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Cellular signaling networks are complex and appear to include many nonfunctional elements. Recently, it
was suggested that nonfunctional interactions of proteins cause signaling noise, which, perhaps, shapes the
signal transduction mechanism. However, the conditions under which molecular noise influences cellular
information processing remain unclear. Here, we explore a large number of simple biological models of
varying network sizes to understand the architectural conditions under which the interactions of signaling
proteins can exhibit specific stochastic effects—called deviant effects—in which the average behavior of a
biological system is substantially altered in the presence of molecular noise. We find that a small fraction of
these networks does exhibit deviant effects and shares a common architectural feature whereas most of the
networks show only insignificant levels of deviations. Interestingly, addition of seemingly unimportant
interactions into protein networks gives rise to deviant effects.

S
ingle-cell studies of signaling pathways have provided compelling evidence that molecular noise can shape
cellular signal-response systems1–7. However, the origin of signaling noise and how such noise shapes
cellular information processing mechanisms at the molecular level remain unclear. Ladbury and Arold

recently argued that ‘‘promiscuity’’ in protein-protein interactions (PPIs) is one of the main sources of noise in
signaling networks8. This hypothesis stems from the observation that kinase-phosphatase interaction networks
are characterized by a high degree of connectivity, a cacophony of cross-talk, and extensive nonspecific interac-
tions, rather than by formation of linear cascades of signaling events as once thought8–12. In budding yeast, for
example, a recent study revealed that the Cdc14 phosphatase interacts with 53 different partners, including 23
kinases and 5 phostaphases13. Further, recent estimates of the protein interactome suggest that the number of
binary PPIs is around 20,000 in yeast14 and 650,000 in humans15. Most of these PPIs have not been characterized
and they appear to make little functional sense10,11. These suggest that the promiscuity of protein interactions is a
wide-spread phenomenon that can give rise to complex stochastic effects that may shape cell signaling. Although
this hypothesis identifies a main source for signaling noise, it does not identify the conditions under which such
signaling noise influences system-level cellular information processing. A better understanding of stochastic
effects could lead to new insights into how noisy interactions are integrated and maintained in cellular signaling
networks. It could also provide some guidance in the targeted design and engineering of synthetic PPI circuits for
specific functions by attenuating or exploiting signaling noise.

To address the extent to which PPIs in signaling networks result in substantial stochastic effects, we examined if
and how kinase-phosphatase interaction networks can give rise to specific stochastic effects—called deviant
effects—where the underlying fluctuations drive the behavior of the system substantially away from the prediction
of the deterministic differential equations based on classical chemical kinetics16. In particular, we focused here on
deviant effects in which the expected steady-state behavior of biological systems is substantially deviated in the
presence of molecular noise. Compared with the effects from stochastic variability, which is often quantified
simply by a statistical dispersion measure, such as the coefficient of variation17–19, such deviant effects may affect
the regulation of an overall biological system in a more complex and less intuitive manner16,20. For example, such
stochastic effects are incorporated in developmental mechanisms of various organisms—from primitive prokar-
yotes to higher eukaryotes—to stochastically diversify cell types21,22. Also, these effects are predicted to enhance
sensitivity amplification of intracellular signal-response systems23. In signaling networks, deviant effects can play
a particularly important role in shaping the intracellular information processing mechanism since the behaviors
of downstream processes and correct cellular responses depend on the fidelity of signal levels to encode envir-
onmental information. While Samoilov and Arkin classified deviant effects16, the conditions under which
they emerge in biological systems remain poorly understood. Since the noise level depends strongly on the
architecture of biological networks24–28, noisy interactions of proteins may also give rise to deviant effects in
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cellular information processing. However, the vast extent of PPI net-
works makes it difficult to discern if a given signaling network can
exhibit deviant effects and which interactions are responsible for the
stochastic effects.

Rather than focusing on the structural properties of a specific
signaling system that exhibits deviant effects, we focused here on
topological features capable of giving rise to deviant effects purely
from interactions of enzymatic cycles in a bottom-up fashion. To this
end, we developed a computational framework to search for deviant
effects and systematically explored a range of enzymatic circuit
graphs. We determined that the node of each of these circuit graphs
is a simple enzymatic cycle that in isolation does not result in deviant
effects (Fig. 1a). We analyzed the network conditions under which
high levels of deviation can arise in a wide range of enzymatic circuit
graphs with three, four, and five nodes. We found that, whereas most
of the networks we studied exhibit only minor levels of deviation, a

small fraction of them is capable of exhibiting deviant effects and
shares a common architectural feature. These networks can also give
rise to substantial levels of stochastic variability under different con-
ditions, indicating that they have rich stochastic dynamics reper-
toires. We found that deviant effects can emerge purely from
interactions of signaling proteins and that an increase in network
size can substantially increase the level of such stochastic effects. We
showed that deviant effects can not only alter the steady-state res-
ponse but also affect the shape and the sensitivity of the stimulus/
response curve of signaling systems. These results may have import-
ant implications for our understanding of the evolution of cellular
signaling systems as well as for the engineering of synthetic cellular
signaling networks.

Results
Model setting. In this study, we defined deviant effects to be
stochastic effects in which the molecular fluctuations alter the
expected steady-state behavior of a signaling network substantially.
To study if and how interactions of signaling proteins give rise to the
deviant effects, we built signaling network models from the
enzymatic circuit motif (Fig. 1a). This enzymatic circuit motif has
been utilized to build larger network models to study dynamical
properties in different contexts, such as studies of adaptation,
switch-like responses, bistability, and oscillations29–32. In this
network module, we assume that each signaling protein has two
functionally distinct states: the inactive state (X) and the active
state (X*). Transitions of the states in a protein can take place at
small basal rates; transitions of signaling proteins are mainly
regulated by two enzymes: activation of proteins is catalyzed by Ef ,
while inactivation is catalyzed by Eb. These enzymes are the inputs of
the module, while the active state of the protein is the output that in
turn can influence other nodes by acting as a catalytic agent (Fig. 1b).
In our models, the kinetics of enzymatic reactions simply follows that
of bimolecular reactions (Fig. 1a). This allows us to relate possible
deviation in the output of the module and the covariance between the
inputs and the output. That is, only when the inputs and the output
are sufficiently correlated, can the output have possible deviations,
provided that the two inputs are deviation free. On the other hand,
when Cov(X*, Ef) and Cov(X*, Eb) are both negligible, we will have
insignificant levels of deviation in the output, and when the two input
enzymes are constant and have no deviations, the output have no
deviations because both Cov(X*, Ef) and Cov(X*, Eb) become zero.
This safeguards the steady state of the isolated module from deviant
effects (Supplementary Information (SI) section S1).

To generate signaling networks from this motif, we imposed a set
of rules that restricts how signaling proteins can be connected (see
Materials and Methods). With this network generation constraint,
each of the deterministic kinetic models is found to have only one
positive steady state (see Materials and Methods). To search for
deviant effects, we simulated each of the networks with various para-
meter combinations, and we measured deviation levels by computing
the relative difference between Xss�

1

� �
and Xds�

1 , the steady-state
averages of the active protein in node 1 in the stochastic model
and the corresponding noise-free deterministic model, respectively
(Fig. 1c and see Materials and Methods).

Positive relations between the deviation and noise levels. We first
examined three-node networks. We generated 26 network struc-
tures, each of which was simulated with 64 distinct parameter
combinations. Our analysis shows that our three-node networks
do not result in deviant effects (Fig. S1). Since noise is a necessary
factor in giving rise to deviant effects, we set out to understand if
there is a positive relationship between deviation levels and noise
levels. To uncover which networks have the potential to give rise to
higher deviation levels, we measured the average of the five highest
deviation levels for each three-node network. Similarly, we measured

Figure 1 | A bottom-up approach to analyze architectural features of
deviant effects. (a) The structure, the mean time evolution, and the steady-

state average of the network based on a single two-state protein. Here, X is

the inactive form of the protein; X* is the active form of the protein; Ef is

the enzyme to catalyze the activation of the protein; and Eb is the enzyme to

catalyze the inactivation of the protein, while k1 and k2 are the basal

activation and inactivation rate constants and kf and kb are the catalytic

activation and inactivation rate constants. The superscript ss indicates the

steady-state (stationary) random variable whereas the superscript ds

indicates the deterministic steady state. (b) An illustration of how

enzymatic circuit models are built from the signaling protein motif.

Activation of node 1 by node 2 is shown on the left. The active form of the

protein in node 2 is used as the enzyme to catalyze the activation of the

protein in node 1. Inhibition of node 1 by node 2 is shown on the right. The

active form of the protein in node 2 is used as the enzyme to catalyze

inactivation of the protein in node 1. (c) An illustration of our framework

to analyze the topological features that give rise to deviant effects from

simulation of a range of enzymatic circuit models. Networks are generated

using a set of constraints (see Materials and Methods), and each node has a

set of parameter values. From these the steady-state average of the active

form of node 1 is computed for the stochastic model and the

corresponding deterministic model, and the deviation level is measured.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2297 | DOI: 10.1038/srep02297 2



the potential to exhibit high variability by computing the average of
the five highest noise levels for each network. We found that, while
the three-node networks we studied exhibited only minor levels of
deviation, a positive correlation does exist between the potential for
the deviation and the potential for stochastic variation (Fig. S2).
Our analysis of networks of different sizes was consistent with this
result.

Deviant effects from inhibition of a double positive feedback loop.
Next, to check if adding another node to the networks would give rise
to deviant effects, we turned our focus to four-node networks. We
generated 108 four-node networks, each of which was simulated
using 256 distinct parameter combinations. This totaled 27,648
distinct network/parameter combinations. We then simulated the
stochastic model and the deterministic model of each combination
to calculate the deviation level. While this simulation revealed that
most networks are not characterized by deviations, a small fraction of
the combinations indeed exhibited extensive deviation (Fig. S3). To
determine if the four-node networks also have a positive correlation
between the potential for deviation and the potential for stochastic
variation, we calculated the average of the ten highest deviation levels
and the average of the ten highest noise levels to determine the
deviation potential and the stochastic variation potential for each
network, respectively. We found that, like in the three-node
networks, higher deviation is strongly correlated with higher noise
levels (Fig. 2a). In addition, we found that, among all four-node
networks we studied, two networks surpassed the deviation and
noise potentials (Fig. 2a). Interestingly, the two outlier networks
(N4A and N4B) exhibited isomorphism; they both had the same
topology with respect to node 1 in that it had a double positive
feedback loop between node 1 and its neighboring node while
these two nodes were inhibited by the other two nodes (Fig. 2b).

Are N4A and N4B just random outliers? In the 4-node network
models that we studied, 17 out of the 27,648 network/parameter
combinations exhibited deviation levels greater than or equal to
0.5. These 17 combinations are made up of only two network struc-
tures; 8 are based on N4A, while 9 are based on N4B (Table S1). The
composition of the combinations with higher deviation shows a clear
correlation between these networks and higher deviation levels. At
the same time, most of the parameter combinations in these net-
works did not result in high deviation levels. Indeed, while there
was only a small fraction of combinations that exhibited significant
levels of deviation in our 4-node network experiment, this may be
simply explained by the relatively small parameter space that we
covered in the experiment, which only included a small portion of
the high deviation region. These indicate that having specific net-
work structures such as N4A and N4B is a necessary condition for
deviant effects, but not a sufficient condition, and parameter combi-
nations on top of network structure constraints play an important
role in exhibiting deviant effects.

Several biological systems, such as the segmentation clock in zeb-
rafish and secretion of Gonadotropin-releasing hormone, were
reported to include similar architectural features (i.e., multiple
inhibition connections to a double positive feedback loop) and
exhibit synchronized oscillations given much higher nonlinearities
and sufficient time-delays in their reaction kinetics33. Also, inhibition
of a double positive feedback loop can be seen in G1 and S phases of
the yeast cell cycle system in which Wee1 and Myt1 kinases inhibit
Cdk1 which is activated by a double positive feedback loop with
Cdc2534,35.

To understand if our results were specific to the reaction kinetics
we considered for the two-state protein motif or if they were applic-
able more generally, we changed the reaction kinetics of each node to
Michaelis-Menten kinetics and analyzed the deviation and noise
levels in the same set of four-node networks. While the added non-
linearity and complexity amplified the deviation and noise levels in

general, our results remained intact because the potential for the
deviation had a positive relation with the potential for stochastic
variation. The same networks, N4A and N4B, also had a substantially
higher deviation potential as well as noise level potential compared
with the other networks (SI section S2 and Fig. S4).

Figure 2 | Deviation and noise levels of four-node networks. (a) A scatter

plot showing the potential for high deviation and noise levels. Here, each

red open circle represents the average of the ten highest noise levels (x-axis)

and the average of the ten highest deviation levels (y-axis) from each

network. The red circles surrounded by the light blue oval represent the

two topologies with the highest deviation and noise levels. (b) The network

structures that give the highest deviation and noise potential (N4A top and

N4B bottom). Note that N4A and N4B are isomorphic with respect to node

1. (c) Correlations between the noise level and the deviation level of N4A

and N4B. Each data point represents the noise and deviation level of one of

the two networks (blue circles for N4A and green squares for N4B) for a

specific parameter combination. (d) A distribution of Xss�
1 that gives the

highest level of deviation from N4A. (e) A distribution of Xss�
1 that gives

one of the highest levels of variability and a low level of deviation from

N4A. (f)–(i) The distributions of the parameter combinations, each of

which results in the deviation level or the noise level reaching a specified

threshold value. The two numbers in the parentheses in each panel indicate

the threshold value (left) and the fraction of the total samples that reach

this value (right).
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The topology of N4A and N4B includes a double positive feedback
loop and two nodes that inhibit the feedback loop. From a functional
perspective, having two inhibition nodes may not seem to change the
dynamics of node 1 by much compared with having only one strong
inhibition node. In N4A, for example, regardless of the effect of node
4, the steady-state behavior may not change, provided that node 3
provides a strong inhibition within a noise-free, deterministic frame-
work. We note that these dynamics similarities can also be seen in the
corresponding network with enzymatic reaction kinetics in which
the system can exhibit bistability regardless of the effect of node 4
(Fig. S5). However, our results provide strong evidence that inclusion
of such interactions with seemingly neutral effects can substantially
increase the level of deviation.

Deviation associated with higher correlation between the feedback
nodes. Next, we examined how the topology of N4A and N4B can
give rise to deviant effects. Our four-node network simulation data
suggest that higher levels of deviation are based on lower steady-state
in the stochastic models (Fig. 2d and Fig. S3). With the structure of
N4A, Cov Xss�

1 , Xss�
2

� �
, the covariance of the active forms of nodes 1

and 2 in the steady state, is expected to be positive because the positive
feedback loop positively correlates node 1 and node 2, while Cov

Xss�
1 , Xss�

3

� �
is expected to be negative because inhibition of node 1

by node 3 causes these two nodes to be negatively correlated. Thus, in
order to decrease the steady state in the presence of molecular noise in
this setting, Cov Xss�

1 , Xss�
2

� �
must be higher or Cov Xss�

1 , Xss�
3

� �
must

be lower. That none of the three-node networks exhibited high levels
of deviation suggests that, upon addition of node 4, the covariances
change substantially to reflect a decrease in the stochastic steady-state
average of N4A. To analyze this, we measured how the values of
Cov Xss�

1 , Xss�
2

� �
and Cov Xss�

1 , Xss�
3

� �
changed based on the inhibi-

tion of node 2 by node 4 in N4A. We found that, by adding node
4, the range of Cov Xss�

1 , Xss�
2

� �
increased by a factor of ten, while the

range of Cov Xss�
1 , Xss�

3

� �
only changed by a factor of two (Fig. S6).

This suggests that lowering the stochastic steady-state average with
inhibition of node 2 by node 4 is associated with an increase in
correlation between node 1 and node 2.

Parameter conditions for high deviation and noise levels. While it
is clear that the topology of N4A and N4B can substantially
strengthen the effects of underlying molecular noise to generate
higher deviation and noise levels, how this occurs remains unclear.
To gain better insights into the conditions under which this topology
generates the highest levels of deviation and noise, we first analyzed
the distribution of the deviation and noise levels in the 256 parameter
combinations of N4A and N4B. Interestingly, we found that the
condition for higher deviation levels is not necessarily the same as
that for higher noise levels. Indeed, some parameter sets resulting in
higher noise levels exhibit very small deviation levels, whereas higher
deviation levels appear to be coordinated with higher noise levels
(Fig. 2c).

To gain further insights into the stochastic dynamic repertoire of
the topology of N4A and N4B, we analyzed the steady-state distribu-
tions of N4A in two sets of parameter combinations resulting in (i)
high deviation and noise levels and (ii) a low deviation level and a
high noise level. The steady-state distribution of the former shows a
long tail with a short head (Fig. 2d). This suggests that the active form
of node 1 has a low value most of the time, while it occasionally jumps
to higher molecular counts for very short periods of time. The stoch-
astic steady-state average is close to the peak of the distribution and is
much lower than the corresponding deterministic steady state
(Fig. 2d), suggesting that molecular noise can make the inhibition
of node 1 stronger and/or the activation of node 1 weaker. Similarly,
the steady-state distribution for the latter has a long tail with a short
head (Fig. 2e). However, the steady-state average is even lower, sug-
gesting that the activity of the double positive feedback loop is
weaker.

To clarify the conditions under which the topology of N4A and
N4B gives rise to high deviation, we analyzed the distribution of
parameter values resulting in deviant effects. In addition, to compare
the conditions for the high deviation measure with those for the high
noise level measure, we also analyzed the distributions of parameters
with high noise levels. To this end, we simulated the stochastic model
and the deterministic model of N4A with a finer parameter incre-
ment with each node having 25 different parameter combinations,
resulting in 390,625 distinct parameter combinations in total (see
Materials and Methods). We counted the number of parameter com-
binations that resulted in deviation and noise levels reaching various
thresholds (Fig. S7). Using this information, we examined each para-
meter distribution for the deviation case and the noise case, and
compared them based on fractions of the combinations reaching
given thresholds. The results from the deviation level of 2.0—a level
that only 0.01% of the total parameter combinations can achieve—
indicate a clear pattern of parameter conditions in which the double
positive feedback loop between node 1 and node 2 can be potentially
strong and the inhibition from the other two nodes is strong enough
to keep the active forms of node 1 and node 2 at a low level (Fig. 2f),
making the activity of the positive feedback loop weak most of the
time. However, due to the underlying fluctuations, the inhibition
from nodes 3 and 4 occasionally becomes weaker, which in turn
allows the active form of nodes 1 and 2 to increase rapidly because
of the strong positive feedback between them.

The results from a noise level of 1.45—a level that only 0.02% of the
total parameter combinations can achieve—also indicate a clear pat-
tern of parameter conditions (Fig. 2g). However, this parameter
trend is very different from that of the high deviation level, suggesting
that this network topology is able to give rise to high deviation levels
as well as high noise levels if parameter values are changed. As we
lower the deviation level of parameter distributions to 1.0, the pattern
is distorted (Fig. 2h). Also, with a noise level of 1.2, the pattern of
parameter conditions becomes distorted (Fig. 2i). Interestingly, how-
ever, the parameter distributions from lower deviation and noise
levels are more similar. This is also evident in Fig. 2c where the
parameter values giving rise to higher deviation levels also exhibit
higher noise levels.

Amplification of deviation by adding functionally irrelevant
interactions. Our results suggest that in certain architectures of
enzymatic circuits, stochastic effects can substantially amplify with
an increase in the size of protein interactions. To further test this
hypothesis, we explored 436 five-node networks with 1,024 different
parameter combinations, resulting in 446,464 network/parameter
combinations. The steady-state results from the deterministic
models and the stochastic models yielded an increase in the higher
deviation levels compared with the four-node networks (Fig. S8). To
identify which networks can give rise to high deviation levels as well
as high noise levels, we computed the average of the ten highest
deviation levels as well as the average of the ten highest noise levels
for each network. The results indicated that four networks had a
much higher deviation potential compared with the other five-
node networks and they also had the highest noise level potential
(Fig. S9a). Interestingly, these four networks are all extensions of
N4A and N4B in which the fifth node was added to activate one of
the inhibitory nodes (Fig. S9b). Furthermore, we found that the
networks with the eight highest deviation potentials were classified
into four distinct topologies with respect to node 1 and they were all
extended from N4A and N4B. To observe how deviation levels
changed based on different extensions from this N4A and N4B, we
measured the distribution of deviation levels for each of these four
topologies. We found that the distributions of the deviation levels
from the two topologies with the highest deviation levels (in which
the fifth node is an activator node of an inhibitor node) were in
agreement and the networks of these topologies were capable of
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generating substantially higher deviation levels than N4A and N4B
(Fig. 3a). On the other hand, when node 5 is added as an inhibitory
node, deviation levels did not increase compared with N4A and N4B
and they had the same type of distributions (Fig. 3a). This suggests
that a stronger inhibition of the double positive feedback loop can
result in higher deviation levels.

To gain further insights into the conditions under which very high
levels of deviation arise, we focused on one specific five-node net-
work with high deviation levels (Fig. 3b) and performed additional
simulations with finer parameter changes. We chose one parameter
combination that had one of the highest levels of deviation and
changed the parameter values one node at a time while keeping the
parameter values in the other nodes fixed. The results from this
sensitivity analysis showed that the ability to maintain a very high
level of deviation and to change the deviation level with respect to
parameter changes varies depending on the node. While the devi-
ation level can dramatically decrease based on changes in parameter
values from nodes 1 and 2 (Fig. 3c and d), it changes more gradually
based on changes in the parameter values of node 3 (Fig. 3e).
Interestingly, the results from nodes 4 and 5 indicate that the high
level of deviation is robust to changes in these nodes and a much

higher level of deviation compared with the three-node and four-
node networks can be maintained regardless of the values of the
parameters (Fig. 3f and g). This suggests that, while the addition of
nodes 4 and 5, at first glance, does not seem to make a lot of influence
in the system dynamics, particularly when the inhibition of node 1 by
node 3 is already strong, it has a substantial impact in terms of the
amplification of deviation levels. Also, these differences in deviation-
level sensitivity suggest that molecular noise can shape steady-state
stimulus/response curve of signaling systems. Indeed, our simulation
results based on applying inhibitory stimuli to various nodes of the
network shown in Fig. 3b showed that molecular noise can make the
steady-state response more sensitive to one type of stimulus while it
can also make the steady-state response more robust to another type
of stimulus (Fig. S10). This suggests that molecular noise can give
signaling systems a means of being more sensitive to proper signals
and more robust to cross-talk signals. Taken together, our results
indicate that deviant effects can emerge from an increase in the size of
the enzymatic circuit with the addition of seemingly uninfluential
protein interactions (Fig. 4) and evolutionary trajectories to amplify
deviation levels could have positive effects on mechanisms of cellular
signaling.

To test the generality of the emergence of deviant effects associated
with an increase in the size of enzymatic circuits, we changed the
parameter settings in several ways and simulated the chemical kinetic
models of the same set of three-node and four-node enzymatic cir-
cuit networks. Our analysis showed that four-node networks have
higher deviation and stochastic variation levels than corresponding
three-node networks and, interestingly, that the same four-node
network topology exhibits substantial deviation and noise levels
(Fig. S11). These results provide strong evidence that the two types
of stochastic effects do indeed have a general tendency to amplify as
the size of enzymatic circuits increases.

Discussion
Among the fundamental problems in molecular systems biology is
the elucidation of the relation between molecular interaction net-
works and their dynamical behaviors. While the large complexity
of biological systems makes this problem challenging, an exploratory

Figure 3 | The five-node networks with the highest levels of deviation.
(a) The distributions of the deviation levels from the top four network

topologies compared with the distribution of the deviation levels from the

four-node topology with the highest deviation potential. Each of the five-

node topologies here represents two isomorphic networks with respect to

node 1. (b) A specific five-node topology with the highest deviation levels

used for sensitivity analysis. (c)–(g) Sensitivity analysis. Heatmap plots

showing how the deviation level changes based on changes in parameters in

a particular node while keeping the parameters of the other nodes fixed.

The black circles indicate the base parameter values.

Figure 4 | Pathways to increase the deviation level from three-node to
five-node topologies. This shows potential trajectories that increase the

deviation level with an increase in the network size. The solid arrows that

connect the topologies indicate a substantial amplification in the deviation

level, while the dashed arrows indicate neutral transitions with no

(substantial) changes in the deviation level.
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approach to link the architectural features of the system to specific
dynamical properties helps us understand general design principles
that may be applicable to many organisms. Here, by taking a bottom-
up approach, we explored a large number of signaling network
conditions to search for unifying properties that can result in deviant
effects. We found that, while most of the networks exhibit no deviant
effects, a small fraction of the networks does give rise to devi-
ant effects, and these few networks have a common network feature.
Interestingly, while these networks can also exhibit very high levels of
stochastic variability, the conditions leading to these two types of
stochastic effects are different. By examining the topological features
of these networks via incremental changes in the network size, we
found that deviant effects emerge from the integration of certain
protein interactions that do not qualitatively influence the dynamics
of the base network given the noise-free assumption. In addition, we
showed that these stochastic effects can influence not just the vari-
ability and the average level of intracellular signals but also the sens-
itivity of the stimulus/response curve in signaling pathways,
extending the list of biological mechanisms that make the stimu-
lus/response curve more sensitive23,29,36. A previous study showed
interesting stochastic effects called stochastic focusing where sensitiv-
ity of signal-response systems can be amplified with nonlinear,
hyperbolic inhibition reactions, whose mean rates become different
from the corresponding fluctuation free, deterministic reaction
rates23. Our results showed that deviant effects can make signaling
networks more sensitive to certain stimuli and to be more robust to
others. Such sensitivity differentiation features may be particularly
important for signaling pathways that are characterized by a high
degree of cross-talk to respond to the ‘‘right’’ signal correctly and to
ignore the other signals.

Our findings have two important implications. First, they suggest
that various architectures of signaling networks with similar dynam-
ical behaviors can have substantially different stochastic effects. This
may improve the development of synthetic signaling circuits by tak-
ing the effects of molecular noise into account in the design and
implementation of the circuits. This is consistent with a previous
synthetic biology study that showed that a native gene circuit and a
synthetic one designed to regulate the competence state of Bacillus
subtilis have widely different stochastic effects even when their deter-
ministic models predict the same behavior between the two28.

Second, our findings suggest a partial explanation for how large
signaling networks with many nonfunctional elements evolved and
how they are maintained in cells. Our results suggest several potential
evolutionary trajectories that can substantially increase the deviation
level while the dynamics of the system remains intact. Thus, if bio-
logical circuits with deviant effects have selective advantages, then an
increase in the circuit size can occasionally lead to the emergence of
such stochastic effects, resulting in an increase in fitness. A previous
explanation for why there are so many PPIs in signaling networks
suggests that a large number of PPIs may be noisy and would result
from (nearly) neutral mutations37. Like our explanation, this one
does not couple an increase in the complexity with an increase in
fitness. However, if biological networks are assumed to have the
intrinsic tendency to grow larger38, then neutral mutations can
increase the complexity of PPIs. Our explanation does not contradict
this explanation; rather, it complements it by suggesting that the
integration of some noisy interactions can lead to higher fitness.

Signaling networks are undeniably complex with many unknowns
and nonfunctional interactions. To analyze the properties of such
systems, some level of simplification is necessary. In this study, we
utilized simple models of interactions of small numbers of signaling
proteins to attempt to gain insights into the architectures of signaling
networks that can produce deviant effects. To this end, we have made
several assumptions to make our computational study feasible and to
reduce the complexity of the models. While such a simplification
may not be able to capture the dynamical properties of the system

quantitatively, it allowed us to explore a large number of enzymatic
circuit models to search for the network conditions necessary for
deviant effects. Similar approaches to exploring molecular network
topologies to search for a given function have also led to better design
principles for various response dynamics32,38, oscillations31,39, and
reliable information processing mechanisms25,27, as well as under-
standing of the evolutionary process in network structures for a given
function39–41. There are limitations in our approach. For example,
due to high computational requirements, we were only able to
explore limited network/parameter search space for analysis of
stochastic effects. Because of this, we cannot say whether or not
our findings are generally applicable to all signaling network struc-
tures capable of exhibiting deviant effects. However, we believe that
our bottom-up approach is a powerful tool to explore not just archi-
tectural conditions for various dynamical effects of molecular noise
but also potential incremental evolutionary trajectories to increase
such effects.

Methods
Network generation constraints. The constraints that we imposed for network
generation were as follows: (i) each node was allowed to influence at most one other
node; (ii) each node was allowed at most one activation and one inhibition; (iii) if a
network had a feedback loop, it involved node 1; and (iv) all nodes in the network were
connected.

Fixed point analysis of deterministic models. To count the number of positive
steady states in each of the deterministic models in our settings, we utilized the
chemical reaction network (CRNT) toolbox (http://www.crnt.osu.edu/CRNTWin).
The fixed-point analysis by the CRNT toolbox is based solely on the structure of the
model and independent of the values of the model parameters. We applied the CRNT
toolbox to all possible reaction network models, and we found that each of the
deterministic reaction network models with the original reaction kinetic scheme has
only one positive steady state.

The mean time evolution. Let X�i tð Þ be a discrete-state Markov process, which
represents the molecular count of the active form of node i at time t. Then, from the
basic results of stochastic chemical kinetics42, the mean time evolution of X�i tð Þ in our
setting is characterized by:

d X�i tð Þ
� �

dt
~k1 Xi tð Þh izkf hXi tð Þ:Ei

f tð Þi{k2 X� tð Þh i{kb X�i tð Þ:Ei
b tð Þ

� �
, ð1Þ

where Xi(t), Ei
f tð Þ, and Ei

b tð Þ are the inactive form, the enzyme to catalyze the
activation, and the enzyme to catalyze the inactivation of node i at time t, respectively,
while k1 and k2 are the basal activation and inactivation rate constants and kf and kb

are the catalytic activation and inactivation rate constants. Here, if the the effects of
the molecular fluctuations on the system dynamics can safely be ignored, then the
average of products can be expressed by the product of averages since the covariance
terms become zero (e.g., hXi tð Þ:Ei

f tð Þi~ Xi tð Þh i:hEi
f tð Þi). Thus, when assuming that

there are no fluctuations in X�i tð Þ, we can express X�i tð Þ as a deterministic process, and
we can characterize the mean time evolution of X�i tð Þ by the ordinary differential
equation based on corresponding mass-action kinetics as follows:

dX�i tð Þ
dt

~k1Xi tð Þzkf Xi tð Þ:Ei
f tð Þ{k2X� tð Þ{kbX�i tð Þ:Ei

b tð Þ: ð2Þ

The definitions of the stochastic and deterministic steady-state average. We define
Xss�

i to be a random variable characterizing X�i ?ð Þ, a stationary discrete-state Markov
process, which represents the molecular count of the active form of node i with the
time-invariant, steady-state distribution. Since the underlying Markov chain of each
of our stochastic models is irreducible and positive recurrent, X�i ?ð Þ has a unique
steady-state distribution. PXss�

i
x�ð Þ, the probability mass function of this random

variable is, thus, characterized by Pi x�,?ð Þ, the probability that X�i ?ð Þ~x� . Hence,

Xss�
i

� �
, the stochastic steady-state average of X�i , is defined by Xss�

i

� �
~

P
x� x�Pi x�, ?ð Þ.
Xds�

i is the deterministic counterpart of the steady-state average, and it denotes
X�i ?ð Þ by making the fluctuation-free assumption. Here, X�i ?ð Þ is a stationary,
continuous Markov process representing the average molecular count of the active
form of node i (i.e., the stationary limit of Eq. 2).

Procedure for the main simulations. The deterministic steady-state average of the
active form of node 1, Xds�

i , was computed by simulating the system of ordinary
differential equations derived from the mass-action kinetic model of each network
(i.e., a system of Eq. 2) and checking if the relative change in X�1 tð Þ was less than 0.05
for every 1.0 time unit. The stochastic steady-state average of the active form of node
1, Xss�

1

� �
, was computed by simulating 5,000 runs of the stochastic chemical kinetic
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model of each network via Gillespie’s stochastic simulation algorithm43 and
periodically checking if the relative change in X�1 tð Þ

� �
was less than 0.05 for every 1.0

time unit. In our model setting, the total molecular count of each protein is conserved
and set to be 50. To capture small differences in the affinities of protein interactions8,
we set the value of each catalytic reaction parameter to be 1 or 5. Since each node has
two catalytic reaction parameters (i.e., kf and kb), an N-node network model has 4N

parameter combinations with our setting. The basal rate constants, k1 and k2, are
assumed to be much smaller. We set the values of these parameters to be 0.1. Note that
these parameters are valuated in arbitrary time units. To test the correctness of our
simulations, we chose a 3-node network models with specific parameter
combinations which are known to be deviation free. The results from this control
experiment shows the correctness of our simulation (Fig. S13).

Measure for deviation and noise level. As defined in Samoilov & Arkin (2006)44, the
deviant effects are broadly discrete stochastic effects which drive the behavior of the
system substantially away from the prediction of the deterministic differential
equations based on classical chemical kinetics (or mass-action kinetics). Here, we
studied the deviant effects in a specific context, that is, the contribution of molecular
fluctuations to substantially deviating Xds�

1 from Xss�
1

� �
. To this end, we defined the

deviation level to be the relative distance of Xds�
1 from Xss�

1

� �
and computed

Xss�
1

� ��� ��{Xds�
1

Xss�
1h iz d

, where the small constant factor, d , was used to discourage a very low

level of Xss�
1

� �
(i.e., Xss�

1

� �
=1) from achieving a high level of deviation when the

absolute change is minimal.
The noise level of biological systems is often quantified using a measure of the

dispersion such as the Fano factor and the coefficient of variation17,18,45. Here, based

on the coefficient of variation, noise level was computed to be
std Xss�

1

� �

Xss�
1h iz n

, where the

small constant factor, n , was used to discourage a very low level of Xss�
1

� �

(i.e., Xss�
1

� �
=1) from achieving a high noise level when the absolute fluctuation

effects are minimal. In this study, we set d and n to be 1.

Simulations for detailed analyses of the parameter conditions of N4A. For the
analysis of the parameter conditions of N4A, we chose the values of the parameters in
each node to be 1, 2, 3, 4, or 5. Since each parameter took 5 different values, we had
390,625 different parameter combinations. We only utilized the results from
simulations that terminated before the predefined runtime limit. For the sensitivity
analysis of the 5-node network, each parameter took values from 1.0 to 5.0 with
increment of 0.1.
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