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Abstract 

The Pacific white shrimp, with the largest production in shrimp industry, has suffered from multiple severe viral and 
bacterial diseases, which calls for a more reliable and environmentally friendly system to promote shrimp culture. The 
“Aquamimicry system”, mimicking the nature of aquatic ecosystems for the well-being of aquatic animals, has effec-
tively increased shrimp production and been adapted in many countries. However, the microbial communities in the 
shrimp intestine and surrounding environment that act as an essential component in Aquamimicry remain largely 
unknown. In this study, the microbial composition and diversity alteration in shrimp intestine, surrounding water and 
sediment at different culture stages were investigated by high throughput sequencing of 16S rRNA gene, obtaining 
13,562 operational taxonomic units (OTUs). Results showed that the microbial communities in shrimp intestine and 
surrounding environment were significantly distinct from each other, and 23 distinguished taxa for each habitat were 
further characterized. The microbial communities differed significantly at different culture stages, confirmed by a 
great number of OTUs dramatically altered during the culture period. A small part of these altered OTUs were shared 
between shrimp intestine and surrounding environment, suggesting that the microbial alteration of intestine was not 
consistent with that of water and sediment. Regarding the high production of Aquamimicry farm used as a case in 
this study, the dissimilarity between intestinal and surrounding microbiota might be considered as a potential indica-
tor for healthy status of shrimp farming, which provided hints on the appropriate culture practices to improve shrimp 
production.
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Keypoints
The novel Aquamimicry system has successfully 
improved shrimp production.

Microbial community in shrimp intestine and environ-
ment are investigated.

Relation between intestinal and environmental micro-
biota indicates culture condition.

Introduction
Aquaculture remains an important source of food and 
nutrition for millions of people worldwide, which plays 
an essential role in meeting the urgent global food 

Open Access

*Correspondence:  lsshzhj@mail.sysu.edu.cn; lsshjg@mail.sysu.edu.cn; 
ffiskks@ku.ac.th
†Shenzheng Zeng and Sukontorn Khoruamkid contributed equally to this 
work
1 State Key Laboratory of Biocontrol/Southern Marine Sciences 
and Engineering Guangdong Laboratory (Zhuhai), School of Marine 
Sciences, Sun Yat-Sen University, Guangzhou, China
2 Department of Fisheries, Faculty of Fisheries, Kasetsart University, 
Bangkok, Thailand
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-3282-0727
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13568-020-01119-y&domain=pdf


Page 2 of 11Zeng et al. AMB Expr          (2020) 10:180 

demand (Low et  al. 2017). Pacific white shrimp, Litope-
naeus vannamei, with the largest production in global 
shrimp industry, has suffered enormous economic losses 
due to serious infectious diseases (Zeng et al. 2020). Dis-
eases caused by viruses and bacteria have been major 
impact on the sustainable development of the industry, 
especially the occurrence of white spot syndrome virus 
(WSSV) (Tassanakajon et  al. 2018). Recently, newer 
diseases have emerged, such as early mortality syn-
drome (EMS), acute hepatopancreatic necrosis disease 
(AHPND) or hepatopancreas necrosis syndrome (HPNS) 
(Flegel 2019; Huang et  al. 2016), and white feces syn-
drome (WFS) (Huang et al. 2020; Zeng et al. 2020). These 
diseases occurred in many Asian countries including 
China, India, Indonesia, Thailand and Vietnam. As pre-
viously reported, inappropriate aquaculture practices can 
lead to elevated levels of persistent organic pollutants, 
metals parasites and viruses in aquaculture field (Amir 
et  al. 2008). Hence, good aquaculture practices should 
be the main focus of shrimp farming to increase shrimp 
immunity against diseases and avoid the deterioration of 
water quality during culture period. Lately, a number of 
researches have indicated that balance of the microbial 
community plays a major role in the disease occurrence 
(Biesebeke 2018; Butto and Haller 2016). Hence, there is 
a need to develop reliable, repeatable and environmen-
tally friendly technology to combat new and existing 
pathogens.

The “Aquamimicry System” was established in 2013 
by Mr. Sutee Prasertmark and Mr. Veerasan Prayota-
mornkul, who are long-time shrimp farmers in Thailand. 
The combination of nature condition and technology 
leads to more sustainable shrimp farming practices by 
mimicking the natural aquatic environment. Chemi-
cals used is avoided by employing the symbiotic system, 
which is created through prebiotics (non-digestion com-
ponent but can be metabolized by specific microorgan-
ism) and probiotics, defined as living microorganisms 
that have a positive effect on host (Biesebeke 2018; Butto 
and Haller 2016). The success of this system is based on 
the production of the natural food for shrimp resulting 
in the decrease in feed conversion ratio, maintenance 
of optimal water and sediment quality by microorgan-
isms, and disease elimination (Biesebeke 2018; Butto 
and Haller 2016). This expertise has been presented to a 
large number of shrimp producers, and is now adapted 
in many countries, such as Australia, Bangladesh, Brazil, 
Brunei, China, Ecuador, Egypt, India, Korea, Malaysia, 
Mexico, Peru, Singapore, Sri Lanka, USA, and, Vietnam.

As part of this novel shrimp culture technique, the 
microbial communities of the shrimp intestine and sur-
rounding environment must be studied. Previous stud-
ies indicated that shrimp sourced little of their intestinal 

microbiota from their rearing water, whereas the suc-
cessions of intestinal microbiota were significantly cor-
related with host age (Xiong et  al. 2019, 2020). Indeed, 
identification of the microbial community present in 
the shrimp and nearby environment at different culture 
stages could facilitate our understanding of the main and 
important microbial groups which will help to prevent 
disease outbreaks and maintain good water quality con-
dition during the culture period.

This study investigated the diversity of intestinal micro-
bial community in Pacific white shrimp, sediment, and 
culture water in a shrimp farm in Nakhon Nayok prov-
ince, Thailand. This was done by analyzing the types and 
relationships among the microbial community in sedi-
ment, water and shrimp intestines, the relationship of 
microbial community in shrimp intestine and the sur-
rounding environment, and the microbial alterations at 
different culture periods. The research results can sup-
port the promotion to use of the probiotic and Aqua-
mimicry system in sustainable aquaculture.

Materials and methods
Sample collection
The Aquamimicry shrimp farm is located in Nakhon 
Nayok province, central region of Thailand (14.14◦N, 
100.99◦E). From August to October 2018, samples were 
collected every 15 days from 15 days post-hatching from 
four shrimp pond (named as A, B, C and D). Each pond 
has an area of 4000  m2, and 1.5  m depth. Shrimp were 
cultured at a stocking density ranging from 160,000 to 
200,000 shrimps per pond (40–50 shrimp/m2). Probiotics 
were applied during the culture period, such as Bacillus 
subtilis, Bacillus amyloliquefaciens, Bacillus valismortis, 
Bacillus megaterium and Bacillus licheniformis.

Twenty shrimp samples per pond were collected. After 
measuring length and weight, each shrimp’s surface was 
separately sterilized with 70% ethanol and the intestine 
was aseptically dissected into 2  mL sterilized tube con-
taining 1 mL DNA preservation solution.

Water samples were also obtained from three different 
locations in each pond, with 500 mL water per location. 
Each water sample was then put in ice separately before 
filtering through 0.22  μm polyethersulfone filter mem-
branes with a vacuum pump. For the chemical analyses, 
200 mL of each sample was collected from the same loca-
tion using sterile bottles.

Three replicates of sediment samples were collected 
with 500  mL sterile bottle from different locations. For 
each sample, 50 g of sediment was used for total nitrogen 
(TN) and total phosphate (TP) determination, and 10  g 
of sediment stored into 50  mL sterilized tube for DNA 
extraction. All the samples were stored at -20  °C before 
DNA extraction and quality determination.
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Water and sediment quality determination
Water quality parameters such as temperature, pH, 
dissolved oxygen (DO), and salinity were measured 
on-site using a YSI handheld multi-parameter instru-
ment (Model YSI 380, YSI Incorporated, Ohio, USA). 
TN, dissolved inorganic nitrogen (NH4

+-N, NO2
−-N, 

and NO3
−-N), TP, and orthophosphate (PO4

3−-P) were 
measured using an automatic discrete analyzer (Model 
CleverChem 380, DeChem-Tech, Hamburg, Germany). 
Sediment pH was measured in  situ with a pH meter 
(Model SX630, Sanxin, Shanghai, China).

DNA extraction and sequencing
Intestine and sediment genomic DNA were extracted 
by the QIAamp PowerFecal DNA Kit (Qiagen, Dussel-
dorf, Germany), whereas water DNA was extracted by 
the MinkaGene Water DNA Kit (mCHIP, Shenzheng, 
China). The concentration and purity of genomic DNA 
were measured using the NanoDrop One Spectropho-
tometer (Thermo Fisher, Massachusetts, USA). The 
primer pair 515F (5′-GTG​CCA​GCMG CCG​CGG​TAA-
3′) and 806R (5′-GGA​CTA​CHVGGG​TWT​CTAAT-3′) 
were used to amplify the V4 region of 16S rRNA gene, 
which was modified with a barcode tag containing a 
random 6-base oligos.

PCR products was then purified with EZNA Gel 
Extraction Kit (Omega, Georgia, USA). Sequencing 
libraries were generated using NEBNext Ultra DNA 
Library Prep Kit for Illumina (New England Biolabs, 
Massachusetts, USA) following manufacturer’s recom-
mendations. The library quality was assessed on the 
Qubit 2.0 Fluorometer (Thermo Fisher, USA) and Agi-
lent Bioanalyzer 2100 system (Agilent, California, Ger-
many). The libraries were then mixed in equidensity and 
sent for sequencing by a Hiseq2500 platform (Illumina, 
California, USA), which was conducted by Guangdong 
MAGIGENE Biotechnology Co., Ltd. (Guangzhou, 
China). Raw data generated from Hiseq2500 platform 
were paired-end reads.

Bioinformatics and statistical analysis
To control the sequencing quality, raw tags with low 
quality (quality value < 20, sequence length ≤ 100  bp) 
were filtered by Trimmomatic (Version 0.33, https​://
www.usade​llab.org/cms/? page = trimmomatic). To 
merge reads of the same DNA fragment, FLASH (Ver-
sion 1.2.11, https​://ccb.jhu.edu/softw​are/FLASH​/) was 
used to gain the splicing sequences (Magoč and Salz-
berg 2011). Based on the unique barcode, sequences 
were assigned to samples and then removed off the 

barcode and primer sequence by Mothur (Version 
1.35.1, https​://www.mothu​r.org) (Schloss et al. 2009).

Sequences with more than 97% similarity were assigned 
as the same operational taxonomic units (OTU) (Edgar 
2013). The chimera sequence and singleton OTU were 
removed during the OTU clustering by USEARCH (Ver-
sion 10, https​://www.drive​5.com/usear​ch/) (Edgar 2010). 
For each representative sequence, the SILVA database 
(Release 132, https​://www.arb-silva​.de/) was used anno-
tate taxonomic information with the confidence thresh-
old to default to ≥ 0.5. The OTUs abundance information 
was normalized using a standard of sequence number 
corresponding to the sample with the least sequences.

Alpha diversity, including Shannon index and Simp-
son index were calculated with the QIIME (Version 1.9.1, 
https​://qiime​.org/) (Caporaso et  al. 2010). Bray–Curtis 
distance was used to evaluate the species complexity dif-
ferences of samples. Principal coordinate analysis (PCoA) 
was conducted to reveal the clustering of samples using 
the vegan package in R (Version 3.6.0). Random for-
ests regression was used to regress relative abundances 
of taxa in the temporal profiles of water, intestine and 
sediment samples, using the following parameters with 
randomForest package in R (cv. fold = 10, step = 0.99, 
ntree = 5000). To perform the clustering of OTUs for 
the analysis of time-course data, the fuzzy c-means algo-
rithm was used for the comparative clustering analysis 
with Mfuzz package in R (Israel et  al. 2016). Permuta-
tional multivariate analysis of variance (PerMANOVA) 
was conduct to compare microbial composition dissimi-
larities (Anderson 2006). A calculated P value < 0.05 was 
considered statistically significant. To evaluate the cor-
relation between environmental factors and microbial 
community, variation partition analysis (VPA) canoni-
cal correlation analysis (CCA) was conducted using the 
vegan package in R.

Results
Shrimp production and environmental factors
The average shrimp length and weight data every 15 days 
of culture are shown in Additional file  1. Tables S1 and 
S2. At harvest, the average weights ranged from 23.8 to 
25.6  g, production ranged from 3872.6 to 3980  kg/hec-
tare, and survival rates were 95, 100, 82 and 90% for 
ponds A, B, C and D, respectively. The feed  conversion 
ratio ranged from 1.31 to 1.4, and shrimps were sold at 
USD 6.38 per kg (Table 1).

Water quality parameters were determined through-
out the shrimp culture. Temperature was relatively stable 
at 28–29  °C. Average pH values were between 7.45 and 
8.0 (Fig.  1). Weekly salinity gradually decreased dur-
ing culture from 2–5 (Fig. 1). Likewise, the average dis-
solved oxygen value decreased from 5.875  mg·L−1 to 

https://www.usadellab.org/cms/
https://www.usadellab.org/cms/
https://ccb.jhu.edu/software/FLASH/
https://www.mothur.org
https://www.drive5.com/usearch/
https://www.arb-silva.de/
https://qiime.org/


Page 4 of 11Zeng et al. AMB Expr          (2020) 10:180 

4.113 mg·L−1 (Fig. 1). Average concentrations of NH3-N, 
NO2-N, NO3-N and PO4

3− throughout the culture period 
were between 0.522–1.841 mg·L−1, 0.006–0.2516 mg·L−1, 
0.0117–0.7587  mg·L−1 and 0.0359–0.3453  mg·L−1, 
respectively (Fig. 1). Sediment pH value ranged between 
5.6 and 6.7 (Fig. 1).

Microbial composition and diversity in Aquamimicry 
system
Quality and chimera filtration of the raw data produced 
a total of 21,657,470 high quality sequencing reads from 
162 samples, with an average of 133,688 reads. Finally, 
13,562 OTUs were obtained, and the OTUs numbers 
detected in each sample ranged from 888 to 4,399, with 
an average of 2190 OTUs. OTUs were identified into 62 
phyla and 2203 genera. Sequences that could not be clas-
sified into any known groups were assigned as “others”.

In the three habitats, Proteobacteria, Bacteroidetes, 
Planctomycetes, Firmicutes, Actinobacteria and Cyano-
bacteria were the dominant phyla. At phylum level, Pro-
teobacteria was the most abundant in water (20.8%) and 
intestine (43.6%), while Bacteroidetes was dominant in 
sediment (32.1%) (Additional file 1. Fig. S1). At the genus 
level, the most abundant genera were Exiguobacterium, 
Vibrio, Candidatus Bacilloplasma, Pirellula, Pseudar-
throbacter, Acinetobacter, Rhodopirellula and Photobac-
terium (Additional file 1. Fig. S2).

To estimate and compare the bacterial diversity in the 
three habitats, α-diversity indices (Chao1 and Shannon 
index) were calculated from OTUs of each sample. The 
Shannon indices of water, intestine and sediment were 
5.2 ± 1.0, 5.6 ± 0.8 and 8.9 ± 0.3 respectively (Fig.  2a). 
The Chao1 indices of water, intestine and sediment were 
1,673 ± 495, 1,320 ± 336 and 4,038 ± 287 respectively 

(Fig.  2b), which suggested that the sediment microbial 
community held the highest α-diversity.

Microbial similarities and differences among the three 
habitats
For further investigation of the dominant microbiota that 
exists in the three habitats, a Venn diagram revealed that 
4,831 OTUs were shared in shrimp intestine, surround-
ing water and sediment (Fig.  3a). These OTUs hold a 
large percentage of the total bacterial population (average 
of 81.5, 85.7 and 76.5% in water, intestine and sediment, 
respectively). In addition, unique OTUs in three habitats 
were observed, such as 224, 1,861, 2,439 unique OTUs 
were only found in water, intestine and sediment, respec-
tively. PCoA analysis revealed that the microbial commu-
nities of the three habitats were markedly distinct from 
each other (Fig. 3b).

To find out the specific bacterial taxa distributed 
among the three habitats, we constructed a random for-
est classifier model that could specifically identify sam-
ples in each group. To detect unique OTU markers, a 
ten-fold cross-validation on a random forest model with 
all 162 samples was conducted. Results indicated that a 
total of 23 OTU markers were selected as the optimal 
marker set. The relative abundance of these OTUs in 
each group was presented (Fig.  3c), which were further 
proven to be significantly different among the three 
habitats by ANOVA (P < 0.05) (Fig.  3d). Compared to 
the surrounding water and sediment, some opportunis-
tic pathogens (Vibrio, Aeromonas, Photobacterium and 
Candidatus Bacilloplasma) were significantly sufficient in 
the intestine (P < 0.05). The UPGMA clustering showed 
that almost all the individual samples were clustered into 
groups according to habitat (Fig.  3e), which suggested 
that the 23 OTU markers were a successful in distin-
guishing the specific taxa in each habitat.

Microbial alterations during different culture periods
The difference in microbial communities at different cul-
ture stages was further investigated. In the three habi-
tats, PCoA results showed that all the individual samples 
were clustered into groups according to stage of culture 
(Fig.  4a). PERMANOVA (P < 0.05) confirmed that the 
microbial communities differed significantly between any 
two of the compared stages (P < 0.05), except between 
stages 2 and 3 (P > 0.05) (Table 2).

For further determination of which variables affected 
the shrimp intestinal microbial structure, a VPA was con-
ducted. A sunset of environmental parameters explained 
9.0% of the observed microbial variation, while the effect 
of different culture stages was more pronounced (11.2%) 
(Additional file  1. Fig. S3a). CCA was applied to reveal 
the correlation between environmental parameters and 

Table 1  The information of pond production

Details Pond no

A B C D

Pond size (m2) 4,000 4,000 4,000 4,000

Culture period (days) 72 72 70 73

Initial stocking 160,000 160,000 200,000 180,000

Stocking density (shrimp/m2) 40 40 50 45

Count (shrimp/kg) 39 41 41 42

Harvest size (g) 25.6 24.4 24.4 23.8

Shrimp harvest (kg) 3900.0 3900.0 3980.0 3872.6

Total feed used (kg) 5091.8 5241.8 5053.5 5427.5

Survival rate (%) 95 100 82 90

Feed conversion rate 1.31 1.34 1.27 1.4

Prize (US $/kg) 6.38 6.38 6.38 6.38

Total income (US $) 24,879.3 24,879.3 25,389.7 24,704.5
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microbial community (Additional file 1. Fig. S3b). Salin-
ity, water pH and DO were correlated to microbial com-
munity, which indicated that they were the crucial factors 
shaping the variations in microbial community.

To identify the altered taxa at different stages and how 
the relative abundance altered, a comparative clustering 

strategy was implemented to detect substantial differ-
ences in abundance profiles across stages. The fuzzy 
c-means clustering grouped similar abundance profiles 
into 3, 4 and 6 clusters in water, intestine and sediment, 
respectively, representing distinct phases of abun-
dance during the culture period (Fig.  4b). This strategy 

Fig. 1  The physicochemical factors of the water and sediment
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Fig. 2  The α-diversity comparison among three habitats. a The Shannon index b The Chao1 index. Compared to water and intestine samples, the 
α-diversity of sediment microbiota was the highest

Fig. 3  The relationship between shrimp intestinal and environmental microbiota. a Venn diagram shows the unique and shared OTUs in the 
different habitats. the shared OTUs majorly belonged to Proteobacteria and Bacteroidetes phylum. b PCoA of microbial communities based on the 
16S rRNA sequencing profiles. Samples were clustered into three groups by PCoA based on Bray–Curtis distance, indicating that the microbial 
structure differed significantly among three habitats. c Classification of the OTU markers for the three habitats. A total of 23 OTU markers were 
selected as the optimal marker set by a ten-fold CV-error curve. d The relative abundance of the OTU markers at each group. e UPGMA clustering 
based on the 23 markers revealed that the microbial composition of each group was clearly distinct
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allowed us to easily identify which taxa exhibited the 
same abundance patterns. Results showed that a great 
amount of OTUs (water: 328; sediment: 1228; intestine: 
346) exhibited a dramatic alteration during the culture 
period, which corresponded to the results of PCoA and 
PERMANOVA analysis that microbial composition 
varied significantly at different culture stages. Moreo-
ver, the shared OTUs in the same alteration pattern was 
observed. There were 22 (15%), 19 (25%) and 21 (17%) 
shared OTUs between intestine and sediment in clusters 
1 to 3, while 48 (33%) and 7 (0.9%) shared OTUs were 
found between intestine and water (Fig. 4b), which indi-
cated that the intestinal microbial alteration did not cor-
related much to water and sediment during the culture 
period.

Discussion
A number of studies suggest that shrimp intestinal 
microbiota is closely related to rearing environmental 
microbiota, which is also linked to shrimp disease occur-
rence (Hou et al. 2018b; Xiong et al. 2018a). The Aqua-
mimicry system provides an ecological pattern to prevent 
disease outbreaks in shrimp culture. However, little is 
known about the microbial composition and diversity 
alterations of this system in shrimp intestine and the sur-
rounding environment. In this study, the relationship 
of microbial community between shrimp intestine and 
the surrounding environment was investigated, and the 
altered microbes during the culture period were further 
identified. This work partially meets the urgent need for 
understanding the main and important microbial com-
munity in Aquamimicry system.

Many studies report that the interactions of intes-
tinal microbiota and surroundings were associated 
with aquatic animal diseases (Li et  al. 2017b; Xiong 
et al. 2018a). Thus, observation of the overlap between 
shrimp intestinal microbiota and that of their sur-
rounding water and sediment is necessary for shrimp 
health management in aquaculture. A previous study 
on shrimp earthen ponds demonstrated that similar 
bacterial community compositions were observed in 
shrimp intestine, the surrounding water and sediment 
(Hou et al. 2018b). Moreover, some reports have shown 
similar microbial community in intestine and sur-
roundings of crucian carp (Li, et  al. 2017a). However, 
unlike in these previous researches, this study revealed 

that microbial communities of the three habitats were 
markedly separate (Fig.  3). Furthermore, the shared 
OTU numbers were relatively low between the same 
alteration pattern of intestinal microbiota and sur-
rounding microbiota (Fig.  4), which indicated that the 
microbial community in shrimp intestine was not the 
same as those in the surrounding water and sediment 
in the Aquamimicry system. A previous study exhibited 
similar changes between water and intestinal micro-
biota during the culture period, suggesting that the 
water microbiota altered the shrimp intestinal micro-
biota, and was subsequently related to disease outbreak 
(Xiong, et al. 2018a). The same phenomenon was found 
in crucial carp suffered from red-operculum disease 
that a close link between intestinal and environmental 
microbiota (Li, et al. 2017a). Similar results were found 
in a tilapia farm that pond water and sediment bacte-
ria influenced the composition of intestine, especially 
the presence of pathogens, such as Streptococcus and 
Vibrio (Al-Harbi and Uddin 2005). Further study dem-
onstrated that tilapia suffered from infections caused 
by an emerging Francisella sp. which was found in 
sediment and water with high abundance (Soto, et  al. 
2009). As the Pacific white shrimp is a typical benthos 
that takes in feed debris or sediment from the pond 
bottom, some culture operations in the Aquamimicry 
system, such as removal the feed from the bottom and 
using multiple oxygen increasing device to agitate the 
water thoroughly, can effectively reduce shrimp’s intake 
of debris, which might weaken the effect of the envi-
ronmental harmful factors on shrimp. As previously 
reported, shrimp sourced little of their intestinal micro-
biota from their rearing water, whereas the successions 
of intestinal microbiota were significantly correlated 
with host age (Xiong et al. 2019, 2020). In the present 
study, the culture stages were more pronounced than 
environmental factors in microbial variations (Addi-
tional file  1. Fig. S3), while the shared OTUs at the 
same stages were low (Fig.  4), which indicated that 
both culture stages and aquaculture pattern affected 
shrimp intestinal microbial composition. Taken all 
above clues into consideration, the divergence between 
shrimp intestinal and environmental microbiota in the 
Aquamimicry system may be a potential indicator for 
the healthy condition of shrimp culture, which give us 
inspiration on the sustainable shrimp culture practice.

(See figure on next page.)
Fig. 4  The altered microbial structure at different culture stages. a PCoA of the microbial structure at different culture stages. b OTUs with similar 
abundance alteration at different stages clustered into different groups. All the OTUs that were presented in more than 50% samples at each habitat 
were used for Mfuzz analysis. The x-axis represents culture stage, and the y-axis represents standardized expression change. OTUs in the same 
cluster suggested that their alteration trends during the culture period were similar. The Venn diagram showed the shared OTU number between 
similar clusters
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Microbial diversity, particularly, intestinal diversity, 
may be considered a feature of host health (Ren et  al. 
2018). In this study, the α-diversity (Shannon index and 
Chao1 index) deceased during the culture period (Fig. 2). 
In a previous study, shrimp intestinal microbial diversity 
altered significantly at different culture stages (Zeng et al. 
2017). Similar results have been observed in the intestinal 
microbiota of aquaculture fishes where the α-diversity 
decreases over culture period (Yan et al. 2016). Another 
study suggested that larval shrimp can obtain sufficient 
and diverse bacterial species rapidly from the environ-
ment, although only a little part of the microbes could 
successfully colonize in the shrimp intestine (Xiong et al. 
2018a). Some studies reveal that the development of 
animal digestive and immune systems may significantly 
affect the intestinal microbiota (Costello et al. 2012; Yan 
et  al. 2016). The larvae, without complete immunity, 
may easily obtain more species from the environment, 
whereas the adult shrimp can selectively acquire different 
types of microbes. This finding is consistent with the pro-
cesses found in other aquatic animals wherein microbial 
diversity decreases with host development (Burns et  al. 
2016; Yan et al. 2016). This information could be impor-
tant for further microbial management for a more benefi-
cial intestinal microbiota in shrimp culture, which might 
assist shrimp in preventing opportunistic pathogen or 
disease outbreaks.

Many investigations demonstrated that the impor-
tant roles of intestinal microbial composition in aquatic 
animal health (Hou et  al. 2018a; Li et  al. 2017a, 2016; 
Xiong et  al. 2018b). In addition, the intestine may host 

opportunistic pathogens, and it is evidenced that the 
overgrowth of opportunistic pathogens could contribute 
to disease (Perez et al. 2010; Xing et al. 2013). For exam-
ple, in our previous study, the overgrowth of Candidatus 
Bacilloplasma and Phascolarctobacterium may contrib-
ute to white feces syndrome (Hou et al. 2018a). Similarly, 
Vibrio, Aeromonas and Photobacterium are generally 
known to include main opportunistic bacteria that could 
be pathogenic to aquatic animals (Nayak 2010; Zhang 
et al. 2014). Herein, the abundance of some opportunis-
tic pathogens was relatively low (Aeromonas, 0.5; 10.7%; 
Phascolarctobacterium, < 0.01%; Photobacterium, 0.4%;), 
whereas Vibrio (10.9%) and Candidatus Bacilloplasma 
(10.4%) were the dominant genera in shrimp intestine. 
This phenomenon was also detected in another study (Li 
et al. 2017a), which suggested that these genera may act 
not only as opportunistic pathogens, but also as essential 
players with other unknown functions in the intestine 
environment. In addition, some probiotics were added 
during the culture period. However, the relative abun-
dance of Bacillus was low in the three habitats (< 0.001%), 
which indicated that the use of probiotics did not effec-
tively establish a large population in intestine and envi-
ronment as expected. Unlike Bacillus, another probiotic 
Lactococcus was higher than 0.1% proportion in shrimp 
intestine. These results provide valuable clues for guiding 
the rational use of probiotics in shrimp culture.

Collectively, the composition and diversity of shrimp 
intestine microbiota and surrounding microbial com-
munity in Aquamimicry system were evaluated, with 

Table 2  PERMANOVA of microbial structure at different stages

PERMANOVA was used to compare significant differences at different culture stages

Significant differences are indicated by asterisks (*, P < 0.05; **, P < 0.01)

Habitat Stage 1 2 3 4 5 R2

Water 1 – 0.215

2 0.01** –

3 0.03* 0.18 –

4 0.01** 0.03* 0.12 –

5 0.01** 0.01** 0.01** 0.01** –

Intestine 1 – 0.278

2 0.01** –

3 0.01** 0.1 –

4 0.01** 0.01** 0.02* –

5 0.01** 0.01** 0.01** 0.01** –

Sediment 1 – 0.337

2 0.53 –

3 0.06 0.41 –

4 0.01** 0.01** 0.01** –

5 0.01** 0.01** 0.01** 0.02* –
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further investigation on the relationship between 
intestinal microbiota and the surrounding water and 
sediment. The microbial diversity of intestine and sur-
roundings was different in Aquamimicry system, which 
indicates that dissimilarity among the three habitats 
could be a potential indictor for the healthy situation 
of shrimp culture, and will give us guidance for the sus-
tainable shrimp culture practice to effectively promote 
the shrimp production. These findings may strengthen 
our understanding of the significance of microbial com-
munity in Aquamimicry system, and offer fundamen-
tal information to improve healthy culture practices in 
shrimp farming.
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