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Abstract

Knowledge of an organism’s fitness for survival is important for a complete understand-

ing of microbial genetics and effective drug design. Current essential gene databases

provide only binary essentiality data from genome-wide experiments. We therefore de-

veloped a new database that Integrates quantitative Fitness Information for Microbial

genes (IFIM). The IFIM database currently contains data from 16 experiments and 2186

theoretical predictions. The highly significant correlation between the experiment-

derived fitness data and our computational simulations demonstrated that the computer-

generated predictions were often as reliable as the experimental data. The data in IFIM

can be accessed easily, and the interface allows users to browse through the gene fitness

information that it contains. IFIM is the first resource that allows easy access to fitness

data of microbial genes. We believe this database will contribute to a better understand-

ing of microbial genetics and will be useful in designing drugs to resist microbial patho-

gens, especially when experimental data are unavailable.

Database URL: http://cefg.uestc.edu.cn/ifim/ or http://cefg.cn/ifim/

Introduction

Essential genes are genes that are considered to be ‘essen-

tial’ for the survival of an organism (1, 2). The genome-

wide identification of essential genes has been performed

by single-gene knockout (3, 4), transposon mutagenesis

(5, 6) and RNA interference (7). Because the experimental

techniques are challenging and time-consuming, computa-

tional methods offer an appealing alternative for predicting

essential genes without the need for expensive and difficult

screening.

Based on the hypothesis that essential genes are persist-

ent during the long evolutionary process, we recently
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developed a new prediction tool (Geptop) that offers gene

essentiality annotations for bacterial genomes (8) (http://

cefg.uestc.edu.cn/geptop/). Although the Geptop method

uses a training process that is similar to a previously re-

ported algorithm (9), it differs in that bacterial essential

genes are predicted using only evolutionary features of the

genomes, which significantly improved its performance

compared with other existing methods. Most of the cross-

organism predictions yielded AUC (area under the receiver

operating characteristic curve) scores over 0.8, especially

0.98 for the profiling of the Escherichia coli chromosome

data set (http://www.shigen.nig.ac.jp/ecoli/pec/). The

Geptop tool can effectively predict essential genes in every

sequenced bacterial genome, and it has been estimated

that most of these predictions will yield AUC scores that

exceed 0.7.

Essential bacterial gene products have often proved to

be attractive drug targets in the development of antibiotics

(10, 11). The study of on an organism’s fitness for survival

is an important step towards understanding microbial gen-

etics. Previous studies have reported a negative correlation

between essential function and the rate of coding sequence

evolution (12–14). Genome-wide gene fitness data have

been found to be more useful than binary data of essential

or nonessential genes in some studies; for example, for

inferring gene regulatory networks (15), identifying poten-

tial virulence genes and drug targets (16–18), revealing dif-

ferent fitness actions in distinct environments (19, 20) and

directly detecting conditional essential genes. However,

current essential gene databases provide only binary essen-

tiality data from genome-wide experiments (21, 22), and

different fitness among genes has not been the focus of

these databases. We therefore developed a new database

named Integrated Fitness Information for Microbial genes

(IFIM, http://cefg.uestc.edu.cn/ifim/ or http://cefg.cn/ifim/).

Construction and Content of the IFIM
Database

The integrated fitness data in IFIM originate from experi-

ments of single-gene deletion mutants, libraries of trans-

poson integrations and computational simulations using

Geptop. Details of data collection and processing are

described in this section and shown in Figure 1.

Collection of Fitness Data From Experimental Data

In single-gene deletion mutant experiments, the contribu-

tion of a gene to fitness is usually measured as the growth

rate of its deletion mutant (23). We assigned essential genes

a deletion mutant growth rate of zero (Figure 1). For trans-

poson integration libraries, the fitness of a gene was

defined as the degree to which the gene tolerated trans-

poson insertions (Figure 1) (24). We collected all microbial

data of transposon integrations and single-gene deletion

mutants that were currently available to compute fitness.

Some of these data sources (SC02 of Saccharomyces cerevi-

siae, EC02 of E. coli, STM01 of Salmonella typhimurium

14028S, STY01 of S. typhimurium LT2 and NM01 of

Neisseria meningitides MC58) have not been included in

two well-known essential gene databases: the Database of

Essential Genes (DEG) (21) and the Online GEne

Essentiality database (OGEE) (22). The yeast genome

annotation was downloaded from the Saccharomyces

Genome Database (25), and the annotations for the other

species were obtained from GenBank (26). We updated the

gene information for the mutation experiments in the ori-

ginal data sources to make it consistent with the current

annotations. The fitness data were scaled from 0 to 1 in

each of the genomes.

Prediction of Fitness by Computational Simulation

For most of bacterial species, the deletion/insertion mutant

experimental data were not available. Therefore, we used

Geptop, which can effectively predict essential genes under

various nutritional conditions, as an alternative to gen-

ome-wide fitness data. We performed computational simu-

lations for all the sequenced bacterial genomes that are

currently available in GenBank. To a certain genome, we

first generated a proteome by translating all the protein

coding sequences in the genome, and then, used Geptop to

predict an essentiality score (S) for each gene. The fitness

value for a gene was defined as 0 when S was equal to 1.

When S was not equal to 1, we defined fitness as 1-S/Smax,

where Smax is the maximum S (excluding S¼ 1) in the

genome.

To assess the accuracy of the fitness prediction, we per-

formed a linear regression (R2) analysis between experi-

mentally derived fitness data sets and the computationally

predicted fitness (Figure 2A). Most R2 values were >0.45,

which indicated that gene fitness was predicted well using

this method. R2 values were also used in a correlation ana-

lyses among three experimental fitness data sets of E. coli

and among three experiment-based data sets of S. typhimu-

rium LT2 (Figure 2B). We found that the correlations

between the experimental data and predicted data were

similar to correlations among these experimental fitness

data sets. Therefore, when experimental fitness data are

not available, the predicted fitness value can be taken as an

alternative measure.

We extracted gene essentiality information of 21 bacter-

ial strains from the DEG database (version 7.5) and investi-

gated the predicted fitness distribution of essential and
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nonessential genes. As Figure 3 shows, there is a clear gap

from 0.65 to 0.75 between essential genes and nonessential

genes, which corresponds to the Geptop default cutoff

point. Therefore, we recommend a cutoff of 0.65 is used to

separate essential and nonessential genes based on Geptop

predicted fitness.

One of the advantages of OGEE is the inclusion of the

concept of conditional essentiality (22). Most of reference

sets in Geptop follow experiment settings under favorable

environmental condition. Therefore, the Geptop predic-

tions could be a result with optimal conditions. The con-

cept of conditional essentiality could explain why Geptop

results correlated well with the EC01 and EC02 data sets,

but not so well with the EC03 data set. The minimal bac-

terial gene set has been estimated to contain 250–300 gene

Figure 1. Details of data collection and processing for the IFIM database.

Figure 2. Assessment of the accuracy of prediction. (A) Linear regression

R2 between experiment-derived fitness and computation-predicting fit-

ness, (B) Correlation analysis among experimental fitness data sets.

Figure 3. Predicted fitness distribution of essential and nonessential

genes in 21 bacterial strains. Essentiality information was obtained

from the DEG database.
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candidates (27). We extracted �300 essential genes from

the EC01, EC02, EC03, STY01, STY02 and STY03 data

sets based on the lowest experimental fitness values,

respectively. Following the concept of conditional essenti-

ality, we identified the intersection among the EC01, EC02

and EC03 data sets (and the STY01, STY02 and STY03

data sets) as the universal essential (UE) genes for E. coli

(S. typhimurium), whereas the other essential genes were

identified as conditional essential (CE) genes. As Figure 4

shows, the UE genes have smaller predicted fitness values

(most were between 0.1 and 0.3), indicating that the UE

genes are of major importance so they were identified as

essential genes regardless of the experimental settings. CE

genes are a set of selective essential genes that may be es-

sential genes under some experimental conditions but not

under other conditions; so CE genes should have medium

fitness values. The means of the predicted fitness values for

the E. coli and S. typhimurium data sets for the CE genes

were �0.55 for both data sets (Figure 4), which is close to

the prediction gap (0.65–0.75) between the essential genes

and nonessential genes (Figure 3). Therefore, another ad-

vantage of IFIM is that it might provide the possibility of

distinguishing between putative UE and CE genes using a

rough cutoff of �0.3.

Gene essentiality can be disrupted by duplication, even

in closely related species. The more recent the duplication

event, the more likely it will be that both duplicates are not

essential (28). We used all 296 single-copy essential genes

of E. coli, which are used as a reference set in Geptop, to

test the impact of duplication events on gene essentiality.

Similar to the Cluster of Essential Genes database (CEG)

(29), in IFIM, only the gene name is used to identify

multiple copy genes. By searching the annotations of

Salmonella enterica, we found that the E. coli essential

genes ssb, ftsl and trpS had multiple copies in S. enterica

serovar Typhi Ty2, and trpS had multiple copies in

S. enterica serovar Typhimurium 14028S. Comparisons of

the fitness values among the computational predictions

and experiment data from the STY01, STY02, STY03 and

STM01 data sets (Table 1) showed that the Geptop predic-

tions for ssb and ftsl were in complete agreement with the

experimental data; namely, one copy of each of the genes

was an essential gene but the other copy was not.

However, we found a contradiction between the computa-

tional prediction and experiment data for trpS. One copy

of trpS had a relatively low fitness value based on Geptop

result and was therefore predicted to be an essential gene,

whereas the other copy of trpS was predicted to be a

Figure 4. Geptop predicted fitness values. (A) Predicted fitness values for E. coli. (B) Predicted fitness values for S. typhimurium. Error bars represent

90% confidence intervals on the estimates of the means. UE: universal essential; CE: conditional essential; NE: nonessential.

Table 1. Fitness values of multiple copy genes in the compu-

tational predictions and experiment data from four data sets

S. enterica serovar typhi Ty2

Gene Dataset

Geptop STY01 STY02 STY03

Ssb t4161 (0.237) t4161 (0.231) t4161 (0.245) t4161 (0.260)

t4237 (0.733) t4237 (0.742) t4237 (0.837) t4237 (0.833)

ftsI t0126 (0.263) t0126 (0.102) t0126 (0.128) t0126 (0.142)

t1042 (0.835) t1042 (0.616) t1042 (0.780) t1042 (0.772)

trpS t4024 (0.448) t4024 (0.419) t4024 (0.863) t4024 (0.563)

t4557 (0.834) t4557 (0.559) t4557 (0.819) t4557 (0.689)

S. enterica serovar typhimurium 14028S

Geptop STM01

trpS STM14_4193 (0.405) STM14_4193 (0.694)

STM14_5412 (0.821) STM14_5412 (0.764)
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nonessential gene. However, the experimental data showed

that the two copies of trpS had high fitness values and

tended to be nonessential. It is possible that the trpS gene

duplicated recently and this event disrupted the gene essen-

tiality. This finding may reflect a limitation of Geptop to

predict essentiality for recently duplicated genes. However,

compared with eukaryotic genomes, gene duplication

occurs only rarely in bacterial genomes. According to our

statistics, only �1% of the E. coli essential genes have mul-

tiple copies in S. enterica.

Figure 5. The web interface for the IFIM database. (A) The Home & Browse page; (B) Examples of Browse or Search result pages. (I) choosing different

sources to browse data sets, (II) choosing different taxonomy levels to browse data sets and (III) choosing different data sets to download; (C) The

Download pages; (D) An example of a fitness information page; (E) The Analysis page; (F) The link page showing a NCBI link to a gene.
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Statistics

The IFIM database currently covers 16 genome-wide ex-

perimental identifications in 11 organisms and contains

records of the theoretical predictions for 2186 bacterial

genomes. IFIM overlaps with the existing DEG, OGEE

and CEG databases, but differs from them in that it pro-

vides quantitative fitness values for the genes.

Utility

The web interface for the IFIM database is freely available at

http://cefg.uestc.edu.cn/ifim/. The interface provides links to

four pages: Home & Browse, Analysis, Download and Links.

The Home & Browse module is the default page that is

displayed when users access the IFIM database. The page

is in two parts (Figure 5A). In the top part of the page, a

brief introduction to IFIM and a link to the user guide are

provided. Below this is a list of the three data sets that are

available: prokaryotes with single chromosome, prokary-

otes with multi-chromosomes and eukaryote, which is

S. cerevisiae. Users can click on the links to browse the in-

dividual data sets (Figure 5B). For each data set, a table is

displayed that lists the contents of the data set based on the

ascending alphabet order of ‘organism’. Users can reform

the table by choosing from different taxonomy levels (phy-

lum, class, order, family and genus) that are shown in a

dropdown list at the top of the table (Figure 5B, II); by

default, the strains are sorted by genus.

Several of the strains in the prokaryote with single

chromosome data set have both experimental and computa-

tional data associated with them. Different icons are used to

distinguish between the experimental and computational

data. By clicking on these icons, users can browse gene fit-

ness information. Alternatively, users can select the most ap-

propriate data using a dropdown list at the top of the table

(Figure 5B, I) that allows users to choose both genome-wide

and in silico, only genome-wide or only in silico data. On

the gene fitness page, a table that lists synonym code, fitness

value, gene name and gene function of each gene in the se-

lected species is given. All genes are presented by default,

but users can set the fitness value to filter the list of genes

(Figure 5D). We recommend using a cutoff of 0.65 to distin-

guish between Geptop predicted essential and nonessential

genes. The listed data can also be displayed in ascending or

descending order by clicking the column name in the header.

For experimental data sets, the experimental setting and ref-

erence are also given. The synonym code is hyperlinked to

the NCBI database so that users can retrieve detailed infor-

mation for each gene (Figure 5F).

At the top of each page in the IFIM interface, there is a

Search module that users can use to search the IFIM

database by organism name or accession number (Figure

5A). Users can use the search box from any page to rapidly

ocate information of interest. The Search module supports

fuzzy queries of either organism name or accession

number. For example, users can input ‘Escherichia_coli’ or

‘Escherichia coli’ in the search box to find all strains of

E. coli in the IFIM database. Temporarily, the abbreviation

‘E. coli’ is not supported. The results page for a search is

similar to the page that is displayed from the Browse mod-

ule when a user clicks on a link to one of the three kinds of

data sets (Figure 5B).

The Download module provides two ways to down-

load data sets. Users can either download all the data sets

from the Download page (Figure 5C, I) or they can choose

data sets from the pages displayed from the Browse

page or from a Search result page to download (Figure

5B, III).

The Analysis page presents a basic statistical analysis of

the information in the database. The Links page provides

links to related web resources and servers.

Future Directions

Although other essential gene databases such as DEG and

OGEE are widely used, IFIM is the only database that pro-

vides integrated microbial fitness data from both experi-

ments and computational simulations. The IFIM database

currently contains data from 16 experiments and 2186 the-

oretical predictions. The quantitative fitness data may be

more useful than binary data for studies into essential and

nonessential gene.

The numbers of essentiality experiments that are being

reported are continually increasing; therefore, we will con-

tinue to update IFIM to cover more experiments and more

species, as well as integrate more information about each

IFIM data set. We will also continue to develop the

Geptop software to help increase the accuracy of predict-

ing fitness. We believe the IFIM database will contribute to

a better understanding of microbial genetics and will also

be useful in drug design. Special attention will also be paid

to detecting CE genes, identifying potential virulence genes

and drug targets, inferring gene regulatory networks and

revealing different fitness actions in distinct environments.
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