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Neuropeptides are emerging as key regulators of stem cell niche activities in health
and disease, both inside and outside the central nervous system (CNS). Among
them, neuropeptide Y (NPY), one of the most abundant neuropeptides both in the
nervous system and in non-neural districts, has become the focus of much attention
for its involvement in a wide range of physiological and pathological conditions,
including the modulation of different stem cell activities. In particular, a pro-neurogenic
role of NPY has been evidenced in the neurogenic niche, where a direct effect on
neural progenitors has been demonstrated, while different cellular types, including
astrocytes, microglia and endothelial cells, also appear to be responsive to the peptide.
The marked modulation of the NPY system during several pathological conditions
that affect neurogenesis, including stress, seizures and neurodegeneration, further
highlights the relevance of this peptide in the regulation of adult neurogenesis. In
view of the considerable interest in understanding the mechanisms controlling neural
cell fate, this review aims to summarize and discuss current data on NPY signaling
in the different cellular components of the neurogenic niche in order to elucidate
the complexity of the mechanisms underlying the modulatory properties of this
peptide.
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Introduction

In adult tissues, stem cells reside in a permissive and specialized microenvironment, or niche, in
which different molecular signals coming from the external environment, together with feedback
signals from progeny to parent cells, tightly regulate self-renewal, multipotency and stem cell fate
(for review see Hsu and Fuchs, 2012). In this regard, many findings underlie the key role played by
neurotransmitters on stem cell biology in niches located both inside and outside the central nervous
system (CNS; for review see Katayama et al., 2006; Riquelme et al., 2008). Cross-species comparative
analysis points out that it could be included in a more general and evolutionary old function, going
beyond their role in inter-neuronal communication (for review see Berg et al., 2013). Among them,
neuropeptides, molecules released both by neurons, as co-transmitters, and by many additional
release sites (for review see van den Pol, 2012), are emerging as important mediators for signaling in
both neurogenic and non-neurogenic stem cell niches (for review see Oomen et al., 2000; Louridas
et al., 2009; Zaben and Gray, 2013), thus representing possible shared signaling molecules in their
biological dynamics.
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One of the most abundant neuropeptides in the CNS
is neuropeptide Y (NPY), a 36-amino-acid polypeptide
that is highly conserved during phylogenesis (Larhammar
et al., 1993). Through its ability to modify its levels and
expression pattern following environmental changes in
both physiological and pathological conditions (Scharfman
and Gray, 2006; Zhang et al., 2014), it is involved in many
different functions, both inside and outside the CNS. These
functions are performed by binding to different G-coupled
NPY receptors distributed in different organs (Pedrazzini et al.,
2003).

In peripheral organs, NPY can be found in sympathetic
nerves, where its release mediates vasoconstrictive effects,
in adrenal medulla and in platelets (for review see Hirsch
and Zukowska, 2012). NPY takes part in cardiovascular and
metabolic response to stress (for review see Hirsch and
Zukowska, 2012), in coronary heart disease and hypertension
(Zukowska-Grojec et al., 1993). More recently, the NPY-induced
modulation of different stem cell niches has been highlighted.
A direct role in adipogenesis has been indicated (Kuo et al.,
2007; Park et al., 2014; Zhang et al., 2014), as well as its
angiogenic properties, which have been widely described in
different tissues (Ekstrand et al., 2003; Zukowska et al., 2003).
The NPY system is also crucially involved in the regulation of
the osteogenic niche, where its presence is due to both local
production and release from NPY-immunoreactive fibers, and
it plays a pivotal function in the neuro-osteogenic network that
regulates bone homeostasis (Franquinho et al., 2010; Lee et al.,
2010, 2011).

Within the CNS, NPY is a major regulator of food
consumption and energy homeostasis (for review see Lin
et al., 2004), acts as one of the crucial players of the stress-
related mechanisms (for review see Hirsch and Zukowska,
2012), and participates in anxiety, memory processing and
cognition (for review see Decressac and Barker, 2012). It is
also involved in the pathogenesis of several neurologic diseases,
including neurodegenerative diseases, such as Alzheimer’s
disease, Huntington’s disease (revised by Decressac and Barker,
2012) and temporal lobe epilepsy (Marksteiner et al., 1989,
1990; Vezzani and Sperk, 2004), in which anticonvulsant
and neuroprotective effects have also been observed (for
reviews see Vezzani et al., 1999; Vezzani and Sperk, 2004;
Gray, 2008; Decressac and Barker, 2012; Malva et al., 2012).
At the cellular level, it is either co-released locally by
GABAergic interneurons (for review see Sperk et al., 2007;
Karagiannis et al., 2009) or comes from the blood by
diffusion across the blood-brain barrier (Kastin and Akerstrom,
1999). It modulates excitatory neurotransmission and regulates
hyperexcitability, particularly in the hippocampus (Baraban
et al., 1997). The Y1, Y2 and Y5 receptors (Y1R, Y2R, Y5R)
exhibit specific distribution patterns within the CNS (Parker
and Herzog, 1999; Xapelli et al., 2006) and mediate the
wide range of NPY physiological functions (Pedrazzini et al.,
2003).

Due to the involvement of the NPY system in many
of the numerous physiological (e.g., physical activity and
learning), and/or pathological stimuli (e.g., stress, seizures,

neurodegenerative diseases) (Redrobe et al., 2004; Vezzani
and Sperk, 2004; Decressac and Barker, 2012; Hirsch and
Zukowska, 2012; Jiang et al., 2014) that strictly regulate the
biological dynamics of the neurogenic niche (Kempermann et al.,
2004; Zhao et al., 2008), its role in the modulation of adult
neurogenesis appears particularly relevant (for review see Gray,
2008; Decressac and Barker, 2012; Malva et al., 2012; Zaben and
Gray, 2013).

Interestingly, NPY-responsive cells in the CNS are known as
not being confined to neurons, but they also include astrocytes
(Hösli and Hösli, 1993; Barnea et al., 1998; Ramamoorthy and
Whim, 2008; Santos-Carvalho et al., 2013), oligodendrocyte
precursor cells (Howell et al., 2007), microglia (Ferreira et al.,
2010, 2011) and endothelial cells (Zukowska-Grojec et al., 1998),
which are key components of the specialized microenvironment
where adult neurogenesis takes place.

In this context, a comprehensive analysis of relevant
data on the NPY-mediated control of adult neurogenesis,
focusing on its effects on the different cellular components
of the neurogenic niche, could be particularly helpful to
improve our understanding of the complex functions of this
neuropeptide.

NPY and Neural Stem Cells (NSCs)

The direct effects of NPY on neural elements of the different
neurogenic niches located outside (olfactory epithelium [OE]
and retina) or inside the CNS (subventricular zone [SVZ],
subcallosal zone [SCZ], subgranular zone [SGZ]) have been
widely studied (Figure 1). The proximity to anatomical elements
releasing NPY and the stem cell expression of Y1R, as also
described in the adipogenic and osteogenic niches (Togari, 2002;
Lundberg et al., 2007; Lee et al., 2010; Zhang et al., 2014), are
common elements.

Effects of NPY on the OE Niche
The vulnerability of olfactory sensory neurons to different
environmental factors and the crucial role of the sense of smell in
mammalian daily life account for neurogenesis in the OE; as the
OE is accessible in living adult humans, it also offers a source of
cells useful for understanding the biology of adult neurogenesis
in health and disease (Mackay-Sim, 2010).

Hansel et al. provided the first evidence of a proliferative
role of NPY on NSCs (namely basal cells) of the OE (Hansel
et al., 2001), where the peptide is locally produced by the
ensheathing cells of olfactory axon bundles and by sustentacular
non-neuronal cells (Ubink et al., 1994).

Experiments performed using transgenic animals and
primary olfactory cultures have shown that this effect is
mediated by the Y1R (Hansel et al., 2001; Doyle et al.,
2008) and involves Protein Kinase C and ERK1/2 pathways,
which are ultimately involved in regulating the expression
of genes involved in controlling cell proliferation and
differentiation (Hansel et al., 2001). NPY release is regulated
by ATP, which is constitutively expressed by the OE and
preferentially released on injury, and the consequent
activation of P2 purinergic receptors (Kanekar et al., 2009;
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FIGURE 1 | Schematic drawing indicating the main effects exerted by
neuropeptide Y (NPY) on the different components of the neurogenic
niche. NPY, released by different sources in both physiological and pathological
conditions, directly targets selected neural stem cell (NSC) subtypes (namely
nestin- and doublecortin [DCX]-positive cells), inducing proliferation,
differentiation, migration and functional integration of newly-born neurons. NPY
also modulates microglia functions: through the interaction with the Y1R,
it inhibits microglial activation and interleukin (IL)-1beta release. The influence of

NPY-microglia interactions in the modulation of neurogenesis (dotted black
arrow) may be hypothesized. In addition, NPY stimulates astrocyte proliferation
mainly via the Y1 receptors (Y1R). NPY also acts on the endothelium through
the Y2 receptors (Y2R), in cooperation with the Y5 receptors (Y5R):
consequently a direct effect on the endothelial component of the neurogenic
niche could be hypothesized (dotted yellow arrow), resulting in increased
angiogenesis and possible modulation of endogenous neurogenesis (dotted
black arrow).

Jia and Hegg, 2012). A role of NPY in the maturation and
survival of olfactory receptor neurons has also been proposed
(Doyle et al., 2012).

Effects of NPY on the Retinal Niche
Many findings suggest the presence of a regenerative potential
within the mammalian retina, in which Muller astrocytes,
that are responsible for the homeostatic and metabolic
support of retinal neurons, appear capable of proliferating
and giving rise to neuronal cells in response to retinal
damage (for review see Lin et al., 2014). Both NPY and
NPY receptors (Y1R, Y2R and Y5R) are expressed by the
different retinal cellular subpopulations, namely neurons,
astrocytes, microglia and endothelial cells (Alvaro et al.,
2007; Santos-Carvalho et al., 2014). Interestingly, in vitro
experiments in Muller cell primary cultures pointed out
a modulatory role of NPY on cell proliferation: at low
dose it negatively affects the proliferation rate of the cells,
while at high doses it increases cell proliferation through
the Y1R stimulation and consequent activation of the
p44/p42 MAPKs, p38 MAPK and PI3K (Milenkovic et al.,
2004). The NPY-mediated proliferative effect has been
confirmed in experiments on retinal primary cultures, which
revealed that NPY-treatment stimulates retinal neural cell

proliferation, through nitric oxide (NO)-cyclic GMP and
ERK 1/2 pathways via Y1R, Y2R and Y5R (Alvaro et al.,
2008).

Effects of NPY on SGZ
Within the dentate gyrus (DG) NPY is selectively released by
GABAergic interneurons located in the hilus, which innervate
the granule cell layer in close proximity to the SGZ (for review see
Sperk et al., 2007); a physiological role for NPY in the regulation
of dentate neurogenesis can therefore be hypothesized. The
pro-neurogenic role of NPY on hippocampal NSCs has been
evidenced both in vitro (Howell et al., 2003, 2005, 2007) and in
vivo (Decressac et al., 2011). In vitro evidence suggests a purely
proliferative effect (Howell et al., 2007; Gray, 2008), specifically
involving the Y1R, which is mediated by the intracellular
NO pathway, through NO/cyclic guanosine monophosphate
(cGMP)/cGMP-dependent protein kinase (Cheung et al., 2012),
ultimately culminating in the activation of ERK1/2 signaling
(Howell et al., 2003; Cheung et al., 2012). Interestingly, in line
with the results obtained in the retinal niche (Alvaro et al., 2008),
the role of NPY in the modulation of another signaling pathway
driving a complexmodulation of NSC activities emerges. It is well
known, in fact, that NO exerts a dual influence on neurogenesis,
depending on the source (for review see Carreira et al., 2012):
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while intracellular NO is pro-neurogenic, the extracellular form
exerts a negative effect (Luo et al., 2010). In this respect the Y1R
has also been proposed as a key target in the selective promotion
of NO-mediated enhancement of dentate neurogenesis (Cheung
et al., 2012).

Decressac et al. confirmed, by in vivo administration of
exogenous NPY in both wild type and Y1R knock out mice,
that NPY-sensitive cells are the transit amplifying progenitors
expressing nestin and doublecortin (DCX), which selectively
express the Y1R (Decressac et al., 2011), as also evidenced in
vitro (Howell et al., 2003; Figure 1). A preferential differentiation
of newly generated cells towards a neuronal lineage has
also been reported (Decressac et al., 2011). In this regard,
it is worth emphasizing the role also played by NPY in
seizure-induced dentate neurogenesis. Studies on NPY−/−

mice show a significant reduction in bromodeoxyuridine
incorporation in the DG after kainic acid administration
(Howell et al., 2007). Interestingly, the DCX-positive cells,
besides being selective targets of NPY, are one of the most
important neuroblast subpopulations recruited in seizure-
induced neurogenesis (Jessberger et al., 2005). These findings
are in line with the notion that different neural progenitor
subpopulations within the niche show different sensitivity to
physiological and/or pathological stimuli (Kempermann et al.,
2004; Fabel and Kempermann, 2008), thus representing selective
targets for potential drugs aimed at modulating endogenous
neurogenesis, of which NPY appears to be a possible candidate.

Exogenous NPY has been administered in the Trimethyltin
(TMT)-induced model of hippocampal neurodegeneration and
temporal lobe epilepsy, in which selective pyramidal cell loss
in hippocampal CA1/CA3 subfields (Geloso et al., 1996, 1997),
reactive astrogliosis and microglial activation (for review see
Geloso et al., 2011; Corvino et al., 2013; Lattanzi et al., 2013)
are associated with injury-induced neurogenesis (Corvino et al.,
2005). NPY injection in TMT-treated rats results in long-term
effects on the hippocampal neurogenic niche, culminating in the
functional integration of newly generated neurons into the local
circuit (Corvino et al., 2012, 2014). The early events following
NPY administration are characterized by the up-regulation
of genes involved in different aspects of NSC dynamics. In
particular, Noggin, which participates in self-renewal processes
(Bonaguidi et al., 2008), Sox-2 and Sonic hedgehog, both involved
in the establishment and maintenance of the hippocampal niche
(Favaro et al., 2009), NeuroD1, which regulates differentiation
and maturation processes (Roybon et al., 2009), Doublecortin,
a driver of neuroblast migration (Nishimura et al., 2014) and
brain-derived neurotrophic factor (BDNF), which is involved in
different aspects of dentate neurogenesis (Noble et al., 2011),
have all been reported to be significantly modulated within the
first 24 h following treatment with NPY (Corvino et al., 2012,
2014). These findings suggest that in vivoNPY administration, in
association with the peculiar changes in the microenvironment
induced by the ongoing neurodegeneration, may trigger a
complex mechanism that goes beyond a mere proliferative effect.
It can be speculated that it occurs as the result of NPY’s effect
on both neural and non-neural elements of the niche and/or as a
consequence of multiple cell-cell interactions (Figure 2).

FIGURE 2 | Neuropeptide Y (NPY) mediates cell-cell interactions within
the neurogenic niche. NPY may be involved as key player of the complex
communication process among the different components of the niche (neural
stem cell [NSCs], microglia, astrocytes and endothelium) (black arrows).

Effects of NPY on SVZ
In the SVZ, the most abundant reservoir of NSCs in the
human brain (Doetsch, 2003b; Lim and Alvarez-Buylla, 2014),
NPY comes from the cerebrospinal fluid, together with other
nutrients and growth factors (Hou et al., 2006). Dense NPY-
positive networks also surround this region (Stanic et al., 2008;
Thiriet et al., 2011). NPY is also locally expressed by a subset of
subependymal cells (Curtis et al., 2005) and by immature neural
progenitors, thus suggesting a role as an autocrine/paracrine
factor in the control of SVZ neurogenesis (Thiriet et al., 2011).

The effects of the peptide on the SVZ neurogenic niche
have been assessed by both in vitro (Agasse et al., 2008; Thiriet
et al., 2011) and in vivo studies (Stanic et al., 2008; Decressac
et al., 2009). Also in this case the pro-neurogenic role of NPY
is essentially played by the Y1R (Agasse et al., 2008; Stanic
et al., 2008; Thiriet et al., 2011), which is mainly expressed
by DCX-positive neuroblasts in adult mice (Stanic et al., 2008;
Figure 1) and in Sox2 and nestin-positive cells in the developing
rat (Thiriet et al., 2011). Consistently with the reported effects
on dentate and olfactory NSCs, the Y1R mediates a proliferative
effect, via phosphorylation of ERK MAP kinases p42 and p44
(Thiriet et al., 2011). The involvement of stress-activated protein
kinase/JNK pathways, considered to play an important role in
neural differentiation and maturation, has also been reported
(Agasse et al., 2008).

It is well known that, while sharing common regulators,
the different neurogenic niches may show some differences
in specific aspects, including cellular organization, neuronal
subtype differentiation and migration of NSCs (Ming and Song,
2011). In this regard, some discrepancies with the SGZ have
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emerged: in the SVZ, in fact, NPY appears also to exert a
direct role on cell migration (Decressac et al., 2009; Thiriet
et al., 2011) and neuronal differentiation (Agasse et al., 2008;
Decressac et al., 2009), while a mere proliferative role, without
instructive signals to differentiation processes, emerged from in
vitro studies on SGZ NSCs (Howell et al., 2007). In particular, in
vivo administration of NPY in adult wild type mice showed that
the newly generated neurons migrate not only to the olfactory
bulb, but also towards the striatum, where they preferentially
differentiate into GABAergic neurons (Decressac et al., 2009).
Experiments performed on Y1R knock out mice indicated that
they show a disrupted assembly of neuroblasts in the rostral
migratory stream, compared with the chain-like organization
present in wild type animals (Stanic et al., 2008), suggesting a role
of this receptor also in cell migration. The direct demonstration
of a chemokinetic effect of NPY through Y1R activation and
MAPK ERK1/2 pathway recruitment in NSCs, was finally given
by Thiriet et al. on rat SVZ neurospheres (Thiriet et al., 2011).
The possible involvement of the Y2R has also been suggested,
since Y2R null mice express a reduced number of migratory
neuroblasts in both the SVZ and the rostral migratory stream,
with a consequently reduced number of interneurons in the
olfactory bulb (Stanic et al., 2008). It should be noted, however,
that the Y2R protein was found only in close proximity to rostral
migratory stream associated neuroblasts, without evidence of
positivity in NSCs and/or astroglial cells (Stanic et al., 2008).

Many neurodegenerative diseases induce changes in SVZ
neurogenesis (Curtis et al., 2007). Alzheimer’s disease and
Parkinson’s disease, for instance, are accompanied by a reduction
in NSC proliferation, while stroke and Huntington’s disease
cause an enhancement of SVZ neurogenesis, resulting in
an increased number of new neurons, which also migrate
into damaged areas (Curtis et al., 2007). Consequently,
NPY administration may be of potential interest in cell
replacement-based strategies for neurodegenerative diseases
affecting SVZ neurogenesis. Decressac et al. demonstrated that
NPY administration in the R6/2 model of Huntington disease is
able to attenuate striatal atrophy and to induce a proliferative
effect on SVZ NSCs (Decressac et al., 2010). However, it did
not result in an increased number of newly generated neurons
migrating within the striatum. NPY administration was also
ineffective in modulating dentate neurogenesis in R6/2 mice.
Interestingly, a reduced expression of NPY in the hilus of R6/2
mice was observed, accompanied by a reduction in the number
of Y1R positive cells in the DG, thus suggesting that alterations
in the NPY system might contribute to the impairment of
neurogenesis in this model of Huntington disease (Decressac
et al., 2010).

Effects of NPY on SCZ
NPY also exerts its proliferative role in the SCZ, a caudal
extension of the SVZ lying between the hippocampus and the
corpus callosum that, in basal conditions, essentially generates
oligodendrocytes migrating into the corpus callosum (Seri et al.,
2006). Acting through the Y1R on nestin-positive cells (Howell
et al., 2007), NPY is involved in basal and seizure-induced
SCZ progenitor cell proliferation (Howell et al., 2007; Laskowski

et al., 2007). Interestingly, SCZ activity appears to be modulated
by seizures, resulting in the production of glial progenitors
that migrate to the injured hippocampus (Parent et al., 2006),
thus raising the intriguing possibility that NPY modulates SCZ
oligodendrogliogenesis as well as neurogenesis (Gray, 2008).

NPY and Microglia

Increasing evidence suggests that microglia play a relevant role
in the neurogenic niche: unchallenged microglia contribute,
through their phagocytic activity, to the maintenance of
homeostasis of the neurogenic processes (Sierra et al., 2010),
while the different functional phenotypic profiles that microglial
cells undergo as a response to microenvironmental changes
appear to have a dual role in neurogenesis (Carreira et al.,
2012; Kettenmann et al., 2013; Su et al., 2014). Much evidence
indicates how the pro-inflammatory cytokines released by
activated microglia, such as interleukin (IL)-1beta, tumor
necrosis factor (TNF)-alpha and IL-6, detrimentally affect
neurogenesis (Ekdahl et al., 2003; Ekdahl, 2012; Su et al.,
2014). On the other hand, in an enriched environment,
activated microglia show proneurogenic properties via increased
expression of insulin growth factor-1 (Ziv et al., 2006), while,
in the presence of T-helper dependent cytokines, they reduce
the production of TNF-alpha (Butovsky et al., 2006). In other
words, the regulatory function of microglia in neurogenesis
seems to be essentially dependent on differences in instructive
signals coming from the microenvironment (Ekdahl et al.,
2009).

Many studies support the modulatory role of NPY in the
immune system, with effects ranging from the modulation of
cell migration to macrophage and T helper cell differentiation,
cytokine release, natural killer cell activity and phagocytosis,
most likely through its Y1R (for review see Hirsch and Zukowska,
2012; Dimitrijević and Stanojević, 2013).

Recent findings also indicate direct interactions between
NPY and microglia, the innate defensive system in the
CNS (Kettenmann et al., 2013). Ferreira et al. observed that
NPY, acting via the Y1R, inhibits lipopolysaccharide-induced
microglial activation and reduces the associated release of IL-
1beta (Ferreira et al., 2010). This effect is mediated by NPY-
induced impairment of NO synthesis and reduced inducible
form of nitric oxide synthase expression (Ferreira et al., 2010).
In addition, NPY also induces impairment of the phagocytic
properties of activated microglia (Ferreira et al., 2011) and IL-
1beta-induced microglial motility (Ferreira et al., 2012). Taken
together, these observations point to the key role played by
the peptide in modulating the functional activities of microglia,
and consequent release of mediators during inflammation
(Figure 1).

Although most of these findings were obtained in in
vitro systems, so that further research is needed in order
to elucidate whether these interactions produce the same
regulatory responses in vivo, a relevant influence of NPY-
microglia interactions in the homeostasis of the neurogenic
niche may be inferred. Because of the influence exerted by
neuroinflammation on neurogenesis (Carreira et al., 2012),
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NPY-microglia signaling could be particularly relevant in the
modulation of injury-induced neurogenesis. Studies exploring
the interaction between neuroinflammation and neurogenesis
lead to the hypothesis that the early detrimental action of
microglia after acute neuronal damage can, in some situations,
be modified into a supportive state during the chronic phase
(Ekdahl et al., 2009) and NPY could be involved in the
modulation of these transient properties of activated microglia.
Many findings emphasize the ability of NSCs to modulate
their own environment through the release of signaling factors
(Klassen et al., 2003; Butti et al., 2014) and mutual interaction
between NSCs andmicroglia have been shown by recent research
(Mosher et al., 2012). In this regard, we may speculate that
NPY, released by NSCs or coming from the surrounding
environment, could be critically involved in this process, acting
as a paracrine/autocrine factor which modulates both the state
of activation of microglial cells and their interactions with NSCs
(Figure 2).

NPY and Astrocytes

Astrocytes are complex cells, whose supporting roles in
the healthy CNS includes the regulation of blood flow,
the modulation of synaptic function and plasticity and
maintenance of the extracellular balance of ions and
transmitters (Sofroniew, 2009). They also act as important
regulators of the niche environment, through the secretion
of diffusible factors (Lie et al., 2005; Barkho et al., 2006;
Lu and Kipnis, 2010; Barkho and Zhao, 2011; Wilhelmsson
et al., 2012) or through membrane-associated molecules
(Barkho and Zhao, 2011). Thanks to their peculiar position
between endothelial cells and neurons, astrocytes can
mediate the exchange of molecules between vascular and
neural compartments (Parpura et al., 2012). In addition, a
specific subpopulation of astrocytes, the radial astrocytes,
directly generates migrating neuroblasts, via rapidly
dividing transit-amplifying cells (Seri et al., 2001; Doetsch,
2003a).

Several studies indicate that the expression of NPY and
NPY receptors (namely Y1R) is also extended to some
astrocyte subpopulations (Barnea et al., 1998, 2001; St-Pierre
et al., 2000), including retinal astrocytes (Alvaro et al., 2007).
It has been shown that astrocytes, like neurons, are able to
synthesize NPY and show a regulated secretory pathway that
is responsible for the release of multiple classes of transmitter
molecules: in this regard, the activation of metabotropic
glutamate receptors results in a calcium-dependent fusion of
NPY-containing dense-core granules with the cell membrane
and consequent peptide secretion (Ramamoorthy and Whim,
2008). It has been suggested that this process may be
controlled by the RE-1--silencing transcription factor, the same
factor that regulates neurosecretion in neurons (Prada et al.,
2011). The expression of NPY in astrocytes is controlled
by several factors: the post-natal down-regulation of glial
peptide transcripts has been reported, as well as its up-
regulation in adult astrocytes after brain injury (Ubink et al.,
2003).

Interestingly, the in vivo intracerebroventricular
administration of NPY significantly increases the proliferation
not only of neuroblasts but also of astrocytes within the SVZ,
mainly via the Y1R (Decressac et al., 2009; Figure 1). These
findings delineate a complex scenario in which the peptide
could exert its influence and, although direct evidence is still
lacking, a role of NPY-gliotransmission in the modulation of
critical steps of adult neurogenesis may be hypothesized, in both
physiological and pathological conditions. In particular, it has
been reported that the expression of astrocytic NPY also appears
to be modulated in a cytokine-specific manner: in this regard, a
relevant role of fibroblast growth factor (Barnea et al., 1998) and
IL-beta (Barnea et al., 2001) in astrocytic NPY upregulation has
emerged in in vitro studies. Both these factors can be released by
astrocytes as well as by microglia: since, as previously reported,
NPY inhibits microglial production of IL-1beta and IL-1beta-
induced phagocytosis (Ferreira et al., 2011, 2012), a role of the
peptide in astroglial/microglial interplay could be speculated. It
is conceivable that it may be involved in the astrocytic regulation
of microglial differentiation and activation, which, in turn,
differently affect neurogenesis.

In addition, it has been reported that NPY increases
the proliferative effect of the astrocyte-derived growth factor
fibroblast growth factor-2 on NSCs, through the increased
expression of fibroblast growth factor-receptor 1 on granule cell
precursors (Rodrigo et al., 2010). This observation indicates the
involvement of NPY also in the neuron-glial crosstalk and further
reinforces the hypothesis that it could be one of the molecules
significantly involved in the mutual interactions among the
different components of the niche (Figure 2).

NPY and the Endothelium

The vasculature is a critical component of the neurogenic
niche, and endothelial cells closely interact with NSCs to form
‘‘neurovascular niches’’, contributing to the regulation and
maintenance of the niche (Palmer et al., 2000; Shen et al., 2004,
2008; Tavazoie et al., 2008; Goldberg and Hirschi, 2009; for
review Goldman and Chen, 2011).

The molecular cross-talk between NSCs and endothelial cells
is mediated by diffusible factors secreted by endothelial cells,
such as BDNF and vascular endothelial growth factor (VEGF),
as well as by cell-cell contact (Leventhal et al., 1999; Jin et al.,
2002; Shen et al., 2004, 2008; Snapyan et al., 2009; Sun et al., 2010;
for review Goldman and Chen, 2011; Vissapragada et al., 2014).
Although the characterization of NPY receptors in the cerebral
endothelium has not been fully clarified (Abounader et al., 1999;
You et al., 2001), much evidence suggests that the endothelium
could represent one of the sources, as well as one of the targets,
of this peptide (Silva et al., 2005).

In this regard, different subtypes of human and rodent
peripheral endothelial cells are now known to synthesize, store
and constitutively express some elements of the NPY system,
such as NPY itself, the Y1R and Y2R and the dipeptidyl peptidase
IV, enzyme which converts NPY from the Y1R ligand to a
selective agonist of Y2R (Loesch et al., 1992; Sanabria and Silva,
1994; Jackerott and Larsson, 1997; Zukowska-Grojec et al., 1998;
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Ghersi et al., 2001; Lee et al., 2003a; Nan et al., 2004; Silva et al.,
2005; Movafagh et al., 2006; Abdel-Samad et al., 2007). NPY
also acts on the endothelium, promoting angiogenesis, mainly
via the Y2R, in cooperation with the Y5R (Zukowska-Grojec
et al., 1998; Zukowska et al., 2003; Ekstrand et al., 2003; Lee
et al., 2003a; Pons et al., 2004; Movafagh et al., 2006). VEGF-
and NO-dependent pathways are primarily involved (You et al.,
2001; Chen et al., 2002; Lee et al., 2003b). The hypothesis that the
endothelium may represent a non-neural store of NPY, where
it acts in an autocrine and in a paracrine manner, has also been
proposed (Silva et al., 2005).

The angiogenic action of NPY has been confirmed in several
in vitro and in vivo models: using specific receptor antagonist
or transgenic Y2R knockout mice, these studies reinforced
the primary role of the Y2R in mediating NPY’s angiogenic
response (Zukowska-Grojec et al., 1998; Ghersi et al., 2001;
Ekstrand et al., 2003; Lee et al., 2003a,b; Movafagh et al., 2006;
Figure 1).

NPY also appears to exert a relevant role in the regulation
and stimulation of angiogenesis in pathological processes and
tissue repair, as evidenced in in vivo models of peripheral
limb ischemia (Grant and Zukowska, 2000; Lee et al., 2003b;
Tilan et al., 2013), skin wound repair (Ekstrand et al., 2003)
and oxygen-induced retinopathy (Yoon et al., 2002), in which
both exogenous and/or endogenous (released from neural
and non-neural stores) NPY significantly contribute to tissue
revascularization.

Angiogenesis and neurogenesis are related processes, as
evidenced by data showing that cerebral endothelial cells
activated by ischemia promote proliferation and differentiation
of NSCs, while neural progenitor cells isolated from the
ischemic SVZ promote angiogenesis (Teng et al., 2008). In this
regard, it has also been shown that both angiogenesis and the
expression of pro-angiogenic factors exert important functions
in different stages of neurogenesis, such as proliferation,
migration and survival (Jin et al., 2002; Louissaint et al.,
2002). Interestingly, among these molecules, a relevant role
is played by NO signaling, which regulates both angiogenesis
and neurogenesis (Carreira et al., 2013), and whose activity
is modulated by NPY not only in endothelial cells (You
et al., 2001; Chen et al., 2002; Lee et al., 2003b), but also
in NSCs (Cheung et al., 2012) and microglia (Ferreira et al.,
2012).

It may be speculated that NPY, possibly released from the
endothelium, acts as a diffusible factor that could influence and
modulate elements of the neurovascular niche (Figure 2).

Concluding Remarks and Future
Perspectives

In summary, existing data provide evidence that NPY modulates
the neurogenic niche performing a pro-neurogenic role directly
on the NSCs, while the possibility of a concomitant modulatory
action on astrocytes, microglia and endothelium activities within
the niche is also possible. The involvement of NPY as a key
player in the complex process of communication among the
different components of the niche may be speculated, and,

in this regard, there is evident need for further research to
definitely elucidate the mechanisms of NPY-modulated cell/cell
interactions. This could yield a more heightened understanding
of some critical steps of the complex mechanisms that regulate
adult neurogenesis, thus possibly providing knowledge useful to
identify selective targets for potential drugs aimed at modulating
NSC fate. Moreover, due to the significant involvement of the
NPY system also in non-neural stem cell niches, this information
could contribute to clarify the systemic role of the peptide,
which appears to be involved in a set of basic homeostatic
body functions, ranging from food consumption and energy
homeostasis to the regulation of stem cell biology in adult
tissues.
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