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Summary. Preferential attachment is a proportionate growth process in networks, where nodes
receive new links in proportion to their current degree. Preferential attachment is a popular gen-
erative mechanism to explain the widespread observation of power-law-distributed networks.An
alternative explanation for the phenomenon is a randomly grown network with large individual
variation in growth rates among the nodes (frailty). We derive analytically the distribution of
individual rates, which will reproduce the connectivity distribution that is obtained from a gen-
eral preferential attachment process (Yule process), and the structural differences between the
two types of graphs are examined by simulations. We present a statistical test to distinguish
the two generative mechanisms from each other and we apply the test to both simulated data
and two real data sets of scientific citation and sexual partner networks. The findings from the
latter analyses argue for frailty effects as an important mechanism underlying the dynamics of
complex networks.

Keywords: Citation network; Frailty; Network model; Power law network; Preferential
attachment; Sexual partner network;Yule distribution

1. Introduction

Our aim in this paper is to study the mechanisms behind the growth of large networks. The
models that we consider are random-graph processes where nodes and links are added to the
graph, but without removal of either nodes or links.

In recent years, empirical data on large-scale networks have become available and have
provided valuable insights into the structure of real world connected systems. In many complex
networks it is found that the degrees of the nodes follow a power law distribution. In an early
reference in this field de Solla Price (1976) found that the number of citations of scientific articles
follows a power law, and he showed that this power law can be explained if one assumes that
the probability that a new publication cites a given article is proportional to the number of
citations. This was taken up by Barabási and Albert (1999), who proposed a similar model for
the World Wide Web, and who coined the name ‘preferential attachment’ for this mechanism.
Today, most existing models that are aimed at reproducing power law graphs incorporate a pref-
erential attachment mechanism of some kind; numerous examples can be found in Dorogovtsev
and Mendes (2003). However, already in 1925, Yule had published a closely related stochastic
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branching model. The Yule process is general and has been adapted to networks; see Krapivsky
et al. (2000), Newman (2005) and Dorogovtsev et al. (2000).

Jeong et al. (2003) proposed a method to identify a preferential attachment process. The idea
is to estimate, for every k, the intensity Π.k/ by which nodes of degree k acquire new links
during a small time interval Δt. The preferential attachment hypothesis predicts that the rate
Π.k/ is a monotonically increasing function of k, and Jeong et al. (2003) found that this is
indeed so for several real world networks. In other words there is a correlation between a node’s
attractiveness and its popularity, where we interpret the attractiveness of a node as its rate of
acquiring new links, and the popularity of a node as the number of links that it has already
acquired.

However, the preferential attachment hypothesis actually makes a stronger prediction, namely
that a node is attractive because it is popular, i.e. a node with high degree attracts new links at
a higher rate than other nodes because it has high degree. Despite the popularity of the prefer-
ential attachment hypothesis in explaining the structure of complex networks, it seems natural
also to investigate the opposite relationship: a node may have some intrinsic quality causing
it to acquire links at a higher rate than other nodes. Such nodes will in general end up with
higher degree than less attractive nodes; thus, in this setting we shall also find an increasing
Π.k/, although the growth mechanism is different from preferential attachment.

In some networks a frailty mechanism provides a seemingly reasonable explanation of the
connectivity distribution. For example in a sexual network the degree of a node (i.e. the number
of previous sexual partners) is not displayed and cannot be used directly as a selection criterion.
Likewise, research papers with a high citation count are likely to have some merit, and are, one
would hope, cited again because of their quality, and not merely because of their previous pop-
ularity. However, papers with many citations are more likely to be found in a literature search
by a potential citer and are also for this reason more likely to be cited. It seems reasonable that
in many real networks there is a mixed mechanism, such that a node’s attractiveness increases
with its popularity, but such that there still is heterogeneity between the nodes, which is not
directly related to their degrees.

In this paper we shall study a random-graph model which evolves by a mechanism which
mimics this behaviour, and we shall investigate statistical methods by which we can distinguish
such a process from a pure preferential attachment process. The random-graph model that we
propose we call a frailty graph. At birth every node v is assigned a frailty Zv, which is distrib-
uted according to some probability distribution Z. Frailty is a term that is used in event history
analysis to describe unobserved heterogeneity in data. The random graph then grows in such a
way that existing nodes acquire new links with a rate that is proportional to its assigned frailty
variable. We shall assume that we cannot observe the frailty Zv for a given node v; however, it is
possible to infer properties about the distribution of Z from the behaviour of the random-graph
process.

We can consider a preferential attachment process and the frailty graph process as two ex-
tremes: in the preferential attachment process nodes are equal at the outset, and their rate of
acquiring new links depends solely on their degree. Nodes which enter the graph at a later
time, or nodes that are unlucky in the beginning and acquire few links, will have little chance
of overtaking nodes with an early success. In the frailty graph process, however, there is an
inherent unevenness between the nodes from the beginning and, even if a node with unfavour-
able frailty is lucky and receives several links in one time period, this will not affect its ability
to attract new links in another time period. Furthermore, entering the graph at a later time
is not an obstacle to becoming a successful node, as long as the node has a favourable frailty
variable.
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The method to identify preferential attachment, which was proposed by Jeong et al. (2003),
considers the degree distribution of the network at two relatively close observation times
and estimates the link acquiring rate of a node as a function of its degree. As explained
above, this method does not distinguish a network evolving by the preferential attachment
mechanism from a frailty network. As an alternative we propose methods which make use of
three observation times, t1, t2 and t3, or two observation times combined with information on
age.

A neat property of the preferential attachment mechanism is that it automatically leads to
graphs where the degrees follow a power law distribution, provided that the rate with which a
node acquires new links is growing linearly with its degree. A power law distribution has been
observed in many real world complex networks; for this reason the preferential attachment
hypothesis is an appealing explanation. In the frailty model we obtain a power law distribution
only if the frailty variable itself is power law distributed; thus, a power law may be more difficult
to rationalize if we assume that a frailty process is the underlying mechanism of the network.
However, power laws are observed in many situations in the real world, e.g. in social interactions
as pointed out by Zipf (1949), and may be caused by several mechanisms (Newman, 2005), so it
is not so far fetched to assume that such a frailty variable may have a power law distribution. In
this paper we derive a distribution for the frailty variable which ensures that the graph process
asymptotically has the same degree distribution as the Yule process and thus follows a power
law.

We shall also consider two real world networks, namely citation data for a certain set of
mathematical research papers, and the sexual network of a subset of the Norwegian popula-
tion. Much work has been done on the study of sexual networks, since this is relevant with
regard to the spread of sexually transmitted infections. In a study of homosexual men attending
a sexually transmitted infections clinic, Colgate et al. (1989) observed that the sexual contacts
follow a power law degree distribution. This finding was supported by Liljeros et al. (2001), on
the basis of analyses of data from a population-based sexual survey in Sweden, and later Liljeros
et al. (2003) suggested that preferential attachment could be of relevance for sexual network
growth. However, these issues have been the subject of some controversy, and existing data
samples are too small to verify scaling behaviour for more than 1–2 decades. In an attempt to
find growth models for sexual networks, Jones and Handcock (2003) and Handcock and Jones
(2004) noted that heterogeneity between the nodes for forming new links is the mechanism that
is best supported by data, and they concluded that

‘a unitary behavioural process, such as preferential attachment, is unlikely to underlie empirical sexual
network degree distributions’.

Moreover, they found that, although the sexual network in some portions of some societies are
well fitted by a power law, a better fit is generally obtained by a negative binomial distribution
and variants thereof. Similarly, Hamilton et al. (2008) found that, when compared with alter-
native models, the power law hypothesis fails to have consistent support. In a different setting,
Stephen and Toubia (2009) compared preferential attachment with other possible mechanisms
to find an explanation for the process of link addition in a certain social commerce network.
They found that the mechanism which fits the data best is a mechanism that is based on vertex
attributes, akin to a frailty effect.

Real networks are governed by complex social, behavioural and evolutionary dynamics and
the frailty and preferential attachment graph models that are considered here are idealizations
that involve severe reduction of that complexity. It is probable that empirical networks may
evolve by a combination of the two mechanisms in addition to time inhomogeneous growth. In
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the first part of the paper we focus on the two ‘pure’ graph models and investigate the theoreti-
cal differences between them; then we shall consider some data examples and discuss how they
relate to the two models.

2. Frailty power law distribution

Our objective is to compare frailty networks with networks evolving by preferential attachment.
For this, we need to find the probability distribution of the frailty variable Z, which ensures
that the random frailty graph has the same asymptotic behaviour as the preferential attachment
graph. As already mentioned, networks growing by the preferential attachment mechanism
automatically have a degree distribution which is asymptotically scale free, provided that the
‘preference function’ Π.k/ is linear in k. The example that we shall consider here is a general
preferential attachment process which was proposed by Yule (1925).

In this section, we start by deriving analytically the probability distribution of the frailty
variable Z, which ensures that the frailty graph is asymptotically similar to the Yule graph, and
we shall consider finite size effects of the scaling function. In the subsequent sections we provide
methods for testing for preferential attachment in networks, and we compare the two types of
graphs by using simulations. Lastly, we shall apply the test to real data in terms of citation and
sexual partner networks.

2.1. Graph models
The implementation of the graph processes in the simulations is as follows: we start with some
fixed graph G0 and let Gm be the graph after m steps in the process. To every node v in Gm, we
associate a probability pv,m, such that, for every m�0, Σv∈Gmpv,m =1. In the Yule process the
probability that is associated with a node is proportional to its degree; in the frailty process, it
is proportional to an unobserved frailty variable that is assigned to the node at birth.

At every step in the graph process, one of the following two actions is performed. With
probability pnode, a new node is added to the graph. It is then attached to one of the existing
nodes, in such a way that every node v has probability pv,m of being chosen. With probability
plink =1−pnode a new link is added between existing nodes. The origin is chosen uniformly at
random; the target node is chosen according to the probabilities pv,m.

The difference between the Yule process and the frailty process is the way in which the prob-
abilities pv,m are calculated. Let dv,m be the degree of v in Gm, and let sm be the total number of
links in the graph. Then, in the Yule process, pv,m =dv,m=2sm. In the frailty process, whenever
a node arrives it is assigned a frailty value zv which is chosen according to the probability dis-
tribution of a given positive random variable Z. The probabilities pv,m are then given by the
equation pv,m = zv=Σw∈Gm zw.

Thus, in the Yule process, a node is chosen with probability proportional to its degree, whereas,
in the frailty process, a node is chosen with probability proportional to its frailty value.

We let plink =h=.h+1/ and pnode =1=.h+1/, where h is a parameter indicating the expected
number of links added between the addition of two consecutive nodes.

2.2. Yule distribution
The Yule distribution has its origin in a mutational evolutionary model; see Simon (1955), Willis
(1922) and Yule (1925). It has been adapted to networks in different ways; here we follow the
derivation by Newman (2005). Consider a growing network where new nodes arrive consecu-
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tively at each time step. At the point of arrival, new nodes make j0 links to existing nodes, where
j0 may take the values j0 =0, 1, 2, . . . . If j0 =0, the model requires an additional ‘attractiveness’
parameter a>0 for the new nodes to engage in the preferential attachment process. Between the
arrival of new nodes, a constant of m links are formed between the existing nodes; m may take
the values m=0, 1, 2, . . . , though either j0 or m must be a positive integer for links to form. Here
the target ends are chosen according to their present degree ji with pi = ji=Σk jk. In principle,
at time t = 0 the system starts with two nodes connected by m links, so at time t = t′ there are
m+ .m+ j0/t′ links in a system of size N =2+ t′ nodes. Newman (2005) has shown with the use
of a master equation technique that the asymptotic distribution of the degree J of a randomly
chosen node is given by

lim
N→∞

{pY .J = j/}= B.j +a, q/

B.j0 +a, q−1/

= .q−1/
Γ.j +a/Γ.j0 +a+q−1/

Γ.j0 +a/Γ.j +a+q/
, .1/

where q=2+ .j0 +a/=m is the scaling constant

lim
N→∞

{pY .J = j/}=C
Γ.j +a/

Γ.j +a+q/
∝ j−q, j →∞: .2/

The Barabási–Albert preferential attachment model where new nodes enter and link to m exist-
ing nodes chosen with linear preference arises as a special case for m = a; j0 = 0 and has the
scaling property p.j/∝ j−3.

2.3. Frailty graph
We aim to find the frailty probability density function (PDF) of a randomly grown graph that
has a probability distribution function that is similar to the Yule graph equation (2). For this
we note that the degree of any single node is a random variable which is asymptotically Poisson
distributed. We first seek an expression for the probability-generating function of the degrees
of the random graph. Then we can recover the frailty rate distribution from the inverse Laplace
transform of the generating function.

We consider a random graph with N nodes, where N →∞. We assume that the ith node is
assigned a frailty variable Zi, where Z1, Z2, . . . , ZN are independent random variables which
have the same distribution as a given positive random variable Z. The expected degree of a
given node i is proportional to its frailty variable Zi; however, it also depends on the age of
the node, as older nodes will generally have a larger degree than younger nodes. Below we shall
define a random variable Y which is a ‘time-adjusted’ frailty variable, taking account of both
the inherent frailty variable of a node and its age.

After m steps of the process, the sum of the frailty variables of all the nodes in the graph will
be roughly mμpnode, where μ= E.Z/. When we consider the asymptotic case, the error in this
approximation is of lower order O.m/ and can be ignored. If node i was added at step mi, then
the degree of i after m steps will be approximately Poisson distributed with mean

(
Zi

μpnode
+plink

)
ln

(
m

mi

)
:

Let Z̃ =Z=μpnode +plink and γm.mi/= ln.m=mi/, and let f̃ .z/ be the PDF of Z̃.
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Now, suppose that we pick a node v uniformly at random from the graph, and assume that
it is a node that is not included in the initial graph G0. The birth time of v is then a random
variable M , uniformly distributed on the interval [m0, m1]. Then the degree of v will be Poisson
distributed with mean Y = Z̃v ln.m1=M/. Let g.z/ be the PDF of Y. By involved, but standard,
calculations, we can show that g.z/ is related to f.z/ by

g.z/= m1

m1−m0

[
2 exp.−m0/

{
f̃ .z=m0/

m0
− f̃ .z=m1/

m1

}
−

ln.z/−ln.m0/∫
ln.z/−ln.k1/

f̃{exp.x/} exp{−z exp.−x/}dx

]
:

.3/

Unfortunately it is not possible to express f̃ .z/ as a function of g.z/ in closed form, but it is
possible to calculate f̃ .z/ numerically, by using equation (3). The PDF of Z is then given by
f.z/= f̃ .z=μpnode +plink/.

The function g.z/ is approximately a ‘stretched-out’ version of f̃ .z/, so Y has somewhat
higher variability than Z, but it behaves similarly in many important ways. In particular, we can
show that, if f.z/ follows a power law, then f̃ .z/ also follows a power law, with the same expo-
nent. We shall use g.z/ as an approximation for the PDF of the frailty variable, rather than the
more correct f.z/, in the following sections. This eases the calculations, and the approximation
is sufficiently good to illustrate the similarities of the Yule graph and the frailty graph.

2.4. Generating function of the frailty graph
As a first step, consider a random graph with N nodes, and let N → ∞. The graph has an
arbitrary degree distribution described by P.j/ on the non-negative integers j = 0, 1, . . . . Let
Y be a random variable and let g.z/ be the density function of Y. Moreover, let Y1, . . . , YN be
independent random variables with the same distribution as Y. We assume that the degree of
the ith node is a Poisson-distributed random variable with mean Yi. Then P.j/ and the Laplace
transform Lg of the rate distribution g.z/ are related by the equation

p.J = j/=E

{
Yj exp.−Y/

j!

}
= .−1/j L

.j/
g .1/

j!
, j =0, 1, . . . , .4/

where L
.j/
g is the jth derivate of the Laplace transform Lg. The probability-generating function

G.s/ of equation (4) has a power series representation with values of P.j/ as the coefficients.
With use of equation (4) we find that

G.s/=
∞∑

j=0
P.j/sj =

∞∑
j=0

.−1/j L
.j/
g .1/

j!
sj =Lg.1− s/:

From the above equations we see that the probability-generating function of a Poisson distribu-
tion with random rate parameter Y has a simple relationship to the Laplace transform of the
rate distribution

G.s/=Lg.1− s/:

Now we set this random probability distribution function equal to the Yule distribution, P.j/=
pYule.j/. Then we can obtain the rate distribution from the inverse Laplace transform L−1

g .1−s/.
Inserting equation (1) we find that the expression takes the form

G.s/= .q−1/
∞∑

k=0

Γ.k +k0 +a/ Γ.k0 +a+q−1/

Γ.k0 +a/ Γ.k +a+q/
sk
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= q−1
k0 +a+q−1 2F1.1, k0 +a, k0 +a+q, s/,

where 2F1 is the Gauss hypergeometric function; see equation 15.1.1 of Abramowitz and Stegun
(1984). In this equation we have reparameterized the Yule probability distribution j → k + k0
for the summation to start at k =0. With this result we can express the Laplace transform by

Lg.s/=G.1− s/= q−1
p+q−1 2F1.1, p, p+q, 1− s/, .5/

where we have substituted p= k0 + a. The constant p is identical to the initial proportionality
factor for new nodes in the Yule process. In the simulations we use initial attractiveness p∈ .0, 1]
and scaling constants q∈ [2, 3].

2.5. Frailty distribution
Because of results by Abate and Whitt (1999a,b), the inverse Laplace transform of equation (5)
is found to be a beta mixture of exponential distributions that is averaged with respect to the
beta distribution. Abate and Whitt (1999a, b) also showed that both the Gauss hypergeometric
function and the beta mixture of exponential distributions can be expressed by continued frac-
tion representations in terms of Laguerre series, which may conveniently be used for numerical
inversion of the Laplace transform. The beta mixture of exponential distributions is identical
to the frailty rate PDF, and we may write

g.z/= q−1
p+q−1

∫ 1

0

1
y

exp
{

z.y −1/

y

}
B.p, q; y/dy, .6/

where B.p, q; y/ is the standard beta distribution

B.p, q; y/= Γ.p+q/

Γ.p/Γ.q/
yp−1.1−y/q−1 0�y �1, p, q> 0:

To solve the integral in equation (6) we make a substitution of the variable x = .1 − y/=y and
rewrite the frailty PDF in the form

g.z/= 1
B.p, q−1/

∫ ∞

0
exp.−zx/xq−1.1+x/−.p+q−1/ dx: .7/

Then it follows from equation 13.2.5 of Abramowitz and Stegun (1984) that the integral has the
solution

g.z/= .q−1/Γ.p+q−1/

Γ.p/
U.q, 2−p, z/, .8/

where U.·/ is the Tricomi hypergeometric function, which is also known as the confluent hyper-
geometric function of the second kind. Alternatively, using equation 13.1.3 of Abramowitz and
Stegun (1984) we find that the function can be written as a combination of regularized confluent
hypergeometric functions of the first kind, 1F̃1 (Kummer’s function),

U.q, 2−p; z/=π cosec.πp/
1F̃1.q, 2−p; z/

Γ.p+q−1/
− zp−1 1F̃1.p+q−1, p; z/

Γ.q/
:

To make a frailty graph, we draw each frailty independently from the present distribution. A
randomly grown graph with frailty Z that is obtained in this way will have the desired scaling
property of equation (2).
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2.6. Scaling of the frailty distribution
The asymptotic behaviour of g.z/ for s→∞ can be obtained from Tauberian theory by studying
the behaviour of its Laplace transform as s→0. From properties of the Gauss hypergeometric
function that are described in Abramowitz and Stegun (1984) it follows that Lg.s/ is of the
limiting form Lg.s/∼ sq−1. Using theorem II in section XIII.5 of Feller (1968) we find that the
scaling property of g.z/ is

g.z/∼ z−q:

This result is in line with the general finding that combinations of exponentials like equation
(6) result in a power law distribution. This has been studied by Miller (1957) in the context of
frequencies of words in a text, and by Reed and Hughes (2002) who considered processes of
exponential growth, which have exponentially distributed survival times.

2.7. Finite size systems
The rate frailty model equation (8) approaches the Yule distribution asymptotically. However,
empirical networks have finite sizes and, hence, their scaling behaviour is confined to a limited
regime. Hence, to compare the frailty and the Yule growth processes, we need to find the approx-
imate frailty distribution that has equivalent scaling behaviour as a Yule-distributed network
with a finite number of nodes. As before we shall use the frailty PDF g.z/ as an approximation
for the real frailty variable, rather than applying the transform (4).

Yule (1925) generalized the Yule process to a situation with a finite time horizon. He showed
that the Yule probability distribution in this case is found by replacing the beta functions in
equation (1) by incomplete beta functions. Hence

PÅ
Y .K =k/= BΘ.k +p, q/

BΘ.p, q−1/

= 1
BΘ.p, q−1/

∫ Θ

0
tk+p−1.1− t/q−1 dt, 0 <Θ< 1:

We use the notation PÅ
Y to designate the time-limited Yule distribution. The truncation has the

effect of introducing an exponential cut-off on the scaling at kcut ∼1=.1−Θ/; see Dorogovtsev
and Mendes (2003). Thus, in this case we approximate the Yule probability distribution by

PÅ
Y .K =k/≈CB.k +p, q/ exp{−.1−Θ/k} .9/

where C is a normalization constant given by

1
C

=
∞∑

k=0
exp{−.1−Θ/k}Γ.k +p/Γ.q/

Γ.k +p+q/

=B.p, q/2F1[1, p, p+q, exp{−.1−Θ/}]:

We follow the same procedure as in the previous section. The generating function of equation
(9) takes the form

GÅ.s/=Lf .1− s/=C
∞∑

k=0

[
exp{−.1−Θ/k}Γ.k +p/Γ.q/

Γ.k +p+q/

]
sk

=CB.p, q/2F1[1, p, p+q, exp{−.1−Θ/s}]:

To find the inverse Laplace transform, we note that, in the limit Θ→1, we have exp{−.1−Θ/}∼
Θ+O.1−Θ/2. In this case we obtain the generating function
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GÅ.s/∼CB.p, q/ 2F1.1, p, p+q, Θs/: .10/

From equation (10) it is seen that the scale on the Yule process is carried over to the frailty
variable. Using the results from the previous section, equation (6) and equation (7), the finite
size frailty distribution may be approximated by

gÅ.z/=CB.p, q/

∫ 1

0

1
y

exp
{

zΘ.y −1/

y

}
B.p, q; y/dy: .11/

There is a simple way to obtain the desired frailties instead of using the Tricomi hypergeo-
metric function. From equation (1.22) in Abate and Whitt (1999b) it is seen that the frailty PDF
(6) is a second beta mixture of exponential distributions. This function is obtained from the
random variable Y2 =Y=.1 −Y/ where Y has a standard beta PDF with parameters .p, q − 1/.
As noted by Abate and Whitt (1999b), page 4, beta exponential mixtures can be generated as
products of independent random variables. Let X and Y2.p, q/ be random variables with PDFs
exp.−y/ and B2.p, q − 1; y/, i.e. a beta PDF of the second kind. Then the second mixture of
exponential distributions PDF can be represented via the random variable Z2 =XY2.p, q−1/.

These properties may conveniently be used for generating a frailty PDF giving a random
graph as in equation (6). First, we generate a standard beta PDF Y = B.p, q − 1/. Second, we
make the Y2 =B2.p, q − 1/ random variable as Y2 =Y=.1 −Y/. Third, we generate a unit expo-
nential random variable X = exp.−y/. From these variables we construct a random variable
Z2 =XY2. This new variable Z2 will have the required form, since

P.Z2 >z/=
∫

x

P
(

X>
z

x

)
P.Y2 =x/=

∫ ∞

0
exp.−zx/xq−1.1+x/−.p+q−1/ dx:

For a finite size system, what remains is to scale the random variable Z2=Θ on the basis of the
characteristic network size N and the scale factor q of the Yule network.

3. Preferential attachment test

A test for preferential attachment ought to be able to distinguish the two random-graph pro-
cesses that were presented in the previous section, namely the Yule and the frailty process. In
Jeong et al. (2003) it was suggested to identify a preferential attachment process by verifying
that the rate Π.k/ is a monotonely increasing function of k, in the following manner. Let t1 and
t2 be two points in time, and let Gt1 and Gt2 be the graphs at the given points of time. For a
given node v, which is present in the graph at both times, let D1 =D1.v/ be its degree in Gt1 and
D2 =D2.v/ be its degree in Gt2 . We shall consider D1 and D2 to be random variables, and we
let X1 = X1.v/ = D2 − D1 be the increase in v’s degree from time t1 to t2. We estimate how X1
depends on D1. Jeong et al. (2003) found that in several networks the expectation of X1 depends
linearly on D1. To estimate this dependence, the times t1 and t2 should be chosen quite close to
each other.

However, this procedure is not sufficient to distinguish between the Yule network and the
frailty network. To see this, it is convenient to visualize the dependences between X1 and D1
with a so-called causal diagram (Pearl, 2000); Fig. 1. In a causal graph the relevant random
variables are represented by nodes .x, y, . . . / and an arc x→y indicates that x has a causal effect
on y. As we can see, D1 and X1 are positively correlated in both the preferential attachment
process and the frailty process: in the former process they are correlated because D1 has a direct
effect on X1, whereas in the latter they are correlated because they share a common ancestor,
namely Z, which acts as a confounder. Hence a procedure merely measuring the correlation
between X1 and D1 will not be able to distinguish the two processes.
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(a)

D1

D1X1 X1

Z

(b)

Fig. 1. In (a) a preferential attachment process, the number X1 of new links that a node receives in a given
time interval is directly affected by the node’s degree D1 at the beginning of the interval: in (b) a frailty process,
D1 and X1 do not affect each other directly but are both affected by a common cause, namely the node’s
frailty variable Z.

X1

D2

X2 D2

X2X1

Z

(a) (b)

Fig. 2. In both (a) a preferential attachment process and (b) a frailty process the number X1 of links that a
node acquires in the first time interval affects the node’s degree D2 at the end of that interval: in a preferential
attachment process D2 in turn affects the number X2 of links that are acquired in the next time interval, but
there is no causal relationship between X1 and X2, apart from that going through D2; in a frailty process
there is no direct relationship between D2 and X2, but both X1 and X2 are affected by a common cause Z
(D1 is not displayed since it no longer plays a part in the analysis)

Instead, we shall assume that we can measure the graph at three time points, t1, t2 and t3.
For i=1, 2, 3 we let Gti be the graph at time ti and, for a given node v, the degree of v in Gti is
denoted by Di =Di.v/. We let X1 =X1.v/=D2 −D1 and X2 =X2.v/=D3 −D2.

In Fig. 2, we see the causal diagram in this situation, including the ‘new’ variables D2 and
X2. Let us now see what happens if we perform a statistical analysis controlling for D2. In the
preferential attachment process, controlling for D2 clearly blocks the only path between X1
and X2. Thus, this will remove the correlation between the two variables. In the frailty process,
the path between X1 and X2 is still intact after controlling for D2. In this case, the correlation
between X1 and X2 is therefore still present.

Hence, estimating the correlation between X1 and X2 when controlling for D2 will distinguish
the preferential attachment process from the frailty process.

One way that this can be done is by doing linear regression, where both X1 and D2 are covari-
ates, and a transformation of X2 is the dependent variable, i.e. we regress to find the parameters
β0, β1 and β2 such that

E[γ.X2/|X1, D2]=β0 +β1X1 +β2D2: .12/
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We then check to see whether the parameter β1 is significantly different from 0. If it is, then
we have an argument in favour of the frailty process; if not, the argument is in favour of the
preferential attachment hypothesis. The transformation γ must be chosen so that the assump-
tions underlying linear regression are satisfied to a reasonable degree. In a simulation of the
Yule process, and in the case of the citation data, we find that a Box–Cox transform with
parameter 0.5 is suitable. For the sexual data, it turns out that a Box–Cox transform with
negative parameters is appropriate.

This method is particularly suitable in the cases where Π.k/ has been estimated to be linear in
k. Otherwise, if we have been able to estimate the functional form of Π.k/, we might exchange
D2 with Π.D2/ in the above regression.

The method that was described above requires that the graph be observed at three separate
occasions. However, in many cases the nodes may have a well-defined birth time, which is known
to us. We can then use this as one of the time points, and we thus require only two further obser-
vation points. In this case we let t1 and t2 be the two points in time at which we measure the
degree of all the nodes, and we let ta.i/ be an individual observation time for i=1, . . . , N, with
N being the sample size. In general we may have ta.i/ 	= ta.j/ for i 	= j. We shall refer to the time
period t2 − ta.i/ as Age, and as before the variable X1 = X1.v/ = D2 − D1 is the increase in v’s
degree from time t1 to t2.

Fig. 3 shows the causal digraph in this case. Age clearly has an effect on D1. According to
the preferential attachment hypothesis there is a direct effect of D1 on X1. In the frailty model

Age

Age

D1

D1

Z

X1

X1

(a) (b)

Fig. 3. In both (a) a preferential attachment process and (b) a frailty process Age has a direct effect on D1:
by the preferential attachment hypothesis, D1 has a direct effect on X1, whereas under the frailty hypothesis
there is a confounder Z affecting both D1 and X1; furthermore, we assume that there is a direct effect of Age
on X1

Age

Age

D1

D1

Z

X1

X1

(a) (b)

~

Fig. 4. For both (a) a preferential attachment process and (b) a frailty process, we remove the direct effect
of Age on X1 by transforming X1 into X̄1
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there is no such direct effect, but there is instead a frailty variable Z which affects both D1 and
X1. However, in Fig. 3 we have also included an arrow indicating a direct effect from Age on
X1. Recall that X1 is the number of new connections that are acquired in a certain time interval.
Although a direct effect of Age on X1 is captured neither in the Yule model nor in the frailty
graph model, it is reasonable to expect such an effect in real world networks, such as sexual
networks. In the previous test, it is easier to justify ignoring the effect of age altogether, since
we may assume that X1 and X2 are two intervals which are relatively short and relatively close
together, compared with the total time span of the graph process. In this case, however, we are
in fact considering the entire time span from a node’s birth until the present time, and the age
effect is likely to be more pronounced. We should therefore take this effect into account.

We shall assume that we know, or can estimate, the expected value and standard deviation of
X1 given the age of the node. Thus, we have functions f and s such that E[X1.v/|Age.v/=a]=
f.a/ and var{X1.v/|Age.v/=a}= s.a/2. We define X̃1.v/= [X1.v/−f{Age.v/}]=s{Age.v/} to
be the standardized version of X1.v/. If we now exchange X1 with X̃1 in Fig. 3, yielding Fig. 4,
we can remove the edge from Age to X̃1. We can then use linear regression to estimate the effect
of Age and D1 on X̃1, possibly by using a transformation γ on the dependent variable:

E[γ.X̃1/|Age, D1]=α0 +α1 Age+α2D1: .13/

If the preferential attachment hypothesis is correct, D1 should have an effect on X̃1, whereas
Age should not, and we can expect to see α2 significantly different from 0, whereas α1 is not.
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Fig. 5. Cumulative degree distribution of the Yule graph (�) and the frailty graph (�): the size of the network
is N D50000 nodes, and the parameters are k D1, a D0, mD2 and ΘD0:9985



Frailty Effects in Networks 251

Let us assume instead that the frailty hypothesis holds. In this case, we induce a correlation
between Age and X1 by controlling for D1. This can be seen from the causal diagram in Fig.
4, or by words in the following way: if v and w have the same degree at time t1, we can assume
that the youngest node has the most favourable frailty variable, since it has spent the shortest
time acquiring that degree. That node is therefore likely also to do better in the time interval
from t1 to t2. If the frailty hypothesis holds, we therefore expect to see α1 significantly different
from 0.

4. Numerical simulations

We simulate in parallel graphs that are derived from the Yule process (Yule graphs) and frailty
graphs from initial graph sizes G0 of 20 nodes, and with equal values of the parameters a, m and
k0 as described in Section 2.7. The tail behaviour of the frailty graph is adjusted from equation
(11), on the basis of the final graph size N and the scaling constant q of the corresponding Yule
graph. The resulting graphs have similar scaling characteristics; Fig. 5.

First we use the recommended graphical method by Jeong et al. (2003) to test for prefer-
ential attachment. In Fig. 6 the cumulative mean number of new links during a small time
interval Δt is plotted as a function of the connectivity at the beginning of the interval on
log–log-axes. The mean numbers are group averages among all nodes with identical link num-
bers at Δt = 0. A line has been added showing the expected linear preference slope. It is clear
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Fig. 6. Cumulative mean number of links grouped by previous connectivity for a Yule graph (�) and a frailty
graph (�): the rate of linkage is tested on networks of size N D10000 in an interval of ΔN D1000 nodes, and
the model parameters are k D1, a D0, mD2 and ΘD0:999 ( , linear preferential attachment)
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Fig. 7. Partial regression plots of the residuals ei [X2jD2] on ei [X1jD2] for (a) the Yule graph and (b) the
frailty graph: the slopes are equal to the β1-coefficients for X1 in the regression model equation (12); in the
Yule graph β1 D 7:1 � 10�3, [�1:5 � 10�2I 1:7 � 10�2], with the 95% confidence interval added in brackets;
the corresponding value for the frailty graph is β1 D 8:1 � 10�1, [8:0 � 10�1I 8:2 � 10�1]; simulations were
performed with scaling factor q D 2:5; the observation times are N1 D 27000, N2 D 40000 and N3 D 60000
nodes

Table 1. Analysis of model (12) for the citation data†

Data N Variable b̂ b̂bs 95% confidence β̂ β̂bs 95% confidence Sign
interval interval

All 262 X1 0.29 0.29 .0:18,0:41/ 0.71 0.71 .0:44,0:99/ 0.000
All 262 D2 0.02 0.02 .−0:04,0:08/ 0.10 −0:07 .−0:19,0:38/ 0.255

†The table shows the unstandardized estimates b̂ and bootstrap estimates b̂bs and standardized
estimates β̂ and bootstrap estimates β̂bs, along with bootstrap confidence intervals.

Table 2. Analysis of model (13) for the citation data†

Data N Variable b̂ b̂bs 95% confidence β̂ β̂bs 95% confidence Sign
interval interval

All 262 Age −0:07 −0:07 .−0:11, −0:03/ −0:18 −0:18 .−0:28,−0:08/ 0.000
All 262 D1 0.05 0.05 .0:045,0:063/ 0.71 −0:72 .−0:62,0:86/ 0.000

†The table shows the unstandardized estimates b̂ and bootstrap estimates b̂bs and standardized
estimates β̂ and bootstrap estimates β̂bs, along with bootstrap confidence intervals.
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Fig. 8. Joint degree distribution of (a) the Yule graph and (b) the frailty graph (the most frequent links in
both graphs are links connecting medium degree nodes, producing an area with high frequency densities in
the lower left-hand corners; high degree nodes are mostly connected to low degree nodes (bottom right and
top left) and (c) the difference between the frailty graph joint degree distribution (the frailty-based topology
has the largest density of links connecting medium degree nodes; the area with high density is extended in
the Yule-based graph and stretched towards the axes)
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Fig. 9. Analysis of the residuals: (a) untransformed; (b) Box–Cox transformation, λD0:5

that the two graphs are quite similar, implying that the method suggested cannot distinguish a
random process acting on nodes with heterogeneous rates from true preferential attachment.

Then, we test for preferential attachment as described in Section 3. Given three observations
of the graphs, a linear regression of the number of new links in the second time period X2 is
performed with the number of new links during the first time period X1 and the number of
links at the start of the second time period D2 as explanatory variables. Fig. 7 shows partial
regression plots and identifies the isolated effect of adding X1, where the slopes are identical to
the regression coefficient β1 in the multiple-regression model (12). The test correctly identifies
the preferential attachment process with β1 equal to 0. Thus, knowledge of X1 gives no further
information about X2 once we have knowledge of D2. In the frailty graph, the β1-coefficient is
significantly different from 0.

The disparate linking dynamics in the preferential attachment graph and the frailty graph
give rise to differences in other graph statistics. For example, the dynamics will affect the degree
distribution in the neighbourhood of nodes of a given degree. The interconnection between
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nodes is commonly measured by the joint degree distribution P.k1, k2/, describing the proba-
bility that a randomly selected link has end points in nodes with connectivity k1 and k2. It has
the definition

P.k1, k2/= α.k1, k2/m.k1, k2/

2m
, .14/

where m is the number of links connecting nodes of types k1 and k2, and α.k1, k2/=2 for k1 =k2;
otherwise α.k1, k2/ is equal to 1 (Fig. 8).

5. Analysis on real network data

To demonstrate how the tests work, we used them on two sets of data. The first data set counts the
number of citations of a set of comparable scientific publications obtained from the Thomson
Reuters Web of Knowledge (http://wokinfo.com). The second data set counts the num-
ber of sexual partners in a group of 18–49-year-old men. In the tables we report least squares
estimates together with bootstrap estimates and confidence intervals from 10000 samples. In
addition we also list the standardized estimates and bootstrap estimates with confidence inter-
vals to allow for comparison of individual influence of the dependent variables.

5.1. Citation data
As our sample we used the 262 papers that were published in the mathematical journal Random
Structures and Algorithms in the period 1998–2003, and we counted the citations up to and
including 2008. The data were collected from the Web of Knowledge. The number of citations
ranges from 0 to 79, with the mean being 7.16.

We let t1 =2004, t2 =2006 and t3 =2008, and we let Di, for i=1, 2, 3, be the total number of
times that a paper has been cited by the end of the year ti. Thus, we consider time intervals of
2 years: the value of X1 is the number of times that a paper has been cited in 2005 and 2006,
whereas X2 is the number of times that it has been cited in 2007 and 2008.

We first analyse the data by using the model that is defined by equation (12); the results
are found in Table 1. In Fig. 9 we show the behaviour of the residuals of the linear regression
when we use the untransformed data as the dependent variable, and when we use a Box–Cox
transform with parameter 0.5. Using the untransformed data leads to residuals being clearly
non-normal. Figs 9(d)–9(f) show that using transformed data leads to a better, albeit not
perfect, fit to the normal distribution for the residuals, and we choose to use these variables
in the linear regression.

Doing the regression analysis, we find that X1 has a strong and highly significant effect on
γ.X2/, whereas D2 does not. This gives us a strong indication that there is a frailty effect.

We now turn to the model that is defined by equation (13); the results here are found in Table 2.
In this case it turns out that the logarithmic transformation γ.X̃1/ = log.X̃1 + 1/ gives us the
best approximation of the residuals to a normal distribution. In this case we find that there is an
effect of Age on X̃1, which, as explained in Section 3, also suggests that there is a frailty effect.
In this case, however, the effect of D1 on X̃1 does not disappear, as in the previous test. This
may be an indication that there is a certain preferential attachment effect as well.

5.2. Sexual partner network
In our second example we analyse data on numbers of lifetime sex partners in a group of
18–49-year-old heterosexual men, in addition to information on their partner numbers during
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Table 3. Analysis of model (12) for sexual partnerships

Data Results for X1 Results for D2

N λ β̂1 β̂1bs 95% confidence Sign β̂2 β̂2bs 95% confidence Sign
interval interval

All 608 −0:62 0.32 0.33 .0:21,0:50/ 0.000 0.12 0.13 .0:04,0:23/ 0.003
20–29 years 144 −0:40 0.26 0.24 .−0:01,0:51/ 0.012 0.03 0.08 .−0:14,0:45/ 0.763
30–39 years 229 −0:81 0.19 0.24 .0:02,0:52/ 0.007 0.30 0.28 .0:11,0:44/ 0.000
40–49 years 220 −0:40 0.46 0.58 .0:36,1:08/ 0.000 0.09 0.09 .−0:00,0:20/ 0.139

Results for X1 Results for D2−5

N λ β̂1 β̂1bs 95% confidence Sign β̂2 β̂2bs 95% confidence Sign
interval interval

All 608 −0:63 0.20 0.21 .−0:03,0:45/ 0.009 0.21 0.21 .0:01,0:47/ 0.006
20–29 years 144 −0:43 0.06 0.06 .−0:28,0:42/ 0.751 0.21 0.23 .−0:18,0:64/ 0.238
30–39 years 233 −0:87 0.18 0.17 .−0:23,0:57/ 0.078 0.23 0.26 .0:03,0:66/ 0.026
40–49 years 231 −0:38 0.34 0.44 .0:07,1:05/ 0.015 0.22 0.19 .−0:08,0:50/ 0.008
Cohabiting 425 −1:63 0.20 0.21 .−0:03,0:45/ 0.009 0.21 0.21 .0:01,0:47/ 0.006
Single living 166 −0:07 0.31 0.30 .−0:06,0:61/ 0.047 0.16 0.17 .−0:15,0:52/ 0.312

the periods of 5, 3 and 1 year previously. The data are from a Norwegian survey that was con-
ducted in 2002, and the partner distribution has previously been shown to be highly skewed
(de Blasio et al., 2007). We let D1 and D2 be the total number of partners 3 years and 1 year
respectively before the study was conducted; let X1 and X2 be the numbers of new sexual part-
ners in the first 2 years and the last 1 year of the 3-year period leading to the survey respectively.
The variable Yact (corresponding to Age in equation (13)) refers to the time since sexual debut
counted in years.

The acquisition of sexual partners is a complex social phenomenon, depending on a person’s
age and marital (cohabiting) status as well as other factors. Thus, the age of sexual debut and the
timing and duration of steady partnerships are likely to influence to a great extent the number
of sex partners an individual will experience. To take these issues into account we also tested the
short-term sexual pattern, where presumably changes in social–demographic factors are minor.
In these analyses we let D1−5 and D2−5 be the total numbers of partners in the first 2 and 4
years with respect to the 5-year period leading to the survey.

The age of sexual debut among the men ranged from 9 to 30 years, and this makes the use
of Yact in equation (13) potentially problematic. The problem arises because we make an age
adjustment for the dependent variable X̃1.v/ where we pool men with the same number of years
of active sexual life, but with different biological age. Since sexual activity is known to decline
with age, we should avoid having a large discrepancy between age and Yact. For this reason
we include only those men who had their sexual debut between 15 and 19 years of age, who
constitute 72% of the observations.

As with the citation data, we perform a Box–Cox transformation of the dependent variables
γ.X2/ and γ.X̃1/. The results of the regression analyses that are defined by equation (12) argue
for presence of frailty in the sexual partner network dynamics, in both longer and shorter peri-
ods of time. This is seen by the significant estimates of the X1-coefficients to predict γ.X2/ when
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Table 4. Analysis of model (13) for sexual partnerships

Data Results for Yact Results for D1

N λ α̂1 α̂1bs 95% confidence Sign α̂2 α̂2bs 95% confidence Sign
interval interval

All 608 −0:65 −0:29 −0:29 .−0:37,−0:22/ 0.000 0.21 0.21 .0:12,0:32/ 0.000

controlling for the absolute value of partners D2 and D2−5 (Table 3). Hence, the data suggest
that individual variation may have an important influence on dynamics of sexual networks.
There are also indications of preferential attachment, as seen from the significant effects of D2
and D2−5, particularly when conditioning on the total number of partners in the previous 5-year
period. These results are in qualitative agreement with findings in a previous study where the
same data (but different subsets) were fitted to a combined preferential attachment model with
frailty (de Blasio et al., 2007). In that study only the short-term dynamics gave significance
to preferential attachment, and frailty was found to be necessary to produce an adequate
model fit.

The (5-year) analysis showed signs of preferential attachment among cohabiting men, but not
among men who were living single at the time point when the survey was conducted. However,
the latter group is heterogeneous in the sense that some of these men would have been engaged
with a steady or cohabiting partner during the previous 5 years, whereas others would not. This
factor could not be controlled for in the analysis. Instead, most of the cohabiting men (69%)
had been living with the same partner for more than 5 years. In the second regression model that
is defined by equation (13) we recover the same findings of presence of frailty and preferential
attachment based on the significant coefficients of Yact and D1 to predict γ.X̃1/ (Table 4).

In the light of the small sample size we should be cautious when interpreting the present find-
ings. Preferably, the analyses should be repeated on larger data sets to test the consistency of the
results. We also note that the present models are not adequate to make quantitative predictions,
which will require more elaborate statistical methods.

6. Conclusion

In this paper, we have compared frailty random graphs with preferential attachment graphs. We
have derived the frailty rate distribution for generating randomized power law networks, which
reproduce the degree distribution of a Yule process. Generative network models commonly
involve preferential attachment mechanisms, but often no effort is made to confirm proportion-
ate growth from data. We have shown that randomized, heterogeneous growth processes exhibit
spurious preferential attachment: nodes with large degree tend to acquire new links at a higher
rate than other nodes, both in the frailty process and in the Yule process. Hence, the conjecture
of preferential attachment cannot be tested from simple graphical plots.

We have set up two statistical tests for identifying frailty effects and preferential attachment
mechanisms in evolving networks. The first is quite simple to perform, whereas the second
requires an estimate of how the average rate of acquiring new edges evolves with the age of
the nodes. The tests also require that we can find a transform of the dependent variable, which
allows us to assume that the assumptions of the linear regression model are satisfied. Thus,
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they can generally be used to gauge potential frailty effects and preferential attachment before
more sophisticated and time-intensive statistical methods are used. We have applied the tests to
simulated data and real network data. From the latter analyses we conclude that the frailty may
be a significant driving factor for the evolution of highly skewed networks. However, there are
cases where the preferential attachment mechanism seems well grounded. The prime example
is the well-studied World Wide Web network as discussed in Dorogovtsev and Mendes (2003),
where advanced search engines make direct use of previous rates of linking to rank retrieved
information. For most other types of networks, particularly those with a more limited natural
scale, inherent heterogeneity between nodes is potentially of great importance and should not
be neglected.

The frailty model that is suggested here is highly simplistic and does not reproduce important
structures like local clustering, which is observed in natural networks. A model that is intended
to be a realistic approximation of real world networks should also take such phenomena into
account. However, the purpose here has not been to make realistic network models, but to inves-
tigate whether the frailty hypothesis can be a reasonable contender for a growth mechanism,
when compared with preferential attachment, which has until now been a very popular model
in much of the literature.
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