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Detection of embedded dynamics 
in the Györgyi‑Field model
Judita Buchlovská Nagyová1,2*, Branislav Jansík1 & Marek Lampart1,2

The main aim of this paper is to detect embedded dynamics of the Györgyi-Field model of the 
Belousov–Zhabotinsky chemical reaction. The corresponding three-variable model given as a set of 
nonlinear ordinary differential equations depends on one parameter, the flow rate. As certain values 
of this parameter can give rise to chaos, an analysis was performed in order to identify different 
dynamics regimes. Dynamical properties were qualified and quantified using classical and also new 
techniques; namely, phase portraits, bifurcation diagrams, the Fourier spectra analysis, the 0–1 test 
for chaos, approximate entropy, and the maximal Lyapunov exponent. The correlation between 
approximate entropy and the 0–1 test for chaos was observed and described in detail. The main 
discovery was that the three-stage system of nested sub-intervals of flow rates showed the same 
pattern in the 0–1 test for chaos and approximate entropy at every level. The investigation leads to the 
open problem of whether the set of flow rate parameters has Cantor-like structure.

The Belousov–Zhabotinsky chemical reaction (BZ reaction), originally discovered in the 1950s by Belousov1, 
is an example of an oscillating chemical reaction which can be maintained far from equilibrium by an internal 
source of energy2 resulting in a nonlinear chemical oscillator exhibiting different dynamical regimes. Later on, 
the chemical mechanism of the reaction was described in3, and is commonly called the FKN mechanism.

There are many mathematical models representing different aspects of the BZ reaction. For example, the 
Brusselator, Oregonator, and Györgyi-Field are three mathematical models for a type of autocatalytic reaction, 
like the BZ reaction.

The Oregonator model is the result of a quantitative kinetic analysis of oscillations in the BZ reaction by 
Field and Noyes4 and is a simplified version of the mechanism developed by Field, Körös and Noyes (FKN 
mechanism)1.

The Brusselator model, a theoretical model for a type of autocatalytic reaction, was proposed by I. Prigogine 
and his collaborators5.

Finally, the Györgyi-Field model (GF model), describes a reaction taking place in a continuous-flow stirred-
tank reactor (CSTR)6, with a relatively simple mathematical model (see also7,8). This model, for a specific choice 
of parameters, exhibits chaos (see e.g.9 and references therein, or the main results of this paper), contrary to the 
Oregonator, which has no chaotic solutions10 describing the oscillatory behaviour and pattern formation in the 
BZ reaction. The GF model will be taken into consideration for further research in this paper.

In recent decades, the BZ reaction has been studied extensively by physical chemists for its kinetic 
behaviour9,11,12, and by mathematicians for the dynamics and patterns of the solutions of the associated math-
ematical model10,13–15.

More specifically, the research was done from the theory of dynamical systems point of view. The transitions 
from steady state to quasi-periodic and bursting oscillations, and further on to regular relaxation oscillation via 
a complicated sequence of alternating periodic and chaotic regimes were achieved through by simulations in16. 
The results of computer experiments on information processing in a hexagonal array of vesicles filled with BZ 
solution in a sub-excitable mode were introduced by17. The discretized version of BZ reaction models was also 
researched. E.g. in18, the dynamics of the local map are discussed, and the set of trajectories that escape to infin-
ity as well as the set of bounded trajectories are analyzed, i.e., the Julia set of the system. The evidence of chaos 
was also demonstrated experimentally by dozens works e.g.19–21. The emergence of chaotic oscillations in closed 
unstirred batch reactors has been attributed to the coupling among chemical kinetics and transport phenomena, 
following a Ruelle–Takens–Newhouse like scenario. In particular, transport phenomena due to concentration 
and density gradient were found to play a fundamental role22–26.
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Despite a large number of results in the given area, it is instructive to apply new methods to the given BZ reac-
tion model and to obtain new very interesting results that better characterize the trajectory behaviour depending 
on the choice of state parameters showing properties of the parameter space.

This work focuses on the characterization of the dynamical properties of the GF model6, depending on the 
flow rate, denoted by kf  , and detection of its embedded dynamics. The qualitative and quantitative characteriza-
tion of the dynamics regimes is mainly done using the maximal Lyapunov exponent, the 0–1 test for chaos, and 
approximate entropy. Recall that the last two aforementioned tools were applied in27 to the two-dimensional 
coupled map lattice model of the Lagrangian type, which is a discrete version of the BZ reaction. These tools 
were applied to the voluminous simulation data generated by the Salomon supercomputer at IT4Innovations 
National Supercomputing Center located in Ostrava, the Czech Republic.

The paper is organized as follows: in “The Györgyi-Field reaction model” section the model is introduced, 
followed by its mathematical model in “Mathematical model” section. The main results obtained by phase por-
traits, the Fourier spectra analysis, the maximal Lyapunov exponent, the approximate entropy, and the 0–1 for 
chaos are contained in “Main results” section. Finally, the outcomes are summarized in “Discussion” section.

The Györgyi‑Field reaction model
The GF model of the BZ reaction develops a description of the reaction in terms of a set of differential equations 
containing only three variables. In common with chemical experiments, the GF model shows both regular, 
intermittent and chaotic behavior. While remaining close to a real chemical system, it is sufficiently simple 
to allow detailed mathematical analysis6. The mechanism of the reaction is defined by the set of the following 
equations (1): 

where the corresponding chemical components are: Y = Br−, X = HBrO2, Z = Ce4+ , V = BrCH(COOH)2 or 
BrMA, A = BrO3

−, H = H+, and M = CH2(COOH)2. The concentrations of the main reactants A , H , M , and 
the total concentration of cerium ions C are summarized in Table 2.

Mathematical model
A three-variable mathematical model of the BZ reaction, presented by Györgyi and Field in6, describes a reaction 
taking place in a CSTR. The corresponding set of nonlinear ordinary differential equations contains only three 
variables, while still being able to accurately reproduce the behavior of the BZ reaction observed experimentally6, 
and it is based on a four-variable chemical mechanism (1), see6.

The mathematical model, in its dimensionless form, consists of a set of scaled differential equations: 

 where

and ỹ =
(

αk6Z0V0zv/
(

k1HX0x + k2AH
2 + kf

))

/Y0 while t  corresponds to time, X to HBrO2, Y  to Br−, Z to 
Ce4+ , and V to BrMA. The rate constants and parameters used in the following computations are given in Tables 1 
and 2, respectively.

The behavior of this system depends on the inverse residence time of the CSTR, and the flow rate, noted kf  
[ s−1 ]. As certain values of this parameter can give rise to chaos, the following analysis was performed in order 
to identify different dynamics.

(1a)Y + X +H → 2V

(1b)Y + A+ 2H → V +H

(1c)2X → V

(1d)0.5X + A+H → X + Z

(1e)X + Z → 0.5X

(1f)V + Z → Y

(1g)Z +M →

(2a)
dx

dτ
= T0(−k1HY0xỹ + k2AH

2Y0/X0ỹ − 2k3X0x
2 + 0.5k4A

0.5H1.5X−0.5
0 (C − Z0z)x

0.5

− 0.5k5Z0xz − kf x)

(2b)
dz

dτ
= T0

(

k4A
0.5H1.5X0.5(C/Z0 − z)x0.5 − k5X0xz − αk6V0zv − βk7Mz − kf z

)

(2c)
dv

dτ
= T0

(

2k1HX0Y0/V0xỹ + k2AH
2Y0/V0ỹ + k3X

2
0/V0x

2 − αk6Z0zv − kf v
)

(3)τ = t/T0, x = X/X0, z = Z/Z0, v = V/V0,
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Main results
The system of differential equations (2) was solved numerically in Matlab28 using the ode45 solver. The simula-
tions were done depending on the free parameter kf  ranging from 3× 10−4 to 5× 10−4 with a 10−7 step. Each 
simulation was performed for the final time τ = 100 with a time step of 10−4 . To avoid system distortions, only 
the last 20% of simulations were used for further computations. In all cases, the initial conditions were set as

The choice of initial conditions is given by (3); the variables describe the ratio between the concentration at a 
certain time and the initial concentration.

As a main result, phase diagrams, amplitude frequency spectra (FFT), and Poincaré sections were done for 
relevant choices of the parameter kf  . To illustrate changes in dynamical behavior, bifurcation diagrams under-
lined by the approximate entropy and the 0–1 test for chaos with suitable magnifications to the parameter kf  
were plotted.

Consequently, and as a goal of this paper, bifurcation diagrams together with the maximal Lyapunov expo-
nent, the approximate entropy, and the 0–1 test for chaos were computed for the nested set of parameters kf  . The 
0–1 test for chaos splits the values of the parameter for which regular (periodic or quasi-periodic) and irregular 
(chaotic) trajectories appear, while the output of approximate entropy detects increasing complexity of the 
investigated system (2). Meanwhile, the Lyapunov exponents of a system describe the rate at which the orbits in 
phase space of two nearby points converge or diverge as time evolves. Obviously, a system’s dimension equals 
the number of the Lyapunov exponents. The system’s dynamics approaches equilibrium if all these exponents 
are negative; if at least one equals zero and the remaining are negative, a limit cycle situation has occurred; and 
finally, where any exponent is positive there is chaos29.

Phase diagrams, the Fourier spectra, bifurcation diagrams, and the Lyapunov expo‑
nents.  Periodic as well as chaotic dynamics were identified in the studied model (2). For example, in Fig. 1, 
regular trajectory is demonstrated by the trivial loop (Fig.  1a) for kf = 3× 10−4 , and the non-trivial loop 
(Fig. 1d) for kf = 3.2× 10−4 . Figure 1g gives an example of a chaotic trajectory; kf = 3.5× 10−4.

The Fourier spectra were computed using the Fast Fourier transform for kf = 3× 10−4 , kf = 3.2× 10−4 , 
and kf = 3.5× 10−4 , shown in Fig. 1c,f,i respectively. Regular behavior is observable for the first two, and chaos 
in the last case.

In the case of regular trajectory, the Fourier spectra in Fig. 1c,f are formed by a number of harmonic frequen-
cies, hence the frequency of the periodic trajectory is computable. Periodic motions of trajectory are also visible 
as isolated points on the Poincaré sections in Fig. 1b,e.

In the case of chaos, seen in Fig. 1i, the Fourier spectra are formed by a number of harmonic components 
having the basic, super-harmonic, sub-harmonic, and combination frequencies on which further motions with 
frequencies forming the sided bands of the dominant frequencies are superposed. Their mutual ratio indicates 
the irregularity of the motion. The character of this chaotic motion is underlined by the band of points on the 
Poincaré section in Fig. 1h.

(4)x0 = z0 = v0 = 1.

Table 1.   Rates and rate constants of the GF model chemical scheme.

Reaction equation Rate ri Rate constant ki
(1a) r1 = k1HYX k1 = 4.0× 106 M−2 s−1

(1b) r2 = k2AH
2Y k2 = 2.0M−3 s−1

(1c) r3 = k3X
2 k3 = 3000M−1 s−1

(1d) r4 = k4A
0.5H1.5(C − Z)X0.5 k4 = 55.2M−2.5 s−1

(1e) r5 = k5XZ k5 = 7000M−1 s−1

(1f) r6 = αk6ZV k6 = 0.09M−1 s−1

(1g) r7 = βk7MZ k7 = 0.23M−1 s−1

Table 2.   Parameters of the investigated system (2).

List of parameters

A = 0.1

M = 0.25

H = 0.26

C = 0.000833

α = 666.7

β = 0.3478
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To underline the dynamics behaviour of the selected examples shown in Fig. 1 their Lyapunov exponents are 
calculated and are given in Fig. 2. The maximum of these coefficients is called the maximal Lyapunov exponent 
and is denoted by L. In the case of the flow rate kf = 3.2× 10−4 , shown in Fig. 2a, L approaches 0, detecting a 
cycle, and for the flow rate kf = 3.5× 10−4 , shown in Fig. 2b, L is 3.604, indicating chaotic regime; in this figure 
only two Lyapunov exponents are displayed, the third one is omitted since it is sufficiently negative, hence, it 
has no influence on trajectory type.

Next, the bifurcation diagram (constructed as a projection of the local maxima) of the model (2) was plot-
ted for each variable x , z , and v with respect to the free parameter kf ∈ (3× 10−4, 5× 10−4) in Fig. 3. In this 
bifurcation diagram, so-called “period doubling” and “windows” effects are also visible. Periodic trajectory can 
be identified in the range of the parameter, e.g., kf ∈ (3× 10−4, 3.24× 10−4) and kf ∈ (3.95× 10−4, 5× 10−4) . 
The interval in between these values is interrupted by chaotic cases around kf = 3.25 , and some chaotic cases for 
kf ∈ (3.34× 10−4, 3.65× 10−4) and kf ∈ (3.85× 10−4, 3.9× 10−4) . As it is visible in Fig. 3 there are not only 
blocks of kf  parameters of high system’s complexity followed by a block of parameters corresponding to cycles, 
but also reverse bifurcation is observable (e.g., starting at kf = 3.6 and ending at kf = 3.75 ). This means that the 
complexity decreases while system’s parameter increases.

Approximate entropy.  The approximate entropy is a technique used to quantify the amount of regular-
ity and unpredictability of fluctuations in time-series. The main advantages are that it can be computed on 
short time series and it allows comparison of the differences in complexity of the same system with different 
parameter settings, see, e.g.,30. More complex notions of entropy type can be found in, e.g.,31. To compute the 

Figure 1.   Phase portraits, Poincaré sections and Fourier spectra for different choices of the parameter kf  . (a) 
Regular trajectory as a trivial loop for kf = 3× 10−4 , (b) Poincaré section for kf = 3× 10−4 showing 2 points 
of intersection, (c) Fourier spectra of harmonic frequencies for kf = 3× 10−4 ; (d) regular trajectory showing 
a loop for kf = 3.2× 10−4 , (e) Poincaré section for kf = 3.2× 10−4 showing 4 points of intersection, (f) 
Fourier spectra of harmonic frequencies for kf = 3.2× 10−4 ; (g) chaotic trajectory for kf = 3.5× 10−4 , (h) 
Poincaré section for kf = 3.5× 10−4 showing a band of points of intersection, (i) chaotic Fourier spectra for 
kf = 3.5× 10−4.
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approximate entropy, two parameters must be set: embedding dimension m and neighborhood threshold r. 
Let s(t) ∈ R for t = {1, 2, . . . ,N} be a time series with N observations. Then embedded vector S(t) at time t, is 
defined as S(t) = [s(t), s(t + 1), s(t + 2), . . . , s(t + (m− 1))] , where t is the observed time and m is the embed-
ding dimension. The maximum distance of embedded vectors is computed as follows:

for i, j = {1, 2, . . . ,N − (m− 1)} . Compute the thresholded version of the distance with the threshold given by r:

for i, j ∈ {1, 2, . . . ,N − (m− 1)}.

Compute Cm
i (r) as a ratio between points in the neighborhood of i and the number of embedded vectors.

Then compute the average of the logarithm of all the Cm
i (r)

Finally, approximate entropy for the finite time series with N data points is computed as

For robust estimation, it was suggested by Pincus30 that a time series contains at least 103 observations.
The approximate entropy was calculated using the TSEntropies package32 for R33. The computations were 

made for the input vector s given in a normalized form of all state variables:

kf ∈ (3× 10−4, 5× 10−4) and r = 0.1 . The results of approximate entropy for all values of the parameter kf  are 
in Fig. 6.

D(i, j) = d(S(i), S(j)) = max
k=0,1,...,m−1

|s(i + k)− s(j + k)|,

dr(i, j) =

{

1, D(i, j) < r
0, otherwise,

Cm
i (r) =

∑N−(m−1)
j=1 dr(i, j)

N − (m− 1)
.

�m(r) =
1

N − (m− 1)

N−(m−1)
∑

i=1

lnCm
i (r).

ApEn(m, r,N) = �m(r)−�m+1(r).

s(t) =
√

x2(t)+ z2(t)+ v2(t),

Figure 2.   Graphs of the Lyapunov exponents for: (a) regular trajectory for kf = 3.2× 10−4 and (b) chaotic 
trajectory for kf = 3.5× 10−4 . Only the largest two exponents, denoted by L1 and L2, are displayed since the 
third one is sufficiently negative and it has no influence on the identification of chaos.

Figure 3.   Bifurcation diagrams for the parameter kf ∈ [3× 10−4, 5× 10−4] for variables: (a) x , (b) z , and (c) v.
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0–1 test for chaos.  The 0–1 test for chaos, invented by Gottwald and Melbourne34, is one of the methods 
for distinguishing between regular and chaotic dynamics of a deterministic system. In contrast to the other 
approaches, the nature of the system is irrelevant, thus the test can be applied directly to experimental data, ordi-
nary differential equations, or partial differential equations. The results return values close to either 0 or 1, with 
0 corresponding to regular dynamics and 1 to chaotic dynamics. With its easy implementation, evaluation, and 
wide range of application, using this tool for detecting chaos is becoming more popular in different fields35–38.

The 0–1 test for chaos can be computed by the following algorithm34.
Given the observation φ(j) for j = 1, 2, . . . ,N and a suitable choice of c ∈ (0, 2π) , the following translation 

variables are computed:

for n = 1, 2, . . . ,N . The dynamics of the translation components pc and qc are shown on the pc versus qc plot. 
A bounded trajectory is shown in Fig. 4 (left) corresponding to regularity, for kf = 3× 10−4 . An unbounded 
trajectory is shown in Fig. 4(right) related to the chaotic case, for kf = 3.5× 10−4.

The idea for the 0–1 test, first described in34, is that the boundedness or unboundedness of the trajectory 
{(pj , qj)j∈[1,N]} can be studied through the asymptotic growth rate of its time-averaged mean square displacement 
(MSD), which is defined as

where

is the time lapse of the duration n (n ≪ N) starting from the position at time j . As shown in34,39, it is important 
to use values of n small enough compared to N , noted ncut , (n ≤ ncut) . A subset of time lags ncut ∈ [1,N/10] is 
advised for the computation of each Kc.

For bounded trajectories and regular dynamics, M(n) is a bounded function in time, whereas unbounded 
trajectories, meaning chaotic dynamics, are described by M(n) growing linearly with time. Thus the asymptotic 
growth rate of the MSD must be calculated, which correlates with the unboundedness of the trajectory.

As proposed in34, the modified MSD is calculated as

The output of the 0–1 test for chaos is computed by the correlation method as

for the vectors ξ = (1, 2, . . . , ncut) and � = (Dc(1),Dc(2), . . . ,Dc(ncut)).
The final result of the test is

pc(n) =

n
∑

j=1

φ(j) cos(jc),

qc(n) =

n
∑

j=1

φ(j) sin(jc)

M(n) = lim
N→∞

1

N

N
∑

j=1

d(j, n)2

d(j, n) =
√

(pj+n − pj)2 + (qj+n − qj)2

D(n) = M(n)− E(φ)2
1− cos(nc)

1− cos c

Kc = corr (ξ ,�) ∈ [−1, 1]

K = median (Kc).

Figure 4.   A plot of p versus q for c = 1.569853 : (a) for kf = 3× 10−4 showing regular dynamics, (b) for 
kf = 3.5× 10−4 showing chaotic dynamics.
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The position of the studied system (2) at any moment of time is determined by displacements x, z, and v, 
which are used for defining vector s:

For these simulations, the free software environment R33 was used, including the Chaos01 package developed 
by T. Martinovič40. A comparison of the values for Kc for the periodic and chaotic cases is shown in Fig. 5, for 
kf = 3× 10−4 and kf = 3.5× 10−4 , respectively.

The results of the 0–1 test for chaos for all values of the parameter kf  are shown in Fig. 6.

Discussion
In this paper the detection of embedded dynamics of the GF model (2), associated with the BZ chemical reaction, 
was intensively researched. For this purpose, the GF model was solved using the adaptive six-stage, fifth-order, 
Runge–Kutta method implemented as the ode45 solver in Matlab. To eliminate the stiffness problem, the model 
(2) was also simulated by the ode23s solver in Matlab28; the outputs were identical.

The simulations were used to plot 3D phase portraits, bifurcation diagrams, the approximate entropy, the 0–1 
test for chaos, and the maximal Lyapunov exponent. The search process of dynamical properties, depending on 
the flow rate parameter kf  , was performed in the free software R33 using the packages TSEntopies32 and Chaos01
40, and the Lyapunov exponent calculation Matlab script41. It is also wort noting that there are other possibilities 
for detecting dynamic properties (e.g. fractal dimension), see e.g.42,43.

It is evident from the main results shown in Fig. 6 that all tests clearly detect regular and irregular patterns 
for a given kf .

Firstly, bifurcation analysis detects regions of flow rate parameters where only cycle trajectories appear, 
and also those values of kf  where chaos is assumed. Nevertheless, typical properties of bifurcation analysis 
were observed. Moreover, the reverse bifurcation phenomenon is well visible, that is if kf  stands for chaos and 
increases, the system’s complexity decreases, reaching cycle trajectories. Our results show that the method of 
approximate entropy returns a qualification constant which describes complexity in the system invariantly with 
respect to the origin. On the other hand, the 0–1 test as a qualification tool returns zero for regular (periodic or 
quasi-periodic) trajectory, and one for irregular (chaotic) characteristics.

Moreover, if the output of the 0–1 test is not close to zero or one, then the examined test case has not yet 
reached the attractor or has reached an intermittent state, see e.g.44,45 and references therein. These results are 
underlined by the maximal Lyapunov exponent, which detects not only periodic and chaotic trajectories, but 
also bifurcation borders. As is observable from Fig. 6, the outputs of all these tests are well associated.

Further, we observe a correlation between the approximate entropy and the 0–1 test for chaos. In general, 
the increasing values of the 0–1 test for chaos are coupled to increasing approximate entropy and vice versa.

We notice isolated low values of the 0–1 test for chaos accompanied by comparatively low values of approxi-
mate entropy well within the chaotic region characterized by high 0–1 test for chaos values and approximate 
entropy. To investigate and zoom in, we constructed a three-stage system of nested sub-intervals of flow rates kf  , 
see Fig. 6, for which in every level the 0–1 test for chaos and approximate entropy was computed. At every level 
we observed the same pattern. This naturally suggests a fractal structure in the set of kf :

Open Problem 1  Is there a totally disconnected (Cantor) set of flow rates kf  in [3× 10−4, 5× 10−4] such that 
for each such parameter the GF model (2) is showing chaos?

Open Problem 2  Is there a totally disconnected (Cantor) set of flow rates kf  in [3× 10−4, 5× 10−4] such that 
for each such parameter the GF model (2) is showing regular pattern?

s(t) =
√

x2(t)+ z2(t)+ v2(t).

Figure 5.   A plot of Kc depending on c : (a) for kf = 3× 10−4 showing regular dynamics, (b) for 
kf = 3.5× 10−4 showing chaotic dynamics.
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Figure 6.   The dynamics characteristics of: (Left) the maximal Lyapunov exponent L [(ac,e), in purple]; (Right) 
approximate entropy ApEn [(b,d,f), in blue], and the result of the 0–1 test for chaos K [(b,d,f), in red]; the 
bifurcation diagram for variable x is shown in the background. The magnification of both sub-intervals denoted 
by the black rectangle is shown on the figure: (a,b) the results for kf ∈ (3× 10−4, 5× 10−4) , (c,d) the results for 
kf ∈ (3.25× 10−4, 3.35× 10−4) , (e,f) the results for kf ∈ (3.322× 10−4, 3.324× 10−4).
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