patients from
the NKI, the IGF-I induced signature is a marker for
poor prognosis and is well connected to a defined in
vitro biological system.
The IGF-I induced signature is also highly correlated

to the wound signature [60], another strong prognostic
signature in NKI dataset outperforming all known prog-
nostic parameters so far. This is interesting, since a sin-
gle growth factor, such as IGF-I, is able to induce a
gene expression programme similar to the mix of unde-
fined factors inherent in FBS. Using a fully defined sti-
mulus in a concentration within the physiological range
provides a simple and well-controlled in vitro model
that enables specific experimental interventions to be
made. Its effects can then be tested in vivo. Considering
the notion by Sotirou [65] that proliferation is a main
driver of the strong prognostic signatures such as the
good-risk 70-genes signature and the wound signature
facilitates speculation that IGF-I is one of the important
factors responsible for the induction of proliferation.
This does not exclude other, equally or more important,

growth factors from inducing proliferation and up-regu-
lation of proliferation associated genes.
We observed that both IGF-I signatures derived from

lung and breast fibroblasts are exchangeable prognostic
factors for the other cancer type, which allowed us to
speculate that we could generalize this finding to other
types of human solid cancer. The consistent response of
fibroblasts (our data and [34,35,55]) to IGF-I might also
help to explain the worse outcome of patients with ele-
vated IGF-I levels in different cancer types [4-8], a find-
ing that is not necessarily explained by the cancer cells
themselves based on their IGF-receptor expression sta-
tus on the cell surface. Specifically, since the correlation
of the IGF-IR expression and patient outcome in human
breast cancer is conflicting [66], the IGF-I induced gene
expression signature showing the functional effects of
IGF-I axis stimulation, which is correlated with the
patients’ clinical outcome, might be of interest when
selecting patients who might benefit best from IGF-I
blocking therapies.
IGF-I signalling is an emerging cancer drug target. In

vivo, in mouse models, confirms that block IGF-I signal-
ling demonstrate efficacy in inducing tumour regression
and growth arrest [29] and sensitized cancer cells to
conventional chemotherapeutic treatment and irradia-
tion [67]. Exogenously added IGF binding protein I
(IGFBP-1) inhibits IGF-I mediated growth of breast can-
cer cells [68,69]. Many other inhibitors of IGF signalling,
applying different approaches [67], are currently under
clinical investigation in phase I and II trials (reviewed in
[29,70]). Some have already shown promising results,
such as the phase II study on CP- 751, 851. This anti-
insulin-like growth factor I receptor antibody, together
with paclitaxel and carboplatin, was suggested to be safe
and showed promising effectiveness in patients with
non-small-cell lung cancer (NSCLC) showing the high-
est overall response rate of 78% in squamous cell carci-
noma and 58% in adenocarcinomas [71]. Besides the
monoclonal antibodies, there are small molecule inhibi-
tors, such as XL228, that have blocking activity in the
IGF1-R pathway and also in Src, fibroblast growth factor
receptors (FGFR) and BCR-Abl pathways [72]. Although
compounds that block IGF-I signalling demonstrate effi-
cacy in inducing tumour regression and growth arrest in
vivo, there is an emerging need to develop markers that
predict a response to these therapies. We have tested
the prognostic significance of our signature in patients
with adenocarcinomas. In this group of patients, show-
ing the lower response rate to IGF-I targeting therapies
than squamous cell carcinomas [71], a better selection
using a marker with predictive power would be espe-
cially beneficial. It might, therefore, be worthwhile to
test whether or not the gene expression signatures
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developed and described here are useful predictive mar-
kers for IGF-I signalling blockade.

Conclusions
The consistent and similar gene expression changes in
human primary breast and lung fibroblasts suggest that
the proliferative response to IGF-I is a general feature of
stromal fibroblasts. Expression patterns of genes induced
by IGF-I in primary breast and lung fibroblasts accu-
rately predict outcomes in breast and in lung cancer
patients. As IGF-I signalling is an emerging cancer drug
target there is an emerging need to develop markers
that predict a response to these therapies. Our IGF-I
induced gene signatures derived from stromal fibroblasts
might be promising predictors for the response to IGF-I
targeted therapies.

Methods
Cell culture
Human primary fibroblasts CCL-171 and the human
breast cancer cell line MCF-7 were obtained from
American Type Culture Collection (ATTC, Atlanta,
USA). Cells were propagated in Dulbecco’s modified
Eagle’s medium (D-MEM, Invitrogen, Carlsbad, USA)
supplemented with 10% heat inactivated FBS (Invitro-
gen), 4.5 g/lglucose, 4 mM L-glutamine and 100 U/ml
penicillin and 100 μg/ml streptomycin (Gibco, Carlsbad,
USA). Cells were maintained by regular passages when
confluent. The study was approved by the Ethikkommis-
sion beider Basel, Switzerland (approval No. 271/05).
Tumour and healthy tissue were obtained with consent
from the patients who underwent surgery in University
Hospital of Basel. For each patient, a sample of malig-
nant tissue and a sample of side-matched healthy tissue
were extracted by an experienced pathologist. The tissue
was digested in a collagenase and RNase mix for 1 h
and pressed through a 230 μm pore diameter sieve
(Sigma Aldrich, St Louis, USA). The cells were cultured
in a 1:1 v/v mixture of RPMI 1640 (Sigma Aldrich) and
F12 Hamm (Gibco) medium supplemented with 12.5%
FBS (Invitrogen), 2 mM Puryvat (Gibco), 4 mM L-gluta-
min (Gibco), 1 × Minimal Non-Essential Amino Acids
(Gibco), 1 × RPMI 1640 Vitamins Solution (Sigma
Aldrich), 100 U/ml penicillin and 100 μg/ml streptomy-
cin (Gibco) and propagated until confluent. At this
stage, cells were selected with anti-Fibroblast MicroBe-
ads (Miltenyi Biotec, Gladbach, Germany) according to
the manufacturer’s instructions. All cells used in the
experiments were kept in culture up to a maximum of
10 passages.
IGF-I stimulation
For the experiment, 30,000 cells/cm2 were seeded in 3
mL of 5% FBS D-MEM for CCL-171 cells and 5% FBS
RPMI 1640/F12 mix for primary cells for 6 h, so that

they would attach. The cells were extensively washed
with phosphate buffered saline and starved for 48 h in
fresh low-serum medium (0.2% FBS), D-MEM and
RPMI 1640/F12 mix for CCL-171 and primary cells,
respectively. The cells were starved n order to reduce
the effects of any stimulation from regular cell culture
medium. The medium was subsequently replaced by
fresh low-serum D-MEM with or without 50 ng/ml of
IGF-I (human recombinant in Escherichia coli; Sigma
Aldrich). The cells were stimulated for 24 h and the
RNA was harvested to test the effects of IGF-I on
mRNA expression patterns.
WST-1 proliferation assay
The proliferation reagent (Roche Diagnostics GmbH,
Roche Applied Science, Basel, Switzerland) was used
according to the manufacturer’s instructions. In our
setup, cells were plated in 96 well plates and starved for
48 h in low serum conditions. After, the cells were incu-
bated in low-serum D-MEM with 50 ng/ml IGF-I over
24 h. n order to determine the cell numbers, the cells
were stained with 10% WST-1 in low-serum D-MEM at
37°C, 5%CO2 for 2 h. The absorbance was measured
with an ELISA reader at a wavelength of 450 nm. The
proliferation rate of IGF-I stimulated primary breast
fibroblasts and CCL-171 cells was compared to a respec-
tive reference samples not stimulated with IGF-I.
RNA extraction and amplification
After aspirating the culture medium, the cell monolayer
was washed once with phosphate buffered saline. The
cells were lysed in a buffer containing guanidine isothio-
cyanate (RLT buffer, QIAGEN, CA, USA). The total
RNA was extracted with the RNeasy kit (QIAGEN, CA,
USA) according to the manufacturer’s instructions. The
RNA concentration was measured with a NanoDrop sys-
tem spectrophotometer (ND-1000 Spectrophotometer
Technologies, Wilmington, USA). The integrity of
extracted RNA was checked by electrophoresis in a 1%
agarose gel in MOPS buffer. For mRNA amplification,
the Amino Allyl MasageAmp™ II aRNA Amplification
Kit was used (Ambion, TX, USA). Amplification of
mRNA out of 500 ng total RNA, the purification of
cDNA, the in vitro transcription and the purification of
aRNA were performed according to the manufacturer’s
instructions. Integrity and quantity of the amplified
RNA was verified as described above.
Gene expression analysis using HEEBO microarrays
For global gene expression analysis, we used HEEBO.
The HEEBO microarrays consist of 44,544 70mer
probes, which include: (a) constitutive exonic probes
(30,718); (b) alternatively spliced/skipped exonic probes
(8,441); (c) non-coding RNA probes (196); (d) BCR/TCR
genic/regional probes (372); (e) other probes (843); and
(f) controls. HEEBO microarrays were produced at the
Stanford Functional Genomic Facility (Stanford, USA).
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Complete details regarding the clones on the arrays may
be found at Stanford functional genomics facility website
[73]. For microarray experiments, 8 μg amplified RNA
(aRNA) were mixed with doping controls. Samples were
vacuum dried, resolved in coupling buffer and labelled
with Cy5 dye. Labelled samples were pooled with equal
amounts of reverse coloured Cy3 labelled amplified
reference RNA from Stratagene (Stratagene, CA, USA).
The labelled aRNA was purified with AminoAllyl Masa-
geAmp™ II aRNA Amplification Kit (Ambion) according
tothe user manual and fragmented using fragmentation
reagents (Ambion). The fragmented probe was added to
a hybridization buffer containing Cot/PolyA/tRNA (0.05
μg/uL each), 0.3% SDS, 3.3 × SSC and supplemented
with HEPES buffer. Following a denaturing step at 100°
C, the probe was placed on the microarray for competi-
tive hybridization. After 18 h, slides with hybridized
probes were sequentially washed and immediately dried
in an ozone free environment and scanned using an
Axon Scanner 4100A (Axon Instruments, CA, USA).
The gene expression profiles of primary fibroblasts,
together with accompanying clinical data are available
on SMD database papers’ webpage [39]. In addition, the
raw data have been deposited in NCBI’s Gene Expres-
sion Omnibus [74] and are accessible through GEO Ser-
ies accession number GSE18955 http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE18955.
Data analysis and clustering
Microarray fluorescent image analysis was performed
using the software Genepix Pro version 5.0 3.0.6.89
(Axon Instruments). Spots with obvious array artifacts
or poor technical quality were manually removed from
any further analysis. Raw data files were stored in the
Stanford Microarray Database [39]. The data used for
the paper are available at the accompanying website at
Stanford Microarray Database [39]. Data were expressed
as the log2 ratio of fluorescence intensities of the sample
and the reference for each element on the array. A
sequential data filtering procedure was applied to
include only measurements fulfilling our quality require-
ments (data with regression correlation bigger than 0.6
and Cy3 channel or Cy5 channel mean intensity over
median background intensity bigger than 1.5). Genes
that did not meet these criteria for at least 60% of the
measurements across the experimental samples were
excluded from further analysis. We rejected elements
that did not have at least a 1.5-fold deviation from the
mean in at least two samples. Data were evaluated by
unsupervised hierarchical clustering [75] and displayed
using Treeview software [41]. For the stimulation
experiments, in order to emphasize the effect of IGF-I
treatment, the results for each gene were standardized
for each gene individually to the non-treated samples. In
order to standardize them, we subtracted an average

value of non-treated samples from each gene expression
value for each cell type separately. This was performed
in order to highlight those genes whose expression level
changed upon treatment. Extraction of fibroblast gene
signature and differentially expressed clusters was based
on the correlation within the cluster nodes and, there-
fore, not randomly selected or based on an arbitrary
cut- off.
In order to compare the gene expression profile of

CCL-171 and MCF-7 cells in response to IGF-I, we
merged the filtered, standardized gene expression pro-
files of both cell lines. We then manually excluded sam-
ples with a high standard deviation between the
biological replicates and those missing gene expression
data. Gene expression data for different clones repre-
senting one gene were averaged. A set of 566 unique
genes was hierarchically clustered in an unsupervised
manner [75] and displayed using Treeview software [41].
SAM
For primary fibroblasts, two-class SAM was applied [43].
One class was formed by normal and carcinoma asso-
ciated fibroblasts starved in low serum medium and the
other by the same cells treated with IGF-I. In order to
increase the sensitivity, we paired our samples.
Human cancer datasets
A dataset containing gene expression patterns from
advanced breast cancers was previously described by
Sorlie et al. as Norway/Stanford dataset [45,46]. Expres-
sion measurements for each gene and array were mean
centred. The list of 208 unique genes building breast
fibroblast derived IGF-I signature was extracted from
the Norway/Stanford dataset. In order to overcome pos-
sible overweighting of clones from Unigene clusters that
were matched to more than one probe on the Sorlie
array, expression values derived from probes matched to
the same Unigene cluster were averaged. Only genes
that had >80% data values present and tumour samples
from patients having complete clinical data were used.
The resulting dataset was subjected to average linkage
hierarchical clustering [75] and displayed with Treeview
[41].
Disease specific survival analysis was based on death

from the disease and patients were censored at the last
follow up. Patients who died from other causes were
considered alive and not censored. Kaplan-Meier survi-
val curves were compared using R package survival fit-
ting a Cox proportional hazards regression model [76].
The dataset for early stage breast cancer contained

295 breast cancer specimens analysed on a 25,000 spot
oligonucleotide array, as described previously [44]. In
brief, patients were diagnosed and treated at the Nether-
lands Cancer Institute (NKI) for early stage breast can-
cer (stage I and II) between 1984 and 1995. The clinical
data was updated in January 2005. The median follow-
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up for patients still alive is 12.3 years. Expression data
from the NKI dataset were extracted as described above
for the Norway/Stanford dataset. Distant metastases
were analysed as a first event only (distant metastasis-
free probability). Any patient who developed a local
recurrence, axillary recurrence, contralateral breast can-
cer or a second primary cancer (except for non-mela-
noma skin cancer), was censored at that time and
subsequent distant metastases were not analysed. This is
based on the theoretical possibility that the locally
recurrent or second primary cancers could be a source
for distant metastases. An ipsilateral supra-clavicular
recurrence was soon followed by a distant metastasis in
all but one patient. Thus, an ipsilateral supra-clavicular
recurrence was considered the first clinical evidence for
metastatic disease for this analysis and patients were not
censored at the time of ipsilateral supra-clavicular recur-
rence. Overall survival was analysed based on death
from any cause and patients were censored at last follow
up. Kaplan-Meier survival curves were fitted using a Cox
proportional hazards regression model (R survival pack-
age) [76].
The dataset published by Garber and colleagues [50]

contains global gene expression profiles for 67 human
lung cancers derived from 56 patients with survival data
for 24 patients. The dataset published by Bhattacharjee
[51] contains mRNA expression levels of 12,600 tran-
script sequences in 186 lung tumor samples, including
139 adenocarcinomas resected from the lung. Of these,
125 samples were associated with clinical data (some
patients in multiple runs). The Bhattacharjee dataset
was obtained from the Broad Institute website [77] and
Garber dataset from SMD publication webpage [39].
The list of 370 unique genes building fibroblast derived
IGF-I signature was extracted from the Garber and Bha-
tacharjee datasets as described above for breast cancer
datasets. Equally, the resulting dataset was subjected to
average linkage hierarchical clustering [75] and displayed
with Treeview [41]. Overall survival was analysed based
on death from any cause and patients were censored at
last follow up. Disease specific survival analysis was
based on death from the disease and patients were cen-
sored at last follow up. Patients who died from other
causes were considered alive and not censored. Kaplan-
Meier survival curves were fitted using a Cox propor-
tional hazards regression model (R package ‘survival’)
[76].
Centroid correlation
The method of calculating the centroid for each patient
was previously described by Sorlie [45]. Briefly, the cen-
troids for genes representing breast fibroblast derived
IGF-I signature and fibroblast derived IGF-I signature,
as well as other signatures, were calculated based on the
NKI dataset. To test for similarities between the

signatures, we checked the correlation between values of
different centroids for one patient. The correlation was
calculated using Pearson correlation coefficient with R
software [76].
Continuous scoring
The stratification of patients within the NKI and Bhatta-
charjee datasets was conducted according to the pre-
viously described methodology [60,61] based on a
continuous score derived from the signatures. Briefly,
the average expression level of each signature was calcu-
lated for each patient attributing a score. The patients
were then divided into two groups separating them by
the median value of the continuous scores. Kaplan-
Meier survival curves for the two groups were plotted
and the statistical significance was determined using a
Cox proportional hazards model (R package ‘survival’)
[76].
GO::TermFinder analysis
GO::TermFinder takes a list of genes as input, and
determines whether those genes have any gene ontology
(GO) terms overrepresented in their combined set of
annotations compared to what would be expected by
chance from a randomly selected group of genes from
the background population of all genes [39,40]. In our
analysis, we used the full gene lists from parental heat
maps as a file to calculate the frequency of particular
annotations in a background file and the gene lists from
specific clusters coming from same heat map to calcu-
late the frequency of particular annotations in the
defined cluster. For a SAM-derived signature, we used a
gene list that was an input file for SAM analysis.
General statistic methods
Normally distributed data were compared using a Stu-
dent’s t-test. When the multiple comparisons were
necessary, the data were analysed with ANOVA. Differ-
ences were considered as statistically significant when P
< 0.05. T-tests and ANOVA analysis were done using R
software (R package ‘stats’) [76].

Additional file 1: Table S1. List of genes building the fibroblast derived
insulin-like growth factor-1 (IGF-I) signature.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1741-7015-8-1-
S1.PDF ]

Additional file 2: Figure S2. Graphical visualization of the output from
GO::Termfinder for biological process ontology. GOgraph layout that
includes the significant GO nodes up-regulated in CCL-171 cells, derived
from 325 clones compared to a background of 2133 clones. The colour
of the nodes is an indication of their Bonferroni corrected P-value
(orange <= 1e-10; yellow 1e-10 to 1e-8; green 1e-8 to 1e-6; cyan 1e-6 to
1e-4; blue 1e-4 to 1e-2; tan > 0.01).
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1741-7015-8-1-
S2.TIFF ]

Additional file 3: Figure S1. Distinct default gene expression profiles of
human lung fibroblasts and breast tumour cells. Genes are presented in
rows and experiments in columns. Both cell types demonstrate a clearly
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distinct default gene expression profile, typical for epithelial and
mesenchymal cells. Gene markers typical for mesenchymal (FN1, CDH2,
VIM) and epithelial/tumour cells (CDH1, TPD52, BMP-7) are marked.
Additionally, examples of proliferation associated genes up-regulated in
MCF-7 cells by default are shown.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1741-7015-8-1-
S3.TIFF ]

Additional file 4: Figure S3. Box-and-whisker plot illustrating the
average expression level of fibronectin (FN1), N-cadherin (CDH2) and E-
cadherin (CDH1) in primary fibroblasts. Insulin-like growth factor (IGF-I)
does not affect the expression level of mesenchymal and epithelial
markers in primary breast fibroblasts (data not shown).
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1741-7015-8-1-
S4.TIFF ]

Additional file 5: Table S2. List of genes up-regulated (the breast
fibroblast derived insulin-like growth factor-1 [IGF-I] signature) and down-
regulated in primary breast fibroblasts upon IGF-I stimulation.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1741-7015-8-1-
S5.PDF ]

Additional file 6: Figure S4. Graphical visualization of the output from
GO::Termfinder for biological process ontology. GOgraph layout that
includes the significant GO nodes up-regulated in primary breast
fibroblasts, derived from 186 clones compared to a background of 8918
clones. The colour of the nodes is an indication of their Bonferroni
corrected P-value (orange <= 1e-10; yellow 1e-10 to 1e-8; green 1e-8 to
1e-6; cyan 1e-6 to 1e-4; blue 1e-4 to 1e-2; tan > 0.01).
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1741-7015-8-1-
S6.TIFF ]

Additional file 7: Figure S6. Relationship of expression level of breast
fibroblast derived insulin-like growth factor-1 (IGF-I) signature with distant
metastasis free and overall survival applying continuous scoring. A.
Continuous score based on average expression level of the signature in
Netherlands Cancer Institute (NKI) patients. Colours correspond to score
below (yellow) or above (blue) the median (red line). Overall (B) and
metastasis free survival (C) analysis using a continuous score resulting
from breast fibroblast derived IGF-I signature in early stage breast cancer
patients from the NKI.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1741-7015-8-1-
S7.PDF ]

Additional file 8: Table S3. The detailed list of correlation values of
breast fibroblast derived insulin-like growth factor-1 (IGF-I) signature to
the previously published signatures and fibroblast derived IGF-I signature.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1741-7015-8-1-
S8.PDF ]

Additional file 9: Figure S7. Relationship of expression level of breast
fibroblast derived insulin-like growth factor-1 (IGF-I) signature with overall
survival and disease specific survival applying continuous scoring. A.
Continuous score based on average expression level of the signature in
Bhattacharjee dataset patients. Colours correspond to score below
(yellow) or above (blue) the median (red line). Overall (B) and disease
specific survival (C) analysis using a continuous score resulting from
breast fibroblast derived IGF-I signature in Bhattacharjee dataset patients.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1741-7015-8-1-
S9.PDF ]

Additional file 10: Figure S5. Correlation of the fibroblast derived
insulin-like growth factor-1 (IGF-I) signature and the breast fibroblast IGF-I
induced signature centroids in the Netherlands Cancer Institute dataset.
Pearson correlations for the signature and the P value are shown in the
lower right part of the plot.

Click here for file
[ http://www.biomedcentral.com/content/supplementary/1741-7015-8-1-
S10.TIFF ]
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