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ABSTRACT: A computational method is developed to carry out explicit
solvent simulations of complex molecular systems under conditions of constant
pH. In constant-pH simulations, preidentified ionizable sites are allowed to
spontaneously protonate and deprotonate as a function of time in response to
the environment and the imposed pH. The method, based on a hybrid scheme
originally proposed by H. A. Stern (J. Chem. Phys. 2007, 126, 164112), consists
of carrying out short nonequilibrium molecular dynamics (neMD) switching
trajectories to generate physically plausible configurations with changed
protonation states that are subsequently accepted or rejected according to a
Metropolis Monte Carlo (MC) criterion. To ensure microscopic detailed
balance arising from such nonequilibrium switches, the atomic momenta are
altered according to the symmetric two-ends momentum reversal prescription.
To achieve higher efficiency, the original neMD−MC scheme is separated into
two steps, reducing the need for generating a large number of unproductive
and costly nonequilibrium trajectories. In the first step, the protonation state of a site is randomly attributed via a Metropolis MC
process on the basis of an intrinsic pKa; an attempted nonequilibrium switch is generated only if this change in protonation state
is accepted. This hybrid two-step inherent pKa neMD−MC simulation method is tested with single amino acids in solution (Asp,
Glu, and His) and then applied to turkey ovomucoid third domain and hen egg-white lysozyme. Because of the simple linear
increase in the computational cost relative to the number of titratable sites, the present method is naturally able to treat extremely
large systems.

I. INTRODUCTION
In conventional MD simulations based on classical force fields,
chemical bonds are commonly never broken and the protonation
state of each ionizable residue is fixed and ascribed externally by
the user. This is a considerable limitation when trying to study
pH-dependent biological processes. These include, to name a
few, membrane insertion,1 fibril formation,2 protein denatura-
tion,3 proton gradient-driven ATP synthesis,4 and membrane
transporters.5,6 Typically, in the absence of specific information,
the protonation state of the ionizable residues is assigned on the
basis of their reference pKa from the isolated amino acid in
solution. However, the pKa of specific residues in a protein is very
sensitive to the environment, and actual pKa values can deviate
considerably from standard references. The issue is particularly
important in the case of histidine because its pKa is close to
physiological pH. Furthermore, the dynamical movement of a
protein can be coupled with an alternation of protonation state.
At the most fundamental level, protonation and deprotonation

involve breaking or forming chemical bonds. For this reason, a
calculation of absolute proton affinity can be carried out only
from a quantum mechanical (QM) treatment. However, a pure
QM approach is impractical for biomolecular systems, where
there can be a very large number of ionizable sites. Slightly more
tractable approaches are based on mixed quantum mechanical
and molecular mechanical (QM/MM) treatments. While QM/
MMmethods can address issues of absolute proton affinity in the

context of enzyme reactions,7,8 they remain too computationally
expensive to treat multiple ionizable sites in large bimolecular
systems.
In the context of large biomolecular systems, an effective

computational method to carry out simulations under conditions
of constant pHmust necessarily be built on the basis of empirical
molecular mechanical (MM) models. In constant-pH simu-
lations, preidentified titratable sites are allowed to spontaneously
change their protonation state as a function of time in response to
the environment and the imposed pH. Monte Carlo (MC) is a
natural method for treating the abrupt transitions between
discrete protonation states. For example, in a hybrid MD−MC
simulation algorithm, one can imagine a cycle that consists of
carrying out an equilibrium trajectory for some time, followed by
attempts to make a transition to a different protonation state that
is either accepted or rejected according to a Metropolis criterion.
The first hybrid MD−MC methodology with discrete proto-
nation states was introduced by Bürgi et al.9 The method, which
relied on a thermodynamic integration (TI) calculation carried
out with explicit solvent to evaluate the free energy difference and
the acceptance probability associated with the change in
protonation state, was computationally expensive and suffered
from convergence issues due to the short TI calculations. Soon
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afterward, Mongan, McCammon, and colleagues10,11 proposed a
hybrid MD−MC methodology with sudden jumps between
discrete protonation states in conjunction with an implicit
solvent model based on the generalized Born (GB) approx-
imation. The algorithm effectively achieves a correct Boltzmann
sampling and avoids the issues arising from short TI simulations.
However, it cannot be readily transposed to explicit solvent
simulations. Sudden jumps between discrete protonation states
unavoidably lead to large differences in electrostatic energy and
to a rejection of nearly all proposed change. The issue stems from
the lack of overlap between the explicit solvent configurations of
the protonated and unprotonated states. Similar difficulties are
encountered in trying to design an effective grand canonical MC
algorithms for ionic solution in which ions are created and
destroyed in explicit solvent.12

To circumvent the configurational overlap problem in
constant-pH simulations, some treatments have resorted to an
empirical combination of explicit/implicit representations: the
equilibrium MD is carried out with explicit solvent, but the
protonation/deprotonation MC processes are carried out with
an implicit solvent model.13−16 While such constant-pH
simulations have the ability to explore the accessible ionization
states of a system in the presence of explicit solvent, it is
important to keep in mind that the actual pKa values are derived
from a CE or GB approximation. Although the usage of
continuum solvent models in the treatment of ionizable sites in
proteins has a long history,17−19 they are necessarily approximate
and there is a need for a simulation methodology that is based
entirely on an explicit solvent representation. There are many
complex situations where a titratable site may be located in a
narrow aqueous crevice for which the usage of an implicit solvent
approximation may be limited. Fundamentally, the statistical
properties arising from such combined MD−MC methods do
not stem from a single consistent Hamiltonian, which is
problematical.
A different strategy to address the configurational overlap

problem consists of considering an extended Lagrangian with a
continuous λ(t) that is dynamically propagated to control the
protonation state of the site. This leads to the so-called λ-
dynamics algorithm developed by Brooks and co-workers.20−27

The original concept of expanding the degrees of freedom of a
system in order to include a continuous thermodynamic coupling
parameter λ as a dynamical variable in the sampling process goes
back to early work by Jorgensen,28 Tidor,29 and Hünenberger30

(see also ref 31). In this method, because λ is allowed to evolve as
a continuous dynamical degree of freedom, there are no discrete
protonation and deprotonation events and the configurational
overlap problem is not encountered. However, carefully
calibrated λ-dependent potentials must be incorporated into
the Hamiltonian to increase computational efficiency. For
example, an unfavorable energy barrier is often introduced
between the physical end states to decrease the probability of the
unphysical intermediate region. This barrier must not be too
large in order to enable rapid transitions between end states λ = 0
and λ = 1. For this reason, there remains unavoidably a nonzero
probability q of visiting the unphysical states (δ < λ < 1− δ, with δ
≈ 0.1). Strictly speaking, only end states λ = 0 or λ = 1 are
physical. Assuming independence of the sites for the sake of
simplicity, the probability of a physically meaningful config-
uration of the entire system with n sites scales like (1 − q)n, with
(1 − q) < 1. For example, even if q is 0.1, the probability of
generating a physical state is not larger than about 0.12 with 20
sites (in practice, much larger values of q are tolerated to increase

computational efficiency). As a result, an algorithm based on
sampling a continuous λ does not scale very well for a
bimolecular system with a large number n of ionizable sites.
This remains the major limitation of an algorithm sampling the
dynamics of a continuous coupling parameter λ(t).
A different solution to the configurational overlap problem to

construct an explicit solvent constant-pH simulation method is
based on the enveloping distribution sampling (EDS)
method.32,33 EDS is a method used to generate a hybrid energy
surface from a finite number of states such that the statistical
mechanical distribution of the end states will overlap;34 a
smoothing parameter s controls the magnitude of the energy
barrier and the extent of configurational overlap between the end
states. In this constant-pH simulation method, EDS is used to
mix the energy surface of the protonated and unprotonated states
for a small set of N preselected ionizable sites. Systems with
different values of the EDS smoothing parameter are then
connected via a Hamiltonian replica-exchange to facilitate
interconversion between the different protonation states during
a hybrid MD−MC simulation. The EDS constant-pH simulation
method can handle explicit solvent. However, it requires that all
of the accessible protonated and unprotonated states be
enumerated explicitly into the smoothed EDS Hamiltonian. If
there are N sites, then 2N energy surfaces need to be mixed into
the smoothed EDS Hamiltonian. From a computational point of
view, a simulation requires at least as many processors as
ionization states. While this limitation can be mitigated to some
extent by including only the relevant states and leaving out those
anticipated to have small probabilities, the method remains
fundamentally designed to treat systems comprising only a small
number of sites.
Scalability to a large number of ionizable sites remains the

most essential feature of a truly useful constant-pH simulation
method for biomolecular systems. It is worth mentioning that
several of the previously proposed constant-pH simulation
methods have introduced replica-exchange between systems at
different pH.14−16,32,33 While usage of H-REMD may lead to
enhanced sampling for specific systems, it does not alter the
fundamental nature (and inherent limitations) of the currently
available algorithms regarding the scaling properties. Constant-
pH simulation methods that are inherently limited to a small
number of sites are, ultimately, not able to address this
fundamental issue. In this regard, it is important to recall that a
constant-pH simulation is not really necessary for investigating
the effect of pH when only a small number of ionizable sites
groups are involved (e.g., less than 3 or 4) and that all of the
possible states can be enumerated explicitly. All of the effects
from changing the pH can be assessed rigorously by computing
the relative free energies between all of the relevant protonation
states. As long as all the relevant states can be enumerated and
treated via free energy perturbation (FEP), such an exhaustive
approach is viable. Constant-pH algorithms that are applicable to
only a small number of ionizable sites offer no specific advantage
over direct FEP calculations.
The true challenge facing a constant-pH simulation method

for bimolecular systems appears when the number of ionizable
sites becomes very large, for example, when simulating the pH
dependence of a viral particle,35 where a complete enumeration
of all possible states is completely infeasible. The only approach
that could be potentially scaled to a very large system is some
type of hybridMD−MCwith discrete states.10,36,37 However, the
algorithm must be significantly enhanced to circumvent the
configurational overlap problem in the presence of explicit
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solvent. A naive MC algorithm relying on discrete (instanta-
neous) protonation/deprotonation attempts in the presence of
explicit solvent fails because the coordinates of the surrounding
solvent atoms are kept fixed while the state of the ionizable site is
changed. The large energy variations essentially result in
complete rejection of all attempts to change protonation states.
What is needed is a scheme that would allow the solvent
configuration of the system to dynamically adapt to the new state,
at least partially. This occurs naturally if the coupling parameter λ
is progressively switched between the end states during the MD
trajectory. This is essentially the MC scheme with dynamical
state switching that was previously formulated by Harry
Stern.38,39 It consists of carrying out short nonequilibrium
molecular dynamics (neMD) switching trajectories to generate a
physically plausible configuration with an altered protonation
state, which is then subsequently accepted or rejected according
to aMetropolis Monte Carlo (MC) criterion.While a continuous
λ(t) evolving according to a pre-established time-dependent
schedule is also involved in the neMD trajectory, the outcome is a
randomwalk in terms of the discrete end state only, thus avoiding
the poor scaling properties of λ-dynamics because of the simple
linear increase in the computational cost relative to the number
of titratable sites. Consequently, the present hybrid neMD−MC
method is naturally able to treat systems of arbitrary size.
In this article, we formulate and implement a hybrid neMD−

MC method to carry out simulations under conditions of
constant pH. To ensure microscopic detailed balance arising
from the nonequilibrium switches, the atomic momenta are
altered according to the symmetric two-ends momentum
reversal prescription.39−41 To achieve higher efficiency, the
original neMD−MC scheme is separated into two steps,
reducing the need for generating a large number of unproductive
and costly nonequilibrium trajectories. In the first step, the
protonation state of a site is randomly attributed via a Metropolis
MC process on the basis of an intrinsic pKa; an attempted
nonequilibrium switch is generated only if this change in
protonation state is accepted. The simulation method is tested
with single amino acids in solution (Asp, Glu, and His) and is
then applied to turkey ovomucoid third domain and hen egg-
white lysozyme. The article is concluded with an outlook to
further expand the present algorithm.

II. THEORETICAL BACKGROUND

For the sake of simplicity, we consider here a solvated molecule
comprising a single preidentified ionizable site, as illustrated in
Figure 1. The formalism can be easily generalized to multiple
ionizable sites. It is assumed that, when the molecule is
unprotonated, the proton is transferred to a reference ionizable
group located far away in solution (i.e., the number of particles in
the system is the same for the two states). Let r represent all of
the coordinates within the system and Up(r), Uu(r), correspond
to the potential energy function for the protonated (p) and
unprotonated (u) systems, respectively. In principle, the free
energy difference ΔG
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ought to be directly related to the experimental pKa of the site in
the molecule. However, to match the experimental pKa value
with a MM force field, it is necessary to introduce an adjustable
offset constant C
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The use of an empirical offset constant C is necessary because the
MM potential energy function is not designed to account for a
number of critical factors, including the QM energy for binding a
proton to an ionizable group, the standard state of the solvated
proton, and effects associated with zero-point vibrations. A force
field-dependent offset constant must be ascribed to each type of
titratable site in a protein to calibrate the method. The value of
these offset constants depends on the details of the MM force
field. For each type of titratable site, an offset constant can be
determined via an explicit solvent alchemical FEP calculation on
a corresponding reference molecule. An amino acid dipeptide
typically provides a reasonably good reference system for
ionizable side chains (more details are provided in Section
II.3). Once this calibration has been carried out, the resulting
empirical offset constants are then assumed to be fully
transferable. In other words, it is assumed that they do not
vary with the sequence and conformation of the protein. The
assumption of transferable empirical offset constants is a feature
that is common to all MM treatments of ionizable groups in
proteins.9−11,13−17,20−27,32,33 This is also the reason why all MM
treatments of ionizable groups in proteins, rather than absolute
pKa values, always focus on the issue of pKa shifts relative to their
corresponding reference compounds.
For the subsequent developments we construct an alchemical

potential energy function U(r,λ) using the continuous coupling
parameter λ, which takes a value of 1 when the system is
protonated and a value of 0 when the system is unprotonated

λ λ λ= − + −U U C Ur r r( , ) ( ( ) ) (1 ) ( )p u (4)

Figure 1. An aspartic dipeptide with blocked ends solvated in bulk water
is used as an example of a molecule comprising an ionizable site. Within
the framework of constant-pH simulations, a preidentified ionizable site
is allowed to spontaneously protonate and deprotonate as a function of
time in response to the environment and the imposed pH. In practice,
the labile H atom (yellow sphere) is not annihilated in the unprotonated
state. It is a fully interacting particle in the protonated state, and it is
converted to a dummy noninteracting particle in the deprotonated state.
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The function U(r,λ), defined in terms of a continuous coupling
parameter λ, is equivalent to the alchemical potential function
commonly defined for FEP/MD calculations42 and λ-dynam-
ics.20−27

The probability of finding the ionizable group protonated (P1)
or unprotonated (P0) can then be expressed by the Henderson−
Hasselbalch equations

=
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respectively. To be consistent with the probability ratio P1/P0 =
10(pKa−pH) from the Henderson−Hasselbalch equations, we
construct an extended pH-dependent potential energy Ũ(r,λ),
accounting for the protonated and unprotonated state as

λ λ λ̃ = − + + −U U C k T Ur r r( , ) ( ( ) ln(10) pH) (1 ) ( )p B u

(7)

and the corresponding Hamiltonian

λ λ̃ = + ̃H K Ur p p r( , , ) ( ) ( , ) (8)

where p represent all of the momenta within the system. For the
sake of clarity, we will write x as a short-hand notation for (r,p) in
the following.
II.1. Constant-pH Simulation Algorithm. Our ultimate

goal is to design a constant-pH simulation propagation algorithm
(x,λ → x′,λ′) such that it generates the proper Boltzmann
equilibrium distribution for the system
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One possible avenue consists of generating a random walk in the
space of x and λ that satisfies microscopic detailed balance

ρ λ λ λ ρ λ λ λ→ ′ ′ = ′ ′ ′ ′ →T Tx x x x x x( , ) ( , , ) ( , ) ( , , )eq eq (10)

where λ → λ′ represents any transition between the two end
points (i.e., 0 → 1 or 1 → 0) and λ′ → λ represents the reverse
transition (i.e., 1 → 0 or 0 → 1). In practice, however, this is
difficult to implement because of the strong coupling due to the
large variations in electrostatic energy accompanying changes in
the protonation state (λ). To circumvent this problem, we adopt
a hybrid simulation method that combines the advantages of
Monte Carlo (MC) with the strengths of classical molecular
dynamics (MD). It consists of carrying out short nonequilibrium
MD (neMD) trajectories upon a change in the protonation state
of the site in order to generate a new configuration x′ that is
subsequently accepted or rejected via a Metropololis criterion.
During the neMD trajectory, the proposed change in the discrete
state variable λ is controlled externally while theMD propagation
allows the continuous dynamical degrees of freedom x to
dynamically adapt to the new state. This hybrid neMD−MC
scheme is essentially the constant-pH simulation method that
was initially elaborated by Harry Stern.38 The scheme is designed
to allow the system to evolve between the two states to generate
the proposed move (x,λ) → (x′,λ′). The hybrid neMD−MC
scheme is composed of a time-dependent nonequilibrium MD
switching process, followed by an MC step based on an
acceptance criteria. Formally, the transition probability T is

expressed as the product of the probability of a proposedmove Tp
and the probability to accept or reject the proposed move Ta

λ λ λ λ λ λ→ ′ ′ = → ′ ′ → ′ ′T T Tx x x x x x( , , ) ( , , ) ( , , )p a (11)

During the dynamical switching process, the parameter λ follows
a fixed time-dependent schedule over a time interval τ, whereas
the remaining degrees of freedom are propagated dynamically
according to the mixed-state potential energy function,
Ũ(r,λsw(t)) defined in eq 7. Here, the function λsw(t) given by
the linear form

λ λ λ λ
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= + ′ −
−
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t t
( ) ( )sw

1

(12)

represents the time-dependent continuous coupling parameter,
which is externally controlled to drive the system between the
two end points, λ and λ′, during a neMD switching trajectory
(note that λ can take the value 0 or 1 and λ′ can take the value 1 or
0). For example, see the first switch in the time interval τ between
t1 and t2 in Figure 2. The coupling parameter starts in the initial

state λ at time t1 and is gradually altered in a time-dependent
manner to reach the final state λ′ at time t2 = t1 + τ, where τ is the
length of the switch.
The time-dependent λsw(t) for the forward and backward

switching, λ → λ′ and λ′ → λ, must be consistent to guarantee
detailed balance, as previously noted by Stern.38 This is
automatically satisfied if λsw(t), for the sake of simplicity, is
chosen to be symmetric with respect to the two end states over
the interval τ. The linear form of eq 12 fulfills this condition.
When a deterministic (reversible symplectic) propagator and a
correct momentum reversal prescription are used,40,41,43 the
transition probability of the proposed move is inherently
symmetric

λ λ λ λ→ ′ ′ = ′ ′ →T Tx x x x( , , ) ( , , )p p (13)

and the acceptance or rejection probability is given by the
Metropolis criterion

→ ′ = β λ λ− ̃ ′ ′ − ̃T x x( ) min[1,e ]H Hx x
a

[ ( , ) ( , )]
(14)

By substitution, it can be shown readily that

Figure 2. Schematic representation of the constant-pH hybrid neMD−
MC simulation scheme. The red wiggly line represents the first stage of
the simulation. The blue wiggly dashed line represents the second stage
of the simulation. AMetropolis criterion is applied after the second stage
(open black circle). If it is accepted, then the next MD simulation will
start with the last configuration from the switching simulation;
otherwise, the switching simulation will be discarded, and the next
cycle of simulation will start with the last configuration from the MD
stage.
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Therefore, the Metropolis construct satisfies eq 10. It is also
possible to use a stochastic propagator for the neMD trajectory
and satisfy detailed balance by using a Metropolis acceptance
criterion based on the external work.41 The switching trajectory
when attempting a change in protonation state has some
analogies with the short TI calculations carried out to evaluate
the free energy difference associated with the change in
protonation state in the method proposed early on by Bürgi et
al.9 However, theMetropolis criterion applied to the discrete end
state in the present hybrid neMD−MC algorithm formally
resolve the issues arising from the poorly converged thermody-
namic integration and guarantees that an equilibrium Boltzmann
distribution will be achieved.
As illustrated in Figure 2, the constant-pH simulation scheme

with dynamical state switching comprises multiple rounds, each
of which is composed of two stages of MD simulation. The first
stage is simply a standard MD simulation where the system is
kept in a given protonation state λ (red line). The second stage is
a neMD switching simulation where the state of the system is
gradually switched from one to another (blue dashed line). At the
end of the second stage, a Metropolis MC criterion is applied to
determine if the switching will be accepted (open black circle). If
it is accepted, then the next MD simulation will start with the last
configuration from the switching simulation (red line again);
otherwise, the switching simulation will be discarded, and the
next round simulation will start with the last configuration from
the MD stage.
II.2. Two-Step Inherent pKa Algorithm. If the pH differs

markedly from the inherent pKa of an ionizable group, then the
probability of the protonated state is expected to be either very
close to 0 or 1. For example, if an aspartic residue is in an
environment at a high pH, then the side chain should be
essentially always unprotonated. As a consequence, almost all
attempts to protonate the side chain ought to be rejected.
Similarly, if an arginine residue is in an environment at a pH of 1,
then the side chain should be predominantly protonated. Almost
all attempts to deprotonate the side chain will be rejected. In such
situations, generating a large number of computationally
expensive neMD switching trajectories can become wasteful
and inefficient. It is possible, however, to redesign the algorithm
to take advantage of the information about the inherent pKa of
the site.
The idea is to separate the transition probability T into two

distinct steps

λ λ λ λ λ λ→ ′ ′ = → ′ → ′| → ′T T Tx x x x( , , ) ( ) ( )(i) (s)

(16)

where T(i) represents the transition probability for λ describing a
protonation/deprotonation process according to some inherent
pKa

(i) of the site and T(s) is the transition probability of an
attempted x→ x′ neMD switch, conditional on the transition λ→
λ′ taking place. The transition probability of the first step, T(i), is

constructed such that it obeys the following microscopic detailed
balance relation
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where π(i)(λ) is some arbitrarily assigned inherent equilibrium
probability. Assuming an inherent pKa

(i) for the site, the
equilibrium probability ratio for the first step is
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The first step does not involve any changes in the atomic
coordinates of the system; the process affects only the value of
the ionization state variable λ. Complex changes in the atomic
coordinates of the system are absorbed into the second step. To
make progress, it is useful to rewrite the transition probabilityT(s)

as the product of the probability of a proposed move Tp
(s) and the

probability to accept or reject the proposed move Ta
(s)
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Imposing that the two-step scheme satisfies the global detailed
balance relation
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and assuming that the proposed move in x are inherently
symmetric and deterministic
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we obtain the relation
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where the modified Hamiltonian H̃*(x,λ), defined as

λ λ λ

λ

̃ * = + + −

− −

H K U U

C k T K

x p r r( , ) ( ) ( ) (1 ) ( )

( ln(10)p )

p u

B a
(i)

(23)

is shifted by pKa
(i). In the two-step neMD−MC scheme, the

functional form of the shifted Metropolis acceptance probability
Ta
(s), is

λ λ′ → | ′ → = β λ λ− ̃* ′ ′ − ̃*T x x( ) min[1, e ]H Hx x
a
(s) [ ( , ) ( , )]

(24)
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With respect to the first step, a number of methods could be used
to generate the random walk in λ. As this is a simple two-state
system, one might even generate the transition λ → λ′ directly
from the equilibrium probabilities. Interestingly, it can be shown
that a simple Metropolis MC acceptance probability

λ λ→ ′ = λ λ′− −T ( ) min[1,10 ]K(i) ( )(p pH)a
(i)

(25)

provides the most effective method to simulate the first step (see
Appendix I).
The overall efficiency of the two-step scheme reaches its

highest level when the acceptance probability is equivalent for
the protonation and deprotonation processes

λ λ λ λ⟨ → ′ ′ ⟩ = ⟨ ′ ′ → ⟩λ λ′T Tx x x x( , , ) ( , , )(s) (s)
(26)

where ⟨...⟩λ denotes an average over all possible transition paths,
given the initial configuration is sampled from Boltzmann
distribution eq 9 with λ. Using the actual pKa value of the site (if it
were known) would always result in the highest efficiency from
an importance sampling point of view. This is demonstrated in
the following derivation.

λ λ
λ λ
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0
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(27)

where the third equation results from the definition of C, eq 3.
In practice, the actual pKa value of the site is not known, but it

should be possible to choose some reasonable value capturing
the dominant effects. For example, one could use the pKa of the
reference system pKa

(ref). In this case, the overall efficiency will be
close to optimal if the pKa of the site is shifted only by a small
amount. Alternatively, it is possible to adaptively adjust the value
of pKa

(i) during the simulation based on an earlier estimate (see
Discussion). Ultimately, the two-step scheme is rigorously valid,
although a well-chosen value for pKa

(i) can greatly increase the
overall efficiency of the simulation.
For systems with multiple ionizable sites, the total cost of the

constant-pH neMD−MC simulation scales linearly with the total
number of sites if one attempts to change the ionization state of
one site at a time. However, it might be sometimes advantageous
to attempt changing the ionization state of multiple sites
simultaneously. For example, when several titratable sites are in
close proximity, attempts to change the ionization state of a
single site at a time may be inefficient. In this case, attempts to
protonate one site while deprotonating another site may be more
advantageous. It is possible to include such two-sites processes in
the MC move set to reach optimal efficiency.
II.3. Empirical Offset Constants. In practice, there are two

stages for implementing a constant-pH hybrid simulation
method. In the first stage, the free energyΔGaa of the protonated
state relative to the unprotonated state, defined in eq 1, must be
calculated for all the ionizable amino acids (aa) using alchemical
FEP simulations with explicit solvent. Then, in a second stage,
the empirical offset constant Caa

≡ + ΔC k T K Gln(10)paa B aaa aa (28)

must be used to shift the extended pH-dependent MM potential
energy

λ λ

λ

̃ = − +

+ −

U U C k T

U

r r

r

( , ) ( ( ) ln(10)pH)

(1 ) ( )

p aa B

u (29)

The latter MM potential energy Ũ(r,λ) must then be used to
carry out the constant-pH hybrid neMD−MC simulations of the
protein with explicit solvent. In practice, the proton is treated as a
dummy noninteracting particle for the unprotonated state
(denoted H0 in the following). That is, the dummy H atom is
never annihilated, but its interaction with the environment is
turned off (Figure 1). In this alchemical process, a number of
internal MM covalent terms (bonds, angles, dihedrals) are kept
to avoid the problem of a wandering noninteracting free proton
in the simulation;44−46 their influence cancels out in the
treatment of the standard state.
The actual value of the empirical offset constant Caa depends

on the simulation protocol used to carry out the alchemical FEP
calculation yielding the ΔGaa. One possibility is to treat only the
ionizable entity in the explicit solvent simulation box. This has
the consequence that charge neutrality is not maintained during
the protonation/deprotonation process. In this case, the
empirical offset constant Caa must be based on ΔGaa, also
calculated from an alchemical FEP simulation with just the amino
acid in the explicit solvent box, with no constraint on charge
neutrality. Alternatively, charge neutrality could be strictly
enforced during all of the protonation/deprotonation processes
by including some charge-canceling counterpart in the
simulation. Maintaining charge neutrality is a useful way to
avoid some important simulation artifacts associated with the
free energy to insert or remove net charges in the system. With
Ewald lattice summation and tinfoil conducting boundary
conditions, such charging free energies necessarily include a
spurious shift due to the Galvani potential of the bulk water phase
in the finite simulation system.47 The magnitude of such artifact
depends on the details of the simulation system, such as the
volume fraction occupied by the solvent.47 While the issue may
be safely ignored in the case of a solvated protein surrounded by a
large number of water molecules, it can become much more
severe when the volume fraction occupied by the solvent is much
less than 85% of the entire system, a condition often encountered
with simulation of membrane proteins.
In the present study, the alchemical protocol that we use

couples the following reactions

− → −

→

− − +

−

protein (A )(H ) protein (A )(H )

H O Cl (2H )

0

2
0

(30)

for the protonation of acidic residues (Asp, Glu, Tyr, COO-
terminal) and

− → −

→

+

+

protein B(H ) protein B(H )

K (2H ) H O

0

0
2 (31)

for the protonation of basic residues (His, Lys, Arg, N-terminal).
Here, H0 represents the dummy noninteracting hydrogen. In
these alchemical transformations, the oxygen atom of the water
molecule is converted into K+ or a Cl− ion while the two
hydrogen atoms are transformed into dummy particles. It is
worth noting that charge neutrality could also be maintained the
simultaneous creation or destruction of a pair of opposite charges
via
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− → −

→

− − +

+

protein (A )(H ) protein (A )(H )

K (2H ) H O

0

0
2 (32)

for the protonation of acidic residues and

− → −

→

+

−

protein (B)(H ) protein (B)(H )

H O Cl (2H )

0

2
0

(33)

for the protonation of basic residues. However, this second
protocol is less advantageous because it requires the creation of
opposite charges during the alchemical switch process, yielding
large energy differences that affect the overall Metropolis
acceptance probability. The first protocol based on eqs 30 and
31 yields more efficient hybridMD−MC simulations because the
two charging free energies appear in opposite directions of the
alchemical processes.

III. COMPUTATIONAL DETAILS
Three dipeptides were simulated with the hybrid algorithm:
aspartic acid, glutamic acid, and histidine. In addition, two
protein systems were simulated with the hybrid algorithm: the
turkey ovomucoid third domain (OMTKY3, PDB ID 1OMU)
and hen egg-white lysozyme (HEWL, PDB ID 1AKI). The
amino acid dipeptides have acetylated N-terminus and N-
methylamide C-terminus, whereas OMTKY3 and HEWL have a
standard charged N- and C-terminus. All systems were simulated
with explicit solvent with periodic boundary conditions. The
CHARMM27 force field48 with the TIP3 water potential49 was
used to model the microscopic interactions. The amino acid
dipeptides were solvated in a 24 Å cubic box. OMTKY3 and
HEWL were solvated in a 46 and 60 Å cubic boxes, respectively.
To prevent any drift, the center-of-mass of the protein (or
dipeptide) was weakly restrained to the center of the periodic box
with a harmonic potential. Particle-mesh Ewald (PME)
summation50 was used to treat the electrostatic interactions,
with a real-space cutoff set to 14 Å and grid spacing smaller than
0.5 Å. The LJ interactions were smoothly truncated with a
switching function from 10 to 12 Å. The equations of motion
were integrated with a 2 fs time step, and SHAKE51 was used to
constrain covalent bonds involving hydrogen atoms. The
program CHARMM, version c36b1, was used to carry out all
of the MD simulations.52

Special patches were created to handle the switch between the
protonated and unprotonated states of the amino acids. Those
allow alterations to the protein-structure-file (PSF) that
represent the atomic model underlying a given simulated
system.52 In the case of aspartic and glutamic acids, two
dummy hydrogen are introduced to allow the two carboxylate
oxygen atoms to be protonated. In the unprotonated state, the
acidic group has two dummy hydrogens, one on each carboxylate
oxygen. When the protonated state is generated, one of the two
dummy hydrogen particles is alchemically transformed into a
fully interacting hydrogen atom. In the case of histidine, both
nitrogen atoms δ and ϵ can be protonated. To determine the
offset constant ΔGaa of the ionizable sites, FEP/MD simulations
of 10 ns were carried out for the dipeptide systems. WHAM was
used to calculate the free energy difference between the two
ionizable states.53 The FEP simulation provides the reference
values Caa for aspartic acid, glutamic acid, and histidine that are
then used for the OMTKY3 and HEWL simulations.
To set charge neutrality and maintain this neutrality during

changes in ionization states, a number of special counterions able

to alchemically interconvert into a water molecule were included
in the simulation system. Similar procedures have been used
previously in free energy perturbation (FEP) calculations
involving charged species.47,54 The number of these counter-
ion−water “molecules” is adjusted to correspond to the number
of ionizable sites. These counterion−water molecules were
harmonically restrained in the bulk solvent away from the protein
to ensure that this alchemical transformation occurs in the bulk
region and never in close contact to the protein. Their restrained
positions were generated by a script that sought to maximize
these distances as much as possible. In the dipeptide systems, the
distance of the counterion−water molecule to the ionizable site is
13 Å. In the OMTKY3 system, five counterion−water molecules
were included; the shortest distance among them, and with
ionizable protein sites, is 16.0 Å. In the HEWL system, 16
counterion−water molecules were included; the shortest
distance among them, and with ionizable protein sites, is 17.5 Å.
In-house Python scripts were used for controlling the hybrid

neMD−MC simulation scheme. In the hybrid algorithm, the
equilibrium MD simulations are carried out in the NPT
ensemble at a temperature of 300 K and 1 atm pressure, whereas
the neMD switching simulations are carried out in the NVE
ensemble with no constant temperature or pressure control. The
PERT command of CHARMM is used for switching the
Hamiltonian.52 For peptides and proteins with multiple ionizable
sites, a maximum of one protonation site is perturbed per cycle.
For each cycle, one site is randomly picked. One may also assign
weight for each site so that important sites can be perturbedmore
often. The expressionT(i) in eq 25 is used to decide if a switch will
be performed for this site. If it is not, then another site will be
picked, until one acceptance is obtained or all sites have been
visited. The neMD−MC switch is skipped for this cycle if none of
the transition trials are accepted. After the neMD switching
trajectory, the energy difference is calculated. The expression T(s)

in eq 24 is used to accept or reject the new proposed state. If the
state is accepted, then the new conformation and velocities are
kept; otherwise, the configuration from the neMD switching
simulation is discarded, and the simulation is continued from the
position and momenta at the end of the MD stage. After the
neMD−MC step, the configuration and state of the system is
recorded. For the neMD switches, the momenta of all particles in
the system are treated according to a symmetric two-ends
momentum reversal prescription.39,40 Accordingly, momenta
have a probability of 0.5 to be kept unchanged and a probability
of 0.5 to be reversed both before and after the switch. This
prescription can greatly reduce the probability of different
regions of configurational space being isolated from one
another.40 Protonation states were randomly picked for each
residue to minimize the impact of the initial state to initiate the
system. A first round of MD and neMDwas then carried out, and
the first generated configuration was accepted unconditionally.
During the hybrid neMD−MC simulation, a counterion−

water molecule is randomly picked together with the ionizable
state of a protein site for subsequent perturbation into K+ or Cl−

ions according to eq 30 and eq 31. During the protonation
process of the histidine, a K−H2O is perturbed into neutral H2O
according to eq 31. In case the system contains no K−H2O, a
neutral H2O is perturbed into Cl−H2O according to eq 33.
Similarly, during the deprotonation process of aspartic acid or
glutamate, a Cl−H2O is perturbed into neutral H2O according to
eq 30. In case the system contains no Cl−H2O, a neutral H2O is
perturbed into K−H2O according to eq 32. For the three
dipeptide systems, the counterion−water molecule and the
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ionizable site are coupled via eqs 32 and 33. In OMTKY3, the
ionization of the five acidic residues (Asp7, Asp27, Glu10, Glu19,
Glu43) is coupled to a counterion−water molecule via eq 30
(there are no basic sites). In HEWL, the ionization of nine acidic
residues (Glu7, Asp18, Glu35, Asp48, Asp52, Asp66, Asp87,
Asp101, and Asp119) is coupled to a counterion−water molecule
via eq 30, and the ionization of His15 is coupled to a counterion−
water molecule via eq 31.
In the following analysis, we report the net computational cost

of the hybrid simulation by adding the number of time steps used
for both the equilibrium MD and neMD simulations. For the
three dipeptide systems, a total of 15 hybrid neMD−MC
simulations was generated to calculate the statistical uncertainty
of the results. The neMD switching trajectories were set to 10 ps,
whereas the equilibrium MD trajectories were set to a very short
length of only 0.2 ps. Such short equilibrium trajectories were
used to reveal any possible sampling issues arising from the
neMD switches. The total length of the hybrid simulations,
calculated by accounting for the equilibrium MD and the neMD
switching trajectory of each cycle, is 40 ns. In the case of the
aspartic acid dipeptide, a scan over nine pH values was also
carried out (with 0.2 ps of equilibrium MD and 10 ps of neMD
for the switching per cycle). Again, a total of 15 trajectories was
generated to calculate the statistical uncertainty of the results. For
the OMTKY3 system, a total of seven sets of hybrid simulations
with different parameters was carried out (each was carried out as
30 separate simulations with randomized initial conditions to
reduce the computational time). Simulations 1, 5, and 6
comprised 15 000 cycles, and simulations 2, 3, 4, and 7
comprised 10 000 cycles. Each cycle of hybrid simulation
included 10 ps of equilibrium MD and 20 ps of neMD for the
switching. For simulation 7, the length of the neMD trajectory
was 50 ps. Simulation 7 is the longest trajectory, for a total length
of 600 ns (including equilibrium and switching contributions).
Simulations 1, 2, 5, 6, and 7 were carried out at pH of 4, and
simulations 3 and 4 were carried out at pH of 3. For simulation 1,
3, 5, and 7, the value of pKa

(i) was set to the experimental pKa. For
simulations 2, 4, and 6, the value of pKa

(i) was set to pKa
(ref). To

test if this affects convergence, the proton could be added to a
single oxygen of the carboxylate group only in simulations 5 and
6.
A single set of hybrid neMD−MC simulation was generated

for the HEWL system (separated into 30 simulations with
randomized initial conditions to reduce the computational time).
Each cycle of hybrid simulation included 10 ps of equilibrium
MD and 50 ps of neMD for the switching. The total
computational cost of the hybrid simulation is 1.1 μs, including
the equilibrium and switching contributions, corresponding to
18 838 cycles of neMD−MC.

IV. RESULTS AND DISCUSSION

IV.1. Free Energy Difference Calculations. All of the
calibration free energy difference ΔGaa and constant Caa values
for the different reactions used in the present hybrid simulations
are given in Table 1 (the dummy H0 are not explicitly included
for the sake of clarity). The upper half presents reactions for
which charge neutrality are not maintained, whereas the lower
half presents those for which charge neutrality is maintained. The
difference comes from the ΔG of 81.2 kcal/mol for perturbing a
K+ ion into a neutral H2O molecule, and 69.2 kcal/mol for
perturbing a Cl− ion into a neutral H2Omolecule. The quantities
ΔGaa and Caa for the second protocol based on eqs 32 and 33 can

also be calculated in a similar manner (values not shown in Table
1).

IV.2. Validation of the Hybrid neMD−MC Scheme. For
each test case, 15 independent hybrid simulations were generated
to estimate the average and error. One configuration and state are
recorded per round after the neMD−MC switch. The pKa of
each protonation site is calculated as

= +
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥K

p

p
p pH loga

1

0 (34)

where p1 and p0 are the probability of the protonated and
deprotonated states being extracted from the simulation,
respectively. To further validate the neMD−MC algorithm, the
conditional density for a given λ was examined to see if it is
internally consistent based on the Crooks identity.55 The latter
depicts the relationship of the work evaluated from forward and
backward transitions.55 Here, the forward (f) transition is defined
as the protonation process, λ = 0 → 1, and the backward (b)
transition is defined as the deprotonation process, λ = 1 → 0.
When the initial configuration is sampled from an equilibrated
ensemble, the Crooks equation states that

+
−

= − Δ −P W
P W

( )
( )

e G W k Tf

b

( )/ B

(35)

where Pf is the forward work probability distribution, Pb is the
backward work probability distribution, and W is the external
input work for the switch. W is equivalent to ΔH if a
deterministic switch is used.41 Equation 35 can be transformed
into

+
−

= − Δ
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Let us define

=
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f

b (37)

Then, eq 36 becomes

= − ΔQ W W G( ) (38)

We fitted Q(W) andW observed from simulations to eq 38 and
calculated the coefficient of determination (R2). If the
distribution of starting configuration is the equilibrated
ensemble, then R2 should be close to 1. Therefore, this verifies
that the conditional density for a given λ is correct by examining
R2.

Table 1. Free Energy Difference ΔGaa and Constant Caa for
Different Reactionsa

reaction ΔGaa (kcal/mol) Caa (kcal/mol)

Asp− → Asp−(H+) 45.5 40.0
Glu− → Glu−(H+) 49.0 43.0
His → His(HδN

+ ) −4.2 −12.4
His → His(HϵN

+ ) −18.8 −27.0
Asp−+ H2O → Asp−(H+) + Cl− −23.7 −29.2
Glu−+ H2O → Glu−(H+) + Cl− −20.2 −26.2
His + K+ → His(HδN

+ ) + H2O 77.0 68.8
His + K+ → His(HϵN

+ ) + H2O 62.4 54.2
aDummy H0 particles are left out for the sake of clarity.
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IV.3. Isolated Dipeptides. The hybrid neMD−MC scheme
was applied to isolated dipeptides in explicit water. The pKa is
calculated using eq 34. For all three dipeptides, the error between
the experimental and calculated pKa is less than 0.3. The
evolution of the calculated pKa and its standard deviation for an
aspartic acid residue is plotted in Figure 3. The evolution for

glutamate acid and histidine is similar (not shown). The results
show that the calculated pKa converges toward the experimental
pKa. A scan over nine pH values was also carried out for an
aspartic acid dipeptide in water. The results are shown in Figure
4. The percentage of protonated states calculated for pH varying
from 2 to 6 agrees well with the theoretical curve.

The distribution of the energy difference of all switches for the
aspartic acid dipeptide is plotted in Figure 5a. The relation
between Q(W) andW is plotted in Figure 5b. The coefficient of
determination when fittingQ(W) andW to eq 38 is 0.99. On the
basis of this result, it is safe to conclude that the Crooks equation
is satisfied here and that the initial configuration is drawn from an

equilibrated ensemble. The average acceptance ratio using
different switching time for aspartic acid dipeptide is plotted in
Figure 6. As expected, it is observed that the acceptance ratio

increases steadily when using longer switching time. Longer
switching times increase the computational cost, but this is
mitigated by a larger acceptance probability. In principle, it
should be possible to optimize the switching time to maximize
the efficiency of the algorithm.

IV.4. Multisite Systems. The present constant-pH hybrid
neMD−MC scheme was applied to multisites protein systems

Figure 3. Evolution of the calculated pKa for the aspartic dipeptide in
water. The flat dashed line is the experimental pKa of the system. The
black line is calculated from the time average of all 15 trajectories, and
the error bars show the standard deviation. Each round of hybrid
neMD−MC simulation uses 0.2 ps for the equilibriumMD and 10 ps for
the neMD switch. The time axis reflects the total computational cost of
the hybrid simulation by including the number of time steps used for the
equilibrium MD and for the neMD simulation.

Figure 4. pH scan for the aspartic dipeptide in water. Constant-pH
simulations are carried out at pH values of 2, 3, 3.5, 3.75, 4, 4.25, 4.5, 5,
and 6. Each point is calculated from the time average of 15 trajectories to
present the percentage of protonated states for that pH value. The solid
curve presents the theoretical values.

Figure 5. (a) Distribution of the energy difference for the protonation
process (black) and deprotonation process (red) for the aspartic acid
dipeptide. The sign is flipped for the deprotonation process. The
distribution is plotted with dots using 60 000 data points. The solid
curve presents the fitted distribution using the Nadaraya−Watson
kernel regression estimate with bandwidth of 0.5. (b) The relationship
between of Q(W) and W is displayed. Q(W) is defined as eq 38. The
dots represent the simulation results, and the solid line presents the
theoretical line. The coefficient of determination is 0.99 when fitting the
data to the theoretical line. The dots represent all observable Q(W); for
other W, either Pf(+W) or Pb(−W) is zero.

Figure 6. Acceptance ratio vs switching time for isolated aspartic acid
residue. Switching time varies from 0.5 to 50 ps. Each point is calculated
from the average of five trajectories, and the error bars show the standard
deviation.
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with explicit solvent. The calculated pKa’s for OMTKY3 are
shown in Table 2. The calculated pKa’s for HEWL are shown in
Table 3. For OMTKY3, the RMSD error of calculated pKa from
experimental value can get to as low as 0.67 pH units (simulation
7 in Table 2) with a proper choice of the parameters of the
algorithm. The error is significantly smaller than previous results
from λ-dynamics20 and is also smaller than the error assuming the
reference pKa. For HEWL, the RMSD error of calculated pKa’s
compared to experiment is 0.93 (Table 3). These results match
the best performance from other existing methods.9−11,20,21,56

The average acceptance ratio for each residue in the hybrid
simulations of OMTKY3 is shown in Table 4. For simulation 6 in
Table 2, the average acceptance ratio of Glu19 for either
protonation or deprotonation process is calculated. Of around

2500 trials to protonate the Glu19, only 2.1% are accepted,
whereas 10% are accepted of around 500 trials to unprotonated
it. This reveals the imbalance of the acceptance ratio between
protonation and deprotonation processes. Simulation 5 in Table
2 is carried out in the attempt to reduce such imbalance. It uses
the exact same settings as those in simulation 6 except that pKa

(i)

is set as the experimental value, 3.2. Roughly 8% of 1000
protonation trials and 4% of 2000 deprotonation trials are
accepted. The total number of successful transitions increases
1.6-fold compared with those for simulation 6. This provides a
good example of how the overall efficiency of the algorithm can
be increased by the choice of the inherent pKa

(i). The average
acceptance ratio for each protonation site is calculated for
simulation 1 in Table 2; the acceptance ratio can get as high as
10% for Glu10 or as low as 0.8% for Asp27. Especially for Asp27,
of over 3000 attempted switches, less than 25 are accepted. Such
a low acceptance probability is clearly a source of inefficiency.
The calculated pKa values converge much faster for Glu10 than
for Asp27. The low acceptance ratio for Asp27 is also part of the
reason that the calculated pKa for it is not accurate.
In general, the total length needed to converge the hybrid

simulation depends on the acceptance ratio of the residue with
highest energy barrier opposing a change in the ionization state.
Increasing the length of the neMD switching trajectory could
help to increase the average acceptance ratio. However, it is not
always desirable to use longer neMD switches for all sites. The

Table 2. Simulation Results for OMTKY3a

simulationb Asp7 Asp27 Glu10 Glu19 Glu43 errorc

1 3.5 (0.8)d 3.6 (1.3) 4.2 (0.1) 3.6 (0.4) 4.4 (−0.4) 0.73
2 3.5 (0.8) 4.3 (2.0) 4.2 (0.1) 3.5 (0.3) 4.2 (−0.6) 1.01
3 3.1 (0.4) 4.0 (1.7) 3.8 (−0.3) 3.4 (0.2) 4.7 (−0.1) 0.80
4 3.2 (0.5) 5.5 (3.2) 4.0 (−0.1) 3.4 (0.2) 4.1 (−0.7) 1.49
5 3.7 (1.0) 4.4 (2.1) 4.0 (−0.1) 3.5 (0.3) 4.4 (−0.4) 1.06
6 3.6 (0.9) 4.6 (2.3) 4.1 (0.0) 3.7 (0.5) 4.5 (−0.3) 1.13
7 3.4(0.7) 3.5 (1.2) 4.0 (−0.1) 3.6 (0.4) 4.4 (−0.4) 0.67
pKa

(exp) 2.7 2.3 4.1 3.2 4.8
pKa

(ref) 4.0 (1.3) 4.0 (1.7) 4.4 (0.3) 4.4 (1.2) 4.4 (−0.4) 1.12
aExperimental values from Schaller and Robertson.57 The solution contains 10 mM KCl. bSeven sets of simulations with different parameters:
simulations 1, 5, and 6 comprised 15 000 cycles, and simulations 2, 3, 4, and 7 comprised 10 000 cycles; each cycle consisted of 10 ps MD simulation
with 20 ps neMD switching simulation (except for simulation 7, for which the switching length is 50 ps); accordingly, the longest trajectory,
simulation 7, has a total length of 600 ns. Simulations 1, 2, 5, 6, and 7 were carried out at pH 4, and simulations 3 and 4 were carried out at pH 3; for
simulations 1, 3, 5, and 7, pKa

(i) was set to the experimental pKa; for simulations 2, 4, and 6, pKa
(i) was set to pKa

(ref). The proton could be added to a
single oxygen only in simulations 5 and 6. cThe number in the parentheses shows the deviation from experimental value. dRoot-mean-square
deviation (RMSD) error relative to the experimental values.

Table 3. Simulation Results for HEWL

experimenta simulationb error trial accepted %

Glu7 2.85 2.86 0.01 2215 273 12.3
His15 5.36 3.85 1.51 4024 160 4.0
Asp18 2.66 2.74 0.08 1140 45 3.9
Glu35 6.20 3.98 2.22 641 29 4.5
Asp48 1.60 1.41 0.19 135 8 5.9
Asp52 3.68 3.99 0.31 3312 39 1.2
Asp66 0.90 0.83 0.07 39 2 5.1
Asp87 2.07 3.03 0.96 1276 126 9.9
Asp101 4.09 3.57 0.52 3468 111 3.2
Asp119 3.20 3.06 0.14 2588 134 5.2
Average 0.93c 1884d 93 5.5

aExperimental results from Bartik et al.58 bExperimental pKa is used as pKa
(i). cRMSD error from experimental value. dEach cycle of simulation

consisted of 10 ps MD simulation with 50 ps neMD switching simulation. The trajectory has a total of 18 838 rounds of simulation. The total length
is 1.1 μs.

Table 4. Acceptance Ratio for OMTKY3

simulation Asp7 Asp27 Glu10 Glu19 Glu43 average

1 5.0 0.8 10.6 3.8 7.2 5.4
2 6.4 1.1 11.2 2.7 9.5 5.6
3 5.5 0.5 7.4 3.9 8.7 4.0
4 4.4 0.5 10.5 2.7 7.6 4.6
5 10.2 1.6 10.9 5.3 10.3 6.5
6 8.7 1.3 8.9 3.3 13.3 6.5
7 8.7 3.2 20.3 11.1 17.1 12.0
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data from the hybrid simulation 7 of OMTKY3 in Table 2 was
carried out to demonstrate this observation. The simulation uses
exactly the same settings as those for hybrid simulation 1 except
that neMD switching trajectories of 50 ps were used. As a result,
the average acceptance ratio is increased by a factor of 3 for
Asp27, a factor less than 2 for Glu10, and a factor less than 2.5
overall. Considering that the switching length is increased by a
factor of 2.5, the overall efficiency is actually lower. However, this
does not mean that the length of switch is an irrelevant
parameter. Empirically, we find that it is preferable to choose a
customized length for each site so that the average acceptance
probability is close to about 10%. In a follow-up simulation,
neMD switching trajectories of 50 ps were used for Asp7 and
Glu19, 30 ps for Asp27, and 20 ps for Glu10 and Glu43. The
average acceptance ratio versus switching time increased
compared to both simulations 1 and 7 in Table 2 (results not
shown).
In practice, it may be difficult to pick the best inherent value

pKa
(i) or switching time for each residue. In the absence of

additional information, the best choice is to use the reference pKa
and a fixed switching length in the early stage of the simulation.
The results can then be used to adjust the parameters before
pursuing the simulation further. This general idea could be
developed into an adaptive version of the algorithm that could,
on-the-fly, automatically adjust the pKa

(i) and the switching
length. This adaptive program would adjust parameters periodi-
cally, but at a low frequency, to keep the average acceptance ratio
around 10% for each site and for either process. Finally, we would
like to emphasize that these simulation parameters affect only the
efficiency of the algorithm, but they do not alter the expected
outcome of the constant-pH simulations.

V. SUMMARY
A new computational method was developed to carry out explicit
solvent simulations of complex molecular systems under
conditions of constant pH. Preidentified ionizable sites are
allowed to spontaneously protonate and deprotonate as a
function of time in response to the environment and the imposed
pH. To generate physically plausible configurations with altered
protonation states that are subsequently accepted or rejected
according to a Metropolis Monte Carlo (MC) criterion, the
method consists of carrying out short nonequilibrium molecular
dynamics (neMD) switching trajectories. To achieve higher
efficiency, the random protonation/deprotonation processes are
separated into two steps, reducing the need for generating a large
number of unproductive and costly nonequilibrium trajectories.
In the first step, the protonation state of a site is randomly
attributed via a Metropolis MC process on the basis of an
intrinsic pKa value; a nonequilibrium switch is generated only
when this change in protonation state is accepted. This hybrid
two-step inherent pKa neMD−MC simulation method was
illustrated with application to turkey ovomucoid third domain
and hen egg-white lysozyme. The illustrative results demonstrate
that the present method is practical and able to treat multisites of
proteins with explicit solvent. While biological systems were used
here as a primary motivation, the present method offers a general
framework to simulate the effect of pH in a wide range of
nonbiological molecular systems and materials.
Charge neutrality of the simulated system is a feature of

constant-pH simulation that deserves some special attention. In
practice, it is possible to carry out constant-pH simulations
without compensating for the change in total charge in the
system during the protonation/deprotonation events. With

Ewald lattice sum and tinfoil boundary conditions, the total net
charge is always accompanied by a uniform canceling back-
ground charge, which makes the simulation cell of the periodic
system neutral.47 However, because the spatial average over the
entire simulation box is constrained to be exactly zero by the
tinfoil boundary conditions, the Galvani potential of the bulk
water phase floats with respect to the standard reference vacuum
potential.47 This phenomenon can give rise to a spurious shift in
the free energy of charged moieties that is proportional to the
volume fraction of the solvent in the simulation box, which would
affect the apparent pKa’s of the sites attached to a solvated
protein. This issue can be avoided by keeping the overall charge
of the system neutral during the protonation/deprotonation
events by introducing counter-reactions involving the trans-
formation of an ion into a water molecules. However, the
fluctuations in the energy become larger due to the counter-
reactions, which decreases the acceptance probability and the
efficiency of the algorithm. It is possible to compensate by
adjusting the length of the neMD switching trajectories to restore
the efficiency of the method (Figure 6).
Because the sampling time is expected to grow linearly with the

number of titratable sites, a fundamental advantage of the present
method is its natural ability to scale to extremely large systems. A
number of enhancements of the method will be considered in the
near future. For example, while the algorithm considered only
independent protonation and deprotonation attempts in the
applications presented here, it is possible that including
correlated attempts would be useful, particularly when ionizable
sites are strongly coupled. For example, transferring the proton
from one site to another when several ionizable sites are in close
proximity from one another may yield a higher acceptance
probability and increase the overall efficiency of the algorithm.
Such correlated attempts could be easily included in the MC
move set on the basis of distance with no extra computational
cost. Another feature of interest will be to enable a Hamiltonian
replica-exchange treatment with multiple pH values to expand
the scope of the method.

■ APPENDIX

Appendix: Relaxation Time Analysis for the Two-Step
Scheme
Let us assume that the ratio of the two states in eq 18 is r

π λ
π λ

′ = r
( )

( )

(i)

(i) (39)

with r > 1, and average acceptance T(s) for both protonation and
deprotonation process is p

λ λ′ → | ′ → =T px x( )(s)
(40)

The total transition matrix is

=
−

−

⎛

⎝
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p p

p
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p
r
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The eigenvalue for this matrix is λ1 = 1 and λ2 = (r − p − rp)/r.
Therefore, the relaxing time is
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1

( 1)
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(42)

For example, if the two states are roughly equiprobable, r≈ 1 and
trelax ≈ p/2. Alternatively, instead of using a Metropolis criterion
to pick the next protonation state λ, one could pick λwith correct
probability, regardless of the current protonation state

λ π

λ π

= =

= =

P
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( 0) (0)

( 1) (1)
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(i)
(43)

In this case, the transition matrix is

′ =

−
+ +

+
−
+
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1 (44)

The eigenvalue for this matrix is λ1 = 1 and λ2 = 1 − p, and the
relaxing time is

′ =t
p
1

relax
(45)

Because the relaxation time here is always larger than that of the
previous scheme, picking the next round’s protonation state
using the Metropolis criterion is expected to be more efficient.
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