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Simple Summary: The primary characteristics of cancer cachexia are weakness, weight loss, atrophy,
fat reduction, and systemic inflammation. Cachexia is strongly associated with cancers involving the
lungs, pancreas, esophagus, stomach, and liver, which account for half of all cancer deaths. TGF-β,
MSTN, activin, IGF-1/PI3K/AKT, and JAK-STAT signaling pathways are known to underlie muscle
atrophy and cachexia. Anamorelin (appetite stimulation), megestrol acetate, eicosapentaenoic acid,
phytocannabinoids, targeting MSTN/activin, and molecules targeting proinflammatory cytokines,
such as TNF-α and IL-6, are being tested as treatment options for cancer cachexia.

Abstract: Cancer cachexia is a condition marked by functional, metabolic, and immunological
dysfunctions associated with skeletal muscle (SM) atrophy, adipose tissue loss, fat reduction, systemic
inflammation, and anorexia. Generally, the condition is caused by a variety of mediators produced by
cancer cells and cells in tumor microenvironments. Myostatin and activin signaling, IGF-1/PI3K/AKT
signaling, and JAK-STAT signaling are known to play roles in cachexia, and thus, these pathways
are considered potential therapeutic targets. This review discusses the current state of knowledge
of the molecular mechanisms underlying cachexia and the available therapeutic options and was
undertaken to increase understanding of the various factors/pathways/mediators involved and to
identify potential treatment options.

Keywords: cancer cachexia; skeletal muscle; inhibitors; myostatin; natural compounds

1. Introduction

The primary characteristics of cancer cachexia (CC), which accounts for ~22% of cancer
deaths, are weakness, weight loss, atrophy, fat reduction, and systemic inflammation [1,2].
Cachexia is strongly associated with cancers involving the lungs, pancreas, esophagus,
stomach, and liver, which account for half of all cancer deaths. Furthermore, several
malignancy-associated conditions, such as chronic obstructive pulmonary disease (COPD),
chronic infections (AIDS and tuberculosis), heart failure, and rheumatoid arthritis, cause
inflammation, anorexia, hypogonadism, and other symptoms, all of which lead to muscle
wasting and fat loss [3,4]. Earlier, we investigated the potential use of SM mass loss as a
marker of several diseases, including diabetes, obesity, and aging [5–7]. Furthermore, it
has been well established that multiple mediators generated by cancer cells are responsible
for cachexia [8]. Prostaglandin E2 and pro-inflammatory cytokines such as interleukins
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(IL-1, IL-6), tumor necrosis factor (TNF), interferon, TNF receptor-associated factor 6, and
other tumor-derived catabolic factors like activin and myostatin (MSTN) are examples of
such mediators [8,9]. CC and starvation cause weight loss in different ways. Weight loss
in cancer patients is due to approximately equal losses of adipose tissue and SM mass,
whereas anorexia nervosa-associated weight loss is primarily due to fat loss (muscle loss
is only a minor contributor) [10]. In addition, the incidence of CC is dependent on tumor
type, for example, its prevalence in gastric/pancreatic, breast, and neck cancer are 80, 40,
and 40%, respectively, and in lung, prostate, and colon cancer, its prevalence is around 50%.
In some cases, leukemia patients also develop the syndrome. However, CC development is
unrelated to tumor size [11–14].

By regulating glucose, protein, and fat metabolisms, insulin, insulin-like growth factor
1 (IGF-1), and growth hormones (GHs) have significant impacts on body composition.
The signals generated by these molecules are disrupted in the presence of muscle wasting
or cachexia, and this results in an anabolic/catabolic imbalance. In cachexia, insulin
receptor, GH, and IGF-1 pathways; peroxisome proliferator-activated receptor gamma
(PPARγ) agonists; angiotensin II inhibitors; and testosterone are possible therapeutic
targets [15,16]. Transforming growth factor-beta (TGF-β), MSTN, activin, IGF-1/PI3K/AKT,
and JAK-STAT signaling pathways are known to underlie muscle atrophy and cachexia [17].
Other potential mediators include testosterone and IGF-1 deficiency and excess MSTN and
glucocorticoids [18]. To address the situation posed by limited treatment options, a deeper
knowledge of the mechanism responsible for cachexia is required. At present, it appears
that drug developments aimed at cachexia management should target anti-inflammatory
and appetite-stimulating properties. We commence this review with a brief overview of
CC and its characteristics. The molecular mechanisms underlying cachexia are discussed
in detail, to improve understanding of the various factors implicated and identify possible
therapeutic strategies.

2. Cancer Cachexia

Cachexia has been described as an imbalance between energy intake and expenditure
leading to severe weight loss [3,8,19]. The condition is subdivided into three stages, pre-
cachexia, cachexia, and refractory cachexia. The diagnostic criteria of CC are (1) weight loss
of >5% in 6 months in the absence of intended starvation, (2) a body-mass index (BMI) of
<20 kg/m2 and progressive weight loss of >2%, and (3) a low SM index (sarcopenia) with
continued weight loss of >2% during a measure of muscularity with fluid retention tumor
mass and obesity. During precachexia, some signs like anorexia and impaired glucose toler-
ance resulting in unexpected weight loss are evident. Refractory cachexia is characterized
by two features [19]: (1) a low-performance status, meaning that a patient is capable of only
minimal self-care, confined to a bed or chair for >50% of waking hours, or is completely
disabled and incapable of self-care [20]; (2) short life expectancy (less than 3 months) [19].
The key features of cachexia are anorexia, catabolic drivers resulting in muscle wasting,
muscle mass and strength loss, and functional and psychosocial effects of cachexia [19,21].
Cachexia was mainly described by clinical experience and/or research vantage points, in-
cluding weight, skeletal muscle, physical function, food intake, metabolism, inflammation,
treatment intensity, quality of life, healthcare utilization, and survival [22]. The symptoms
of CC are illustrated in Figure 1.
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Figure 1. The common assessment for the clinical management of cancer cachexia. 

3. The Molecular Mechanism Underlying Cancer Cachexia 
3.1. Crosstalk between IGF-1 and MSTN Signaling Pathways in Cancer Cachexia 

Anabolic and catabolic pathways are regulated by IGF-1, a positive regulator of mus-
cle growth [23]. Under normal circumstances, IGF-1 signaling dominates MSTN signaling, 
whereas MSTN overexpression inhibits IGF-1 [24–26]. IGF-1 stimulates protein synthesis 
in SM via the PI3K/Akt/mTOR and PI3K/Akt/GSK3 pathways, and the PI3K/Akt pathway 
inhibits FoxOs and suppresses the transcriptions of E3 ubiquitin ligases, which elicit pro-
tein breakdown via the ubiquitin-proteasome system. IGF-1 is also considered to suppress 
autophagy via a mammalian target of rapamycin (mTOR) and FoxO signaling [27]. Akt is 
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Figure 1. The common assessment for the clinical management of cancer cachexia.

3. The Molecular Mechanism Underlying Cancer Cachexia
3.1. Crosstalk between IGF-1 and MSTN Signaling Pathways in Cancer Cachexia

Anabolic and catabolic pathways are regulated by IGF-1, a positive regulator of muscle
growth [23]. Under normal circumstances, IGF-1 signaling dominates MSTN signaling,
whereas MSTN overexpression inhibits IGF-1 [24–26]. IGF-1 stimulates protein synthesis in
SM via the PI3K/Akt/mTOR and PI3K/Akt/GSK3 pathways, and the PI3K/Akt pathway
inhibits FoxOs and suppresses the transcriptions of E3 ubiquitin ligases, which elicit protein
breakdown via the ubiquitin-proteasome system. IGF-1 is also considered to suppress
autophagy via a mammalian target of rapamycin (mTOR) and FoxO signaling [27]. Akt
is involved in a variety of intracellular metabolic activities, which include hypertrophic
responses to insulin and IGF-1. Furthermore, Akt has been identified as a crossing point
between the MSTN and IGF-1 pathways [23,28,29]. In cachexia, IGF-1 signaling is impaired,
because cachexic muscle cells do not respond to basic IGF-1 stimulation. Two strategies
appear to be therapeutic candidates: (1) the utilization of PPAR-agonists to target post-
receptor pathways or (2) the exploitation of alternate routes in muscle cells to access the
same intracellular targets [15]. A schematic of the IGF1-Akt pathway is shown in Figure 2.

When IGF1 binds to its receptor, its intrinsic tyrosine kinase is activated and autophos-
phorylated, which results in the formation of insulin receptor substrate binding sites (IRSs).
Phosphorylated IRSs aid the recruitment and activation of phosphatidylinositol-3-kinase
(PI3K), which phosphorylates membrane phospholipids and converts phosphoinositide-4,
5-biphosphate (PIP3, which aids the activation of Akt) to PIP2. Thus, Akt stimulates protein
synthesis via mTOR, which promotes protein synthesis and muscle hypertrophy [28].

In cases of chronic heart failure, circulating and local levels of MSTN, which play
key roles in myocardial cachexia, are elevated [29]. Activin type-2 receptor (ActRIIB)
antagonism and/or MSTN antibodies have emerged as viable therapeutic targets for the
treatment of cachexia, although the broad clinical applications of these potential treatment
strategies have not been demonstrated [30]. Furthermore, in mouse models, inhibiting
ActRIIB reverses cachexia and improves survival [31]. MSTN has been introduced as
a major interest in cachexia, sarcopenia, and muscle wasting conditions [32]. MSTN is
released primarily by SM and, as mentioned above, negatively regulates muscle mass [33],
as demonstrated by the development of cachexia in rodents’ systemically administered
MSTN [27,34]. MSTN signaling is facilitated by ActRIIB and leads to the phosphorylations
of SMAD2 and 3 [35,36]. Congestive heart failure is frequently accompanied by cardiac
cachexia, and in rodent models and clinical trials, blocking MSTN appears to improve
muscle size and strength significantly [37]. Thus, stimulating IGF-1 and blockading MSTN
using natural compounds would promote muscle hypertrophy and provide a possible
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means of managing cachexia. As a result of these findings, MSTN has emerged as an
important developmental target for the treatment of cachexia and muscle wasting disorders.
Randomized controlled studies on MSTN antagonists are required [38,39]. By reducing
AKT phosphorylation and so boosting the levels of active FoxO1, MSTN signaling reversed
the IGF-1/PI3K/AKT hypertrophy pathway, allowing for increased expression of atrophy-
related genes. The known atrophy-related genes are Atrogin1 and Glb1 [33]. MSTN
expression is increased in the muscle of tumor-induced cachexia [31]. MSTN’s role in the
development of CC has been little studied in humans, and it is now being studied clinically.
A better knowledge of the etiology and heterogeneity of CC might lead to the development
of intervention measures to prevent or treat this life-threatening illness.
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Figure 2. Molecular mechanisms regulated by IGF-1 and MSTN: Active Akt produces the mTOR
signal, which leads to protein synthesis and inhibits (phosphorylates) FoxO. IGF-1 is primarily
responsible for protein synthesis and muscle hypertrophy, whereas MSTN is responsible for protein
degradation causing muscle atrophy. We suggest that screening of natural compounds and their
derivatives for anti-MSTN activity might shift the balance toward muscle hypertrophy in cachexia.

3.2. The PI3K/Akt/mTOR Pathway and Cancer Cachexia

SM and cardiac muscle atrophy are considered hallmarks of CC [40], and a variety of
agents have been reported to reduce muscle atrophy. In 2001, Bodine et al. reported that a
phosphoinositide 3-kinase (PI3K)–protein kinase B (PKB, AKT)–mTOR cascade importantly
regulated SM hypertrophy in vivo via the modulations of p70S6K and PHAS-1/4E-BP1 [41].
In CC patients that exhibited weight loss before surgery, PI3K/AKT signaling was dimin-
ished and protein synthesis in SM was reduced [42]. The signaling involved was elucidated
based on improved understanding of the activities of mTOR [27,43,44], which is a down-
stream kinase in the IGF-1/PI3K/AKT pathway that acts as a hub for muscle regulation by
coordinating the ubiquitin proteasome system and autophagy [45]. mTOR forms mTORC1
and mTORC2 complexes containing RAPTOR and RICTOR, respectively [43,44]. mTORC1
is responsible for protein biosynthesis by 4E-BPs and p70S6K in growing cells and sup-
presses catabolic autophagy by regulating unc-51-like autophagy-activating kinase 1 (ULK1)
and ATG13. Under conditions of nutrient deprivation, mTORC1 is inactivated, which leads
to coordinated autophagosome initiation and subsequent lysosomal biogenesis [46].

IGF-1 stimulates the productions of SM proteins via PI3K/Akt/mTOR and PI3K/Akt/
GSK3 pathways [27]. A ketogenic diet targets glucose metabolism in cancer cells, inhibits
the IGF-1 and PI3K/AKT/mTOR pathways, and suppresses CC, muscular wasting, and
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tiredness [47]. Growth factors and nutrients activate AKT via PI3K-dependent mechanisms,
which, in turn, activate mTOR and enhance muscle cell proliferation and protein synthesis
under physiologic conditions. AKT (a serine/threonine kinase) plays a crucial role in
myogenic differentiation, and in CC, the phosphorylations of mTOR and its substrates,
S6 ribosomal protein, and 4EBP were reduced, irrespective of AKT activation [48–51].
Furthermore, these alterations in mTOR-related protein signaling pathways were followed
by small increases in the protein levels of Beclin1, which is associated with autophagy. In
addition, the mTOR signaling system has been shown to regulate myofiber production
and development during muscle regeneration through kinase independent and dependent
pathways, respectively [52,53].

3.3. Roles of Peroxisome Proliferator-Activated Receptors in Cancer Cachexia

Peroxisome proliferator-activated receptors (PPARs) are well-known transcription
factors that belong to the nuclear receptor superfamily and have three isoforms, namely,
α, δ, and γ [54,55]. PPARs regulate the transcriptions of a wide range of genes involved
in inflammation, metabolism, proliferation, and the differentiation of various cells [56,57],
and they are associated with a number of pathologies, including cancer, type 2 diabetes,
atherosclerosis, and Alzheimer’s disease. Moreover, PPARs are frequently co-expressed to
varying degrees in many tissues, including SM and adipose tissue [58–60].

PPARα is expressed in the liver, SM, heart, adipose tissue, kidney, and other tissues,
and it plays crucial roles in fatty acid catabolism, glucose metabolism, and the regulation of
energy consumption and inflammation. PPARα agonists, notably fibrates (e.g., clofibrate,
fenofibrate, ciprofibrate, bezafibrate), are used to improve lipid metabolism and insulin sen-
sitivity in metabolic syndrome [61]. Fenofibrate, a selective PPARα activator used to treat
dyslipidemia in humans, has been shown to reduce inflammation in rheumatoid arthritis
patients [62]. It prevents the development of CC in mice [63]. Fenofibrate treatment restored
muscle mass and body weight loss in a non-small cell lung cancer mouse model exhibiting
muscle wasting and mimicking human CC [63]. PPARβ/δ is expressed at varying levels in
several tissues, most notably in SM, but is also expressed in the heart, skin, and gut, and it
has a wider range of functions than PPARα [58]. PPARβ plays a critical regulatory role in
intermediate metabolic processes and is also involved in differentiation, apoptosis, inflam-
mation, and other cancer-related processes [64]. PPARβ agonists (e.g., GW501516) activate
PPARβ and provide functional improvements in Duchenne muscular dystrophy (DMD)
patients by increasing utrophin A (an autosomal homolog of dystrophin) expression [65].
DMD is a serious, progressive muscle-wasting ailment that causes movement problems and
premature death. Mutations in DMD (encoding dystrophin) cause the ailment by prevent-
ing dystrophin synthesis in the muscle. Muscles lacking dystrophin are more vulnerable to
injury, resulting in a gradual loss of muscle structure and function [66,67].

PPARγ is expressed in the SM, placenta, lung, spleen, heart, liver, ovary, and other
tissues but is most abundant in adipose tissue. PPARγ regulates whole-body glucose
homeostasis and insulin sensitivity, and currently, studies have focused on its involvements
in inflammation, lipid metabolism, and tumor development, particularly in the context
of CC. [68,69]. PPARγ activation has an anti-inflammatory effect caused by attenuation
of the NF-κB signaling pathway, and thus, it inhibits the productions of IL-6 and other
pro-inflammatory factors by regulating the STAT3 pathway [70]. It was recently reported
that alpinetin (a plant-derived flavonoid) retards CC progression and protects against
muscle atrophy by activating PPARγ, thus suppressing the phosphorylations of NF-κB
and STAT3 [71], and alantolactone was found to inhibit the STAT3 pathway to improve the
muscular atrophy in a CC [72]. STAT3 is a transcription factor that promotes cancer growth
and muscular cachexia. The deletion of the gene producing the STAT3 protein lowers
the expression of muscle differentiation factors like MyoD and myogenin in vitro. In vivo
investigations show that STAT3 deletion impairs post-traumatic muscle regeneration, which
is consistent with previous findings [73]. STAT3 is the most important component of the IL-
6 and JAK2 signaling pathways, controlling SM mass, growth, repair, and regeneration [74].
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The STAT3 pathway has been demonstrated to cause muscle atrophy in DMD, Merosin-
negative congenital muscular dystrophy (MDC1A), sepsis, and cancers [75]. The key
molecular mechanism leading to CC is thought to be permanent stimulation of the acute
phase protein response. In experimental cachexia models, the IL-6/STAT3 6 signaling
pathway causes muscle mass loss [76]. A variety of STAT3-interacting peptides, such
as PY*LKTK [77] and Y*LPQTV [78], are now being explored in preclinical trials. These
peptides bind to the SH2 domain and hence inhibit STAT3 dimerization. Another STAT3
inhibitor, galiellalactone [79], binds to the DNA-binding domain responsible for STAT3
binding to DNA, preventing transcriptional activation of STAT3-targeted genes [80]. STAT3
activity is required for muscle tissue formation and maintains homeostasis, whereas STAT3
inhibitors appear to be potential components in illnesses involving muscle atrophy.

PPARγ activation induces preadipocyte to adipocyte differentiation and promotes
triglyceride accumulation. Furthermore, PPARγ is an important transcription factor, and
its inactivation explains the downregulations of multiple adipogenic genes. The expression
and role of MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) in adipocytes
was recently studied by a microarray analysis, and MALAT1 knockdown was found to
reduce adipogenesis by regulating PPARγ gene expression at the transcriptional level [81].
MALAT1 is a widely expressed lncRNA, and it participates in a variety of physiological and
pathological processes, such as myogenesis, cancer, and aortic aneurysm [82]. Like some
well-known proteins, such as hormone-sensitive lipases, adipose triglyceride lipases, and
uncoupling protein-1, and lncRNAs (e.g., CAAlnc1), they are promising unique regulators
of adipose tissue loss in CC [83]. In one study, PPARγ expression was markedly enhanced
in the SM of tumor-bearing mice, which demonstrated the significance of the effect of
PPARγ on muscle wasting. In addition, the administration of GW1929 (a PPARγ agonist)
resulted in the restoration of muscle loss [84]. Furthermore, PPARγ expression was found to
be significantly elevated in mesenchymal glioblastoma, which suggested the potential use
of PPARγ as a therapeutic target [69]. Taken together, the above-mentioned observations
indicate that PPARγ, PPARα, and PPARβ/δ are potential therapeutic targets in cancer-
associated cachexia.

4. Treatment Options for Cancer Cachexia

There is still no gold standard treatment for CC because of the variety of cancer types
and pathophysiological processes involved, and thus, the condition is difficult to manage.
A number of therapeutic options are available, but their benefits appear to be limited,
and more clinical evidence is needed before their efficacies can be determined [85]. Here,
we categorize treatment options for CC into groups based on their effects on appetite,
inflammatory cytokines, and metabolism.

CC is treated using multimodal rather than single approaches because of its mul-
tifaceted nature [86]. These methods involve different treatment combinations, such as
combinations of pharmaceuticals, nutritional supplements, specific diets, and modest
physical activity, which appear to act synergistically and, in some cases, effectively restore
metabolic alterations and alleviate anorexia [12,86–88]. However, defining beneficial com-
binations of medicines, nutrition, and exercise will require much research effort [88]. Many
medicines have been suggested and subjected to clinical trials. These include appetite stim-
ulants, steroids, thalidomide, cytokine inhibitors, branched chain amino acids, nonsteroidal
anti-inflammatory agents, eicosapentaenoic acid, and anti-serotoninergic drugs [89]. These
medicines are medroxyprogesterone (500 mg/day) or megestrol acetate (320 mg/day) and
oral supplementation with eicosapentaenoic acid, L-carnitine (4 g/day), and thalidomide
(200 mg/day) [90]. Table 1 provides a list of the immunomodulatory factors used to manage
cachexia. Personalized physical exercise in conjunction with pharmacological and nutri-
tional assistance has the potential to be beneficial. A better knowledge of the pathogenetic
mechanisms that cause CC-related muscle wasting will allow for the development of a
targeted mechanism-based multimodal strategy that can be used early and effectively.
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Table 1. List of therapeutic agents and factors available for the management of cancer cachexia.

Treatment Options Level Decrease Level Increase References

Omega-3 fatty acids decrease TNF-α and IL-1 recover the ability of nutrition

[91–95]

Glucocorticoids prevent the synthesis/discharge
of proinflammatory cytokines

Non-steroidal anti-inflammatory
drugs reduce inflammation reduce muscle wasting

Drugs (cytokine inhibition)

Glutamine supplementation can reduce muscle wasting in
cancer patients [96–98]

Megestrol, Dronabinol increase weight [99]

Appetite stimulation
(cannabinoids or erythropoietin)

ameliorate cachexia [93,94,100]
Anti-dopaminergics (like

metoclopramide

Muscle creation stimulation
(branched-chain amino acids

Exercise (strength and aerobic
training)

reduces proinflammatory
cytokine levels

increases anti-inflammatory
cytokine levels [101]

Ghrelin agonists

therapeutic targeted approaches
that reduce wasting in cancer

patients
[21]

Androgen receptor agonists

β-blockers

anti-MSTN peptides

Ghrelin analogs reduce systemic inflammation
and muscle catabolism

increase food intake and aid lean
body mass retention [102]

MSTN blockade reduces inflammation and
muscle wasting [102]

Blockade of Stat3 reduces muscle atrophy and
inflammatory cytokine expression [100]

4.1. Appetite Stimulation Using Anamorelin

Anamorelin is an orally prescribed ghrelin receptor agonist that is considered to
ameliorate CC by increasing appetite [103]. Anamorelin hydrochloride, a ghrelin receptor
agonist with a small molecular weight (583.2 g/mol), has shown excellent results in recent
Phase III studies and has regulatory clearance in Japan for the treatment of cachexia [103].
It improves CC by raising serum IGF-1 and boosting appetite. Ghrelin is a 28 amino acid
hormone and was first identified in a rat stomach extract as an endogenous ligand of GH
secretagogue receptor 1a [104]. Ghrelin binding to this receptor leads to GH release, which
is closely related to systemic metabolism [104,105]. As a nutrient sensor, ghrelin and its
receptor axis influence a variety of metabolic processes [105]. In CC, ghrelin is considered a
potential therapeutic option and has been investigated in many cancers, including colon
and non-small cell lung cancer [106–108]. Pralmorelin (Kaken Pharma, Tokyo, Japan,
and Sella Pharma, Schio, Italy) has been approved for GH deficiency, and macimorelin
(Aeterna Zentaris, Charleston, SC, USA), anamorelin (Helsinn, Lugano, Switzerland), and
relamorelin (Rhythm, Saitama, Japan) are undergoing preclinical or clinical trials [105].

4.2. Megestrol Acetate

Megestrol acetate is a synthetic progestin and appetite stimulant that was approved
for the treatment of anorexia, cachexia, or weight loss due to unidentified causes in
1993 [109,110]. Recently, Ruiz-Garcia et al. reviewed megestrol acetate clinical trials, and
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according to their report, megestrol acetate resulted in weight gains but did not improve
quality of life. In another study, megestrol acetate was also found induce weight gains,
though it was mentioned that its dosage required optimization [110].

4.3. Eicosapentaenoic Acid (EPA) Supplementation

Eicosapentaenoic acid (EPA) is a polyunsaturated fatty acid found in some fish oils, and
it has been suggested to promote body weight gain in CC. However, five trials conducted
on the topic failed to demonstrate that EPA therapy results in weight gain in cachexia
patients [111]. Nonetheless, the effect of EPA supplementation on appetite stimulation in
CC is being investigated [112–114].

4.4. Systemic Inflammation

As mentioned above, loss of body weight and BMI reduction resulting from adipose
tissue and SM loss are major symptoms of CC. Several cytokines, e.g., TNF-α, IL-1, and
IL-6, secreted by immune or tumor cells of gastric, pancreatic, and other cancers have
been shown to be associated with wasting of mesenchymal tissues [8,115]. TNF-α and
IL-6 have a role in the development of SM atrophy and fat depletion in CC patients [72].
The metabolism of glucose, protein, and fat is altered in the CC state. TNF-α causes an
increase in gluconeogenesis, adipose tissue loss, and proteolysis, as well as a reduction in
protein, lipid, and glycogen synthesis [115]. General immune suppressors have also been
considered as treatments for cachexia, and molecules targeting proinflammatory cytokines,
such as TNF-α and IL-6, are being tested as treatment options.

4.5. TNF-α Inhibitors

TNF-α has been suggested to be involved in CC [116] muscle atrophy, the inhibition
of adipocyte and skeletal myocyte differentiation, and insulin resistance, and thus, its
targeting has been investigated as a possible therapeutic strategy for CC [8,117,118]. TNF-α
signaling has been antagonized using etanercept (which targets the TNF-α receptor) and
using infliximab, adalimumab, golimumab, or certolizumab-pegol, which target TNF-
α [119]. These agents are currently undergoing preclinical or clinical trials singly or in
combination with other drugs (e.g., gemcitabine) in non-small lung cancer, pancreatic
cancer, and other cancers [120]. Nevertheless, despite accumulating positive evidence, this
topic remains under investigation.

4.6. IL-6 Inhibitors

By promoting the differentiation of immune cells such as B and T cells and stimulating
the productions of C-reactive protein, serum amyloid A, fibrinogen, and other proteins
in hepatocytes, IL-6 is a major player in the acute immune response [121]. This cytokine
has also been suggested to participate in the pathophysiologies of chronic inflammatory
diseases. For example, IL-6 stimulates signaling for osteoclast activation and differentia-
tion, angiogenesis by stimulating vascular endothelial growth factor production leading
to vascular permeabilization in cancer and rheumatoid arthritis, and keratinocyte pro-
liferation resulting in skin fibrosis [117,121,122]. Furthermore, elevated circulatory IL-6
levels have been reported to be associated with muscle atrophy caused by the suppression
of muscle protein synthesis in mice, which suggests another option for the treatment of
cachexia [85]. Humanized antibodies against IL-6 receptor (tocilizumab) or soluble IL-6
(sirukumab, olokizumab, or clazakizumab) are currently undergoing preclinical or clinical
studies [85,118,120,123–125].

4.7. Phytocannabinoids

The genus Cannabis is classified into three main species, the fiber-type C. sativa L;
the drug type C. indica Lam, which contains high levels of the psychoactive drug ∆-9-
tetrahydrocannabinol (THC); and C. ruderalis Janisch [126,127]. Central nervous system and
peripheral tissue studies have shown that interactions between cannabidiol or THC and
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their receptors, cannabidiol receptor 1 and 2 (CB1 and CB2; G-protein coupled receptors
that signal through cyclic AMP (cAMP) and Ca2+ ions), also have anti-inflammatory,
antioxidative, and immune response-ameliorating effects [126]. Both cannabidiol and THC
have been investigated as treatments for cachexia, but their effects are not clear, and further
systemic validation is required [118,124].

4.8. Thalidomide

Since the anti-angiogenic effects of thalidomide were demonstrated in vivo [128],
thalidomide has been used as an anti-cancer drug [125]. In addition, thalidomide and
its analogs (lenaliomide and pomalidomide) influence immunomodulation by regulat-
ing TNF-α, TGF-β, IL-1β, IL-6, granulocyte macrophage colony-stimulating factor, and
T cell proliferation and function [129]. Thalidomide inhibits ubiquitin ligase (E3) and
leads to uncontrolled protein degradation, which suggests applications in CC and cancer
progression [130]. In cachexia, thalidomide has been shown to increase body weight and
appetite. However, large randomized combinatorial drug trials are required in patients
with advanced cancer [125,131].

4.9. Corticosteroids

According to the American Society of Clinical Oncology (ASCO) guidelines for the
management of CC, targeting corticosteroids is recommended for patients with advanced
cancer [125]. By modulating energy reserves through a variety of pathways, glucocor-
ticoids are key players in the hypothalamic–pituitary–adrenal axis [85,132]. However,
they also induce muscle atrophy by accelerating muscle protein degradation through au-
tophagy and the ubiquitin–proteasome pathway and by attenuating protein synthesis in
muscles [132–134]. Thus, further studies are required to determine the optimal doses of
corticosteroids when administered in combinations with other drugs for cachexia and to
validate their effectiveness.

4.10. Targeting Myostatin and Activin

Loss of SM mass is closely associated with weight loss in CC and non-responsiveness
to increased appetite or nutritional supplementation [135–138]. The TGFβ family members
MSTN and activin A have been most studied. MSTN (also known as growth differentiation
factor-8) is a member of the TGFβ family, and it negatively regulates muscle differentiation
by binding to its receptor, ActRIIB, which activates Smad2/3-linked signaling cascades,
leading to muscle loss [8,139]. Activin A and MSTN interactions with ActRIIB have been
studied in the SM of CC. GDF-15 (a member of the GDNF (Glial Cell-Derived Neurotrophic
Factor) family) is produced by muscle cells and released into blood and it has been reported
to be significantly elevated in cancer patients and to promote muscle loss [124,140]. Strate-
gies based on antagonizing MSTN and activin A signaling have been developed using
antibodies against ActRIIB and MSTN, namely bimagrumab and LY2495655, respectively,
the latter of which is recommended for the treatment of CC, especially for muscle atro-
phy management [33,118,130,141,142]. Bimagrumab is a completely human monoclonal
antibody, which was discovered to be widely employed against ActRIIB in the treatment
of CC or muscle wasting disorders [143,144]. It was reported that a single intravenous
dosage of bimagrumab (30 mg/kg) increased the recovery of thigh muscle volume [145].
LY2495655 is a humanized monoclonal antibody that inhibits myostatin and was developed
to treat muscle wasting diseases. In older individuals with muscular weakness, LY2495655
therapy was demonstrated to enhance lean body mass and somewhat improve muscle
performance [146,147].

4.11. Metabolism Modulators

Cachexia can be caused by accelerated protein degradation or suppressed protein
synthesis and myogenesis in SM [120,137]. Three pathways have been suggested to be
responsible for protein degradation at the cellular level in SM, namely, ubiquitin-mediated
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proteasome degradation, autophagy, and calcium-dependent calpain-mediated degrada-
tion [96]. In animal models of cachexia, IGF-1 levels were decreased, and cachexia was
associated with the development of insulin resistance [16,96]. Targeting anabolic pathways
is considered to provide a means of overcoming and reversing muscle loss by modulating
IGF-1 signaling and regulating ubiquitin ligase (E3). Trials have been initiated on the
appetite-stimulating effects of medroxyprogesterone acetate and megestrol acetate [85,130].

4.12. Non-Pharmacological Treatment Option

Aerobic exercise is considered to improve insulin sensitivity and glucose homeostasis
and has been suggested as a therapy for CC [141,142,148]. The effects of treadmill exercise
on CC have been investigated in animals [149,150]. Jee et al. reported that intense exercise
improved quality of life, survival rate, and muscle atrophy in mice [149], and Moreira et al.
showed that regular treadmill running for 8 weeks reduced tumor growth and cachexia
and improved insulin sensitivity in Walker 256 tumor-bearing adult rats [150].

5. Concluding Remarks

Cancer cachexia (CC) has many possible causes, and its presence should be detected
early to maximize the effectiveness of treatments. The treatment of CC is multimodal and
includes physical exercise, MSTN blockade, medications, and nutritional supplements,
because single approaches are invariably ineffective. Strategies based on the regulation of
IGF-1 and the suppression of MSTN increase muscle growth and aid recovery from cachexia,
and thus, drugs and inhibitors used to treat cachexia should have anti-inflammatory
and appetite-stimulating properties. In summary, full understanding of the molecular
mechanisms, signaling pathways, and the secondary causes of muscle and/or fat wasting
are essential for successful CC management.
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