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For the diagnosing modality called MRE (magnetic resonance elastography), the displacement vector of a wave propagating in a
human tissue can be measured. The average of the local wavelength from this measured data could be an index for the diagnosing,
because the local wave length becomes larger when the tissue is stiffer. By assuming that the local form of the wave is given
approximately as multiple complex plane waves, we identify the real part of the complex linear phase of the strongest plane wave
of this multiple complex plane waves, by first applying the FBI transform (Fourier-Bros-Iagolnitzer transform) with an appropriate
size of Gaussian window and then taking the maximum of the modulus of the transform with respect to the Fourier variable. The
real part of the linear phase is nothing but the real inner product of the wave vector and the position vector. Similarly the imaginary
part of the linear phase describes the attenuation of the wave and it is given as a real inner product of a real vector and the position
vector. This vector can also be recovered by our method. We also apply these methods to design some denoising and filtering for
noisy MRE data.

1. Introduction

A new measurement modality called MRE (magnetic reso-
nance elastography) consists of an MRI (magnetic resonance
imaging), mechanical vibration system, and an additional
MRI pulse sequence called MSG (motion sensitizing gradi-
ent) synchronized with the time harmonic vibration gener-
ated by the vibration system. Given a time harmonic external
vibration generated by the vibration system to a human body
which yields awave in the human body,MRE gives a snapshot
of the displacement vectors of the wave over each slice of
the human body. We call this snapshot MRE data. The slice
can be the cross section of the body by any one of the 𝑥

1
-𝑥
2

plane, 𝑥
2
-𝑥
3
plane, and 𝑥

3
-𝑥
1
plane, where (𝑥

1
, 𝑥
2
, 𝑥
3
) is the

Euclidean coordinates. If we can recover the stiffness of the
tissue in a human body from theMRE data,MRE can provide
a realization of doctors’ palpation inside human bodies which
has been dreamed about by all the doctors for many years (cf.
[1, 2]).We call any procedure to recover the stiffness or extract
any information about the stiffness MRE data analysis.

There are two kinds of MRE data analysis. The one is the
model-independent MRE data analysis which only assumes

that any local wave forms of the wave are given approximately
as multiple complex plane waves and recover the real part
of the complex linear phase of the strongest wave in this
multiple complex plane waves which can be represented by
the so-called wave vector. We call this wave vector divided
by the angular frequency of vibration the local wave vector of
the multiple complex plane waves. The other is the model-
dependent MRE data analysis which considers some partial
differential equation to describe the wave and stiffness as
its solutions and coefficient, respectively, and recover the
coefficient from the MRE data via this equation. We will call
such a partial differential equation the PDE model. In this
paper we will give a model-independent MRE data analysis
based on the FBI transformation (Fourier-Bros-Iagolnitzer
transform). For the model-dependent MRE data analysis see,
for instance, [2–6] and the references therein.

It is well known that the wave length becomes larger if the
tissue becomes stiffer. In terms of the wave vector this means
that the wave vector becomes shorter if the tissue become
stiffer. Hence, by looking at the wave vectors in the tissues,
we can qualitatively know a change of their stiffness. Since
the modeling error is always a big problem in the MRE data
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analysis, themodel-independent analysis has some advantage
if it is not so important to recover the stiffness quantitatively
but qualitatively.

In the rest of this section we will explain more precisely
about our model-independent MRE data analysis. Since the
wave length of the longitudinal wave in human tissue is too
long to be observed, we can only observe shear waves when
the tissues is isotropic tissues and quasi-shear waves if the
tissues is anisotropic. Suppose that a shear wave or quasi-
shear wave is mainly propagating toward the 𝑥

2
direction and

we are looking this wave over a slice parallel to the𝑥
1
-𝑥
2
plane

which is the cross section of a human body. Then, let 𝜑 =

𝜑(𝑥
1
, 𝑥
2
) be the one of the component of displacement vector

of this wave perpendicular to 𝑥
2
direction, say 𝑥

3
component.

We also take such a wave whose phase of the vibration is
90 degrees advanced and denotes its component similar as
before by 𝜓 = 𝜓(𝑥

1
, 𝑥
2
). For our data analysis, it is more

convenient to consider

𝑢 = 𝑢 (𝑥) = 𝜑 (𝑥) − 𝑖𝜓 (𝑥) (1)

than considering 𝜑 and 𝜓 separately.
A naive way of looking at 𝑢 near a point 𝑝 in the cross

section is that it is locally given by a finite linear combination
of the complex plane wave 𝑎𝑒𝜔(𝛼+𝑖𝛽)⋅(𝑥−𝑝) with an amplitude
𝑎 ∈ C, vectors 𝛼, 𝛽 ∈ R2 which do not depend on 𝑥 =

(𝑥
1
, 𝑥
2
), and the angular frequency 𝜔/(2𝜋) of the vibration

system. Note that 𝛼 and 𝛽 describe the attenuation and
propagation direction of the wave 𝑢, respectively. We call this
form of 𝑢 the local single-wave form if the linear combination
consists of just one term and local multiple-wave form if
otherwise.

Let 𝑢 be described approximately as the local multiple-
wave form near a point 𝑝 in a region of interest (ROI)
of a human tissue. Then, by our method called LWV
method (local wave vector method) and LAV method (local
attenuation vector method) which are based on the FBI
transformation, we can recover 𝛽 and 𝛼 in the strongest local
single-wave formof the localmultiple-wave form.Wewill call
these𝛽 and𝛼 in this strongest local single-wave form the local
wave vector and local attenuation vector, respectively. Here
the FBI transformation is a weighted Fourier transformation
with the Gaussian window centered around 𝑝. Once we have
recovered 𝛽 at several points in the ROI, we can filter the
wave fields with many waves interfering with each other in
the ROI to a single major wave. If the ROI is located near
the boundary of tissue, for instance the boundary between
a tissue and organ, there is an interference of incoming waves
and reflected waves from the boundary. In such a place of
ROI the wave length and amplitude of wave could become
smaller than the other parts of the ROI and hence the profiles
of the distribution of the local wave vectors there will become
quite complicated. But by our filtering method based on the
LWV method, we can extrapolate the major wave up to the
boundary in this ROI. As a consequence, we can get very clear
filtered wave image having just a major wave in this ROI. We
call this denoising method the LWV denoising of wave.

To transform the recovered local wave vector 𝛽 and
local attenuation vector 𝛼 (Figure 16) to the stiffness of

tissue, we need to have a PDE model. Suppose that our
tissue can be considered as nearly incompressible isotropic
viscoelastic medium, then the above 𝑢 can be considered
approximately as the 𝑥

3
component of rot V, where V denotes

the displacement vector of the wave and rot V denotes the
rotation of V.Then, each local single-wave form 𝑢

󸀠 of the local
multiple-wave form 𝑢 should satisfy

(𝜌𝜔
2
+ (𝐺
󸀠
+ 𝑖𝐺
󸀠󸀠
) Δ) 𝑢

󸀠
(𝑥) = 0 (2)

approximately in a small neighborhood of 𝑝 with the density
𝜌 ≈ 10

3 kg/m3, the storage modulus 𝐺󸀠, and loss modulus
𝐺
󸀠󸀠. We remark here that 𝐺󸀠, 𝐺󸀠󸀠 can change from one region

to another region where the local multiple-wave form of
𝑢 changes. Further, we remark that 𝑢󸀠 always satisfies (2)
approximately, if the tissue is modeled as whichever type
of nearly incompressible isotropic viscoelastic media [3, 7].
Suppose that we have identified 𝛽 and 𝛼 in the strongest
local single-wave form 𝑢

󸀠 of 𝑢.Then, by substituting this local
single-wave form into (2), we have

𝜌 + (𝐺
󸀠
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󸀠󸀠
) (𝛼 + 𝑖𝛽) ⋅ (𝛼 + 𝑖𝛽) = 0 (3)

which immediately implies that 𝐺󸀠, 𝐺󸀠󸀠 are given by

(

𝐺
󸀠

𝐺
󸀠󸀠) =

𝜌

(|𝛼|
2
−
󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

2

)

2

+ 4(𝛼 ⋅ 𝛽)
2

(

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

2

− |𝛼|
2

2𝛼 ⋅ 𝛽

) . (4)

Hence (4) gives the link between 𝛼, 𝛽 and 𝐺󸀠, 𝐺󸀠󸀠.
The rest of the paper is organized as follows. In Sections

2 and 3 we give the theories of the LWV method and LAV
method, respectively. Then, in the succeeding section we
will provide some numerical results for these two methods.
Especially, in order to see the effectiveness of these method,
we tested our methods by recovering 𝐺󸀠, 𝐺󸀠󸀠 of a phantom
made of PAAm gel by the MRE group in our university
(Professor J. Gong, Laboratory of Soft and Wet Matter,
Hokkaido University) and for a phantommade of agarose gel
by Mayo Clinic so that we can compare our results with the
other results obtained by different MRE data analysis. In the
final section, we will apply our methods to the denoising and
sharpening of theMREdata. Before closing this introduction,
we would like to acknowledge Mayo Clinic providing us the
data and emphasize that Mayo Clinic is the front runner of
the MRE study.

2. LWV Method

In this section we will give the details of the LWV method
mentioned in the introduction. Let𝑊(𝑢; 𝑝, 𝜎)(𝜉) be the two
dimensional FBI transform (cf. [8]) of a locally integrable
function 𝑢 inR2 with theGaussian window of size 𝜎 localized
around 𝑝 ∈ R2 as follows:

𝑊(𝑢; 𝑝, 𝜎) (𝜉) = ∫

R2
𝑒
−𝑖𝑥⋅𝜉

𝑢 (𝑥) 𝑒
−|𝑥−𝑝|

2
/2𝜎
2

𝑑𝑥 (𝜉 ∈ R
2
)

(5)

provided that this integral converges which is the case for the
local multiple-wave form 𝑢.This transformation is also called
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Figure 1: Example of function Re 𝑢(𝑥) of (8).

Figure 2: Localization of Figure 1 by Gaussian.

the two dimensional continuouswavelet transform (cf. [9]). If
we take 𝑢(𝑥) as a local single-wave form 𝑢(𝑥) = 𝑎𝑒

𝜔(𝛼+𝑖𝛽)⋅(𝑥−𝑝),
then𝑊(𝑢; 𝑝, 𝜎)(𝜉) is expressed as

𝑊(𝑢; 𝑝, 𝜎) (𝜉) = 2𝜋𝑎𝜎
2 exp[𝑖𝜔2𝜎2𝛼 ⋅ 𝛽 + 𝜔

2
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2
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2

2

]
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2󵄨󵄨
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󵄨
󵄨
󵄨
󵄨

2

2

] .

(6)

Here we note that 𝜔𝛽 is a unique Gaussian peak of
𝑊(𝑢; 𝑝, 𝜎). The details of this derivation is given in the
Appendix. The maximum argmax

𝜉
|𝑊(𝑢; 𝑝, 𝜎)(𝜉)| of the

modulus |𝑊(𝑢; 𝑝, 𝜎)(𝜉)| for 𝜉 ∈ R2 is clearly achieved at
𝜉(𝑝) = 𝜉 = 𝜔𝛽. Hence, we have

𝛽 = arg max
𝜉

󵄨
󵄨
󵄨
󵄨
𝑊 (𝑢; 𝑝, 𝜎) (𝜉)

󵄨
󵄨
󵄨
󵄨

𝜔

. (7)

Here we note that 𝜎2 sitting in the denominator of the expo-
nential of the Gaussian window will sit in the numerator of
𝑊(𝑢; 𝑝, 𝜎)(𝜉).This is nothing but the Heisenberg uncertainty
principle about the window sizes in the real space 𝑥 and
Fourier space 𝜉. We have an option to tune a parameter 𝜎 that
influences the localization in the real space and Fourier space.

If 𝑢(𝑥) is given as the multiple-wave form

𝑢 (𝑥) = ∑

𝑛

𝑐
𝑛
𝑒
𝜔(𝛼
𝑛
+𝑖𝛽
𝑛
)⋅(𝑥−𝑝)

, 𝑐
𝑛
∈ C, (8)

around 𝑝, argmax
𝜉
|𝑊(𝑢, 𝑝, 𝜎)(𝜉)| can expect to give the

local wave vector 𝛽
𝑛
of the strongest single-wave form

𝑐
𝑛
𝑒
𝜔(𝛼
𝑛
+𝑖𝛽
𝑛
)⋅(𝑥−𝑝) in its modulus. This can be understood by

accepting a very reasonable interpretationwhich says that the

Figure 3: Example of |𝑊(𝑢; 𝑝, 𝜎)(𝜉)| in (7).

Figure 4: The vectors represent the wave vectors of the strongest
waves. The red vector corresponds to that of Figure 3.

Figure 5: Least square method for 2-dimensional plane.

Gaussian peaks of the FBI-transformed 𝑢 are well separated
in most cases. We call this method to obtain the local wave
vector 𝛽

𝑛
obtained above the local wave vector the LWV

method.
We will show in several figures how the LWV method

is performed. Figures 1 and 2 show the localization by a
Gaussian window. Since the key to the LWV method is the
assumption that the local approximate expression of the wave
𝑢 is given by (8), we need to localize 𝑢 to find the local wave
vector of 𝑢.
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𝜃(𝛽) = 𝜃(𝛽1, 𝛽2) ≃ 𝜃0

𝜃(𝜉) = 𝜃(𝜉1, 𝜉2) = 𝜃(𝛽1 + 𝑚, 𝛽2 + 𝑛) ≃
𝜕𝜃

𝜕𝜉1
𝑚 +
𝜕𝜃

𝜕𝜉2
𝑛 + 𝜃0

𝜕𝜃

𝜕𝜉1

𝜕𝜃

𝜕𝜉2

Figure 6: 𝜃 with respect to 𝜉.

Figure 3 is what can be seen in the Fourier space 𝜉. More
precisely this is the FBI-transformed image of Figure 2.

In this figure, we find two Gaussian peaks in Figure 3
which means that there are basically two different directions
to which the waves are propagating in Figure 2. This reason-
ably fits to Figure 1. It seems that in the Fourier space, the
position of the peak of Gaussian is not strongly interfered by
those of other peaks of Gaussian. Hence, the separation of
interfered waves in the Fourier space should be quite good.

We repeated this process around enough sampled points
and plotted the local wave vectors at the sampled points to
obtain Figure 4 in which the sampled local wave vectors are
superimposed over the figure of the real part of 𝑢.

Let us finish this section by giving several comments on
themethod. First of all, concerning the choice of theGaussian
window size 𝜎, we usually take 𝜎 in the range from half wave
length to one wave length for having reasonable recovery of
𝛽 by our experiences. Taking argmax may misfit 𝛽 when
there exists a strong noise with a specific frequency. But, for
MRE data, it usually has only Gaussian-type white noise that
does not have a specific frequency. Finally, we would like to
emphasize here an advantage of the LWV method. That is,
even in the case that several waves coming from different
directions merge at a point 𝑝 ∈ R2, the effect of each wave is
quite localized in the Fourier space, so that if there are several
different waves merging at 𝑝, we can separate these major
propagating directions by the LWVmethod.

3. LAV Method

We will show in this section how to recover the local
attenuation vector of the strongest wave in the local multiple-
wave form (8). To beginwithwe first assume that𝑢(𝑥) is given
as a local single-wave form around a point 𝑝 ∈ R2. Then
the vector 𝛼 at 𝑝 in the local single-wave form with the wave
vector 𝛽 can be recovered by

𝛼 = −

1

𝜔𝜎
2
(∇
𝜉
𝜃 (𝑝; 𝜉) − 𝑝) , (9)
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Figure 7: Recovered 𝛽.
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Figure 8: Recovered 𝛼.

where 𝜃(𝑝; 𝜉) is defined by

𝜃 (𝑝; 𝜉) := arctan(
Im𝑊(𝑢; 𝑝, 𝜎) (𝜉)

Re𝑊(𝑢; 𝑝, 𝜎) (𝜉)

) . (10)

In fact, substituting (6) into the right hand side of (9),
introducing 𝜃

0
as an initial phase that does not depend of 𝜉,

the right hand side of (10) becomes

(RHS) = arctan(
sin (−𝜔𝜎2𝛼 ⋅ 𝜉 + 𝜃

0
)

cos (−𝜔𝜎2𝛼 ⋅ 𝜉 + 𝜃
0
)

)

= arctan (tan (−𝜔𝜎2𝛼 ⋅ 𝜉 + 𝜃
0
))

= − 𝜔𝜎
2
𝛼 ⋅ 𝜉 + 𝜃

0
.

(11)

Then, we will obtain (9) by taking the gradient of 𝜃(𝑝; 𝜉)
with respect to 𝜉 at 𝜉 = 𝜔𝛽 (Figure 6). In order to compute
the gradient numerically we used the following least square
method. Let 𝜉 = (𝜉

1
, 𝜉
2
), 𝛽 = (𝛽

1
, 𝛽
2
) and denote 𝑚 =

𝜉
1
− 𝛽
1
, 𝑛 = 𝜉

2
− 𝛽
2
. Then, the least square minimization to

compute the gradient (∇
𝜉
𝜃)(𝑝; 𝛽) is

arg min
𝛼
1
,𝛼
2

∑

𝑚,𝑛

𝑤 (𝑚, 𝑛) (𝜃 (𝑝; 𝜉) − 𝜃 (𝑝; 𝛽) − 𝛼
1
𝑚 − 𝛼

2
𝑛)
2

, (12)

where 𝑤(𝑚, 𝑛) = 𝑒
−(𝑚
2
+𝑛
2
)/2𝑠
2

with some constant 𝑠 > 0.
Figure 5 illustrates the 3-dimensional view of this mini-

mization.
Even for 𝑢 having the local multiple-wave form, we apply

the same formula (9) to compute the attenuation vector 𝛼
associated with the local wave vector 𝛽 by expecting that we
have already picked up the strongest local single-wave form
with the local wave vector 𝛽 in the local multiple wave form
and the contribution coming from the other local single-wave
forms is small. This is the precise description of the LAV
method.
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Figure 9: Distribution of 𝐺󸀠 for simulated noisy data.

Table 1: Estimation of 𝐺󸀠.

Estimation of 𝐺󸀠 Center Right part
Average 14.89 kP 14.82 kP
Standard deviation 0.07 kP 0.11 kP

In the rest of this section, we give a reminder for program-
ming the LAV method. That is to handle the discontinuities
of (10) at 𝜃 = ±𝜋/2. Instead of using the formula

𝜃 (𝑝; 𝜉) − 𝜃 (𝑝; 𝜉
0
) = arctan(

Im𝑊(𝑢; 𝑝, 𝜎) (𝜉)

Re𝑊(𝑢; 𝑝, 𝜎) (𝜉)

)

− arctan(
Im𝑊(𝑢; 𝑝, 𝜎) (𝜉

0
)

Re𝑊(𝑢; 𝑝, 𝜎) (𝜉
0
)

) ,

(13)

we used as its reasonable approximation the following for-
mula:

𝜃 (𝑝; 𝜉) − 𝜃 (𝑝; 𝜉
0
) = Im(

𝑊(𝑢; 𝑝, 𝜎) (𝜉)

𝑊 (𝑢; 𝑝, 𝜎) (𝜉
0
)

) . (14)

4. Numerical Testing of LWV and
LAV Methods

In this section which consists of three subsections we will
show some results on the numerical testing of our LWV and
LAV methods. As we have mentioned before in Section 1,
the methods are model-independent methods, but we will
also show the numerical recoveries of 𝐺󸀠, 𝐺󸀠󸀠 in order to
see the quantitative performance of our methods. The first
subsection is for the numerical testing of our methods for
simulated data and the succeeding two subsections are that
for the real data obtained for phantoms by Mayo Clinic and
MRE study group in our university, respectively.We call these
real data the phantom data for simplicity. We did not test our
methods for any clinical data, but the phantoms have some
values close to the tissues of human levers.

4.1. Simulated Data. For simulated data in an unbounded
domain without any boundary and noise, the results of the
numerical testing of our methods are perfectly fine. Hence,
we will directly go to the numerical testing for simulated
data in a bounded domain with boundary and a noise. We
added a considerably largeGaussian-type noise to a simulated

−4
−3
−2
−1
0
1
2
3
4

Figure 10: Distribution of 𝐺󸀠󸀠 for simulated noisy data.

Table 2: Estimation of 𝐺󸀠󸀠.

Estimation of 𝐺󸀠󸀠 Center Right part
Average 0.17 kP 0.70 kP
Standard deviation 0.59 kP 0.79 kP

datum in order to see whether our methods work for the data
with poor S/N ratio less than 0.1 which could be the case for
real data. For the simulated datum, we made the length of
𝛼 ten times longer than that of 𝛽 which is the case for the
phantoms data. Hence, the attenuation of wave is small. In
other word, the amplitude of wave gradually decreases as the
wave propagates. The superimposed arrows in Figures 7 and
8 show the recoveries of 𝛽 and 𝛼. Hence, the variance of 𝛼 in
Figures 7 and 8 is smaller than it looks in Figure 8.

If there were no noise, then the recovered 𝛼 and 𝛽 should
have been just constant vectors with the right upper direction
and leftupper direction for𝛽 and𝛼, respectively.The recovery
of 𝛽 is quite good almost everywhere while that of 𝛼 is less
tolerant to noise and position.

Next we computed 𝐺󸀠 by using the formula (4). Figure 9
shows the distribution of the value 𝐺󸀠, and Table 1 shows
the average and standard deviation of the distributed values
of 𝐺󸀠. We note that the true value of 𝐺󸀠 was 14.4 kP. Hence,
we can conclude from these that the recovery of 𝛽 is quite
good. We also observed by doing more numerical testing for
simulated data that the estimate of 𝐺󸀠 is always stable even
under poor S/N ratio like this simulated data. Further we
give two remarks. Firstly, for example, around the part of
upper left corner of Figure 7, the signal is much less than
background noise and hence we are nearly unable to see the
pattern of waves there. Secondly, if 𝛼 is much smaller than 𝛽,
the simple approximate formula (cf. [10])

𝐺
󸀠
=

𝜌

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

2 (15)

of 𝐺󸀠 works well.
We also computed 𝐺󸀠󸀠 by using the formula (4). Figure 10

and Table 2 show the distribution of the value 𝐺󸀠󸀠 and the
average value, standard deviation of the distributed values
of 𝐺󸀠󸀠. These results show that the recovery of 𝐺󸀠󸀠 is not
good in center, because expected value of 𝐺󸀠󸀠 is 0.69 kP. This
insufficient recovery of 𝛼 can be explained as follows. As we
have seen before that the recovered 𝛽 is almost a constant
vector, but the recovered𝛼fluctuates near the lower boundary
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Figure 11: Fitting of 𝛽.
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Figure 12: Fitting of 𝛼.
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Figure 13: Distribution of 𝐺󸀠 for two-layer phantom.

Table 3: Estimation of 𝐺󸀠.

Estimation of 𝐺󸀠 Center Right part
Average 18.56 kP 7.00 kP
Standard deviation 1.47 kP 1.83 kP

almost completely changing its direction. Then, recalling the
formula (4), the recovered𝐺󸀠󸀠 is influenced by this fluctuation
of 𝛼 which can have negative sign. As far as we know, any
MRE data analysis has a difficulty recovering 𝛼 in an efficient
way and we do have the same difficulty.

4.2. Phantom Data from Micro-MRE System. Now, we will
show the testing of ourmethod to a phantom datum obtained
from MRE study group in Hokkaido University. The MRE
system in Hokkaido University consists of micro MRI with
a 0.3 tesla permanent magnetic, function generator and
vibrating system. We call this MRE system the micro-MRE
system.

The resolution of the micro MRI is 1.2mm square per
pixel. The data obtained by this micro-MRE system for a
phantom is given as the backgrounds of Figures 11 and 12
which are the same data for Re 𝑢. The phantom is a two-
layered PAAm gel and it has the cross section given as the
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Figure 14: Distribution of 𝐺󸀠󸀠 for two-layer phantom.

Table 4: Estimation of 𝐺󸀠󸀠.

Estimation of 𝐺󸀠󸀠 Center Right part
Average 0.68 kP 0.60 kP
Standard deviation 1.05 kP 0.51 kP

rectangular region given in Figures 11 and 12 about 6 cm times
12 cm which is the plane containing the vibrating source. In
this cross section, the location of the vibrating source is at
the middle of the left edge and interface of the two layers
appears in the middle. The left part of the cross section is
stiffer than the right part. Also, the wave is generated from
this source by the vibration system with the 250Hz angular
frequency and it travels to the right direction. The wave field
looks much complicated than what we have seen before for
the simulated simple sinusoidal wave and we can observe
reflection and refraction of waves at the boundaries and
interface, respectively.

We applied ourmethod to recover 𝛽 and 𝛼.The recovered
𝛽 and 𝛼 are shown in Figures 11 and 12. The result for 𝛽 given
in Figure 11 matches quite well the profile of the wave field.
From Figure 12, we can see that the direction of 𝛼 is not the
same as direction of 𝛽. By plotting the modulus of 𝑢(𝑥), that
is, |𝑢(𝑥)|, we can observe that major waves, reflected waves,
and transmitted waves are mixed together to yield standing
waves which have small amplitude at some place and big
amplitude antinode at other places creating some nodes. We
can observe that 𝛼 inclines to the nearest node.

By the formula (4), we can transform the recovered 𝛽, 𝛼
into𝐺󸀠, 𝐺󸀠󸀠.The recovered𝐺󸀠 is given in Figure 13 andTable 3.

The 𝐺
󸀠 values of the two-layered phantom were also

measured by a conventional rheometer giving the values
31.1 kPa and 10.7 kPa for the stiffer and softer parts of this
phantom. The frequency of twisting the phantom was 10Hz
for this measurement. Since it is known that 𝐺󸀠 depends on
the frequency (cf. [11]), we cannot directly compare our result
with these𝐺󸀠 values.The gray scale values in Figure 13 clearly
show the location of the interface. Hence, we can say that our
method can show the contrast of the stiffness. This is quite
important in clinical application of MRE.

Figure 14 and Table 4 show the recovered 𝐺󸀠󸀠.
Although we could recover 𝐺󸀠󸀠 to have a positive average

value, comparing it with its standard deviation, the average
value is smaller than its standard deviation. Looking more
closer into the distribution of the recovered 𝐺󸀠󸀠 (Figure 17),
the average value in the center part is a small positive value,
but there are some negative value in that part. Further the
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Figure 15: Fitting of 𝛽.
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Figure 16: Fitting of 𝛼.

average value in the right part is uniformly positive which
means that this value is reliable. As far as we know, our result
is quite good compared with the other recovered values of𝐺󸀠󸀠
by the direct method (cf. [12]) and modified integral method
(cf. [3]). Nevertheless, we have to say that estimating the value
of𝐺󸀠󸀠 is not easy because it is a small value compared with the
value of 𝐺󸀠.

4.3. Data of Mayo Clinic. We used the data by courtesy of
Mayo Clinic. From the attached information, the view is
20 cm square composed of 256 pixels each size. On the left
side of the gel phantom, external vibration is continuously
applied with 100Hz sinusoidal displacement. The sample has
four cylindrical inclusions and their diameters are 5, 10, 16,
and 25mm. The inclusions are stiffer than container. The
original data have eight snapshots in 360 degrees phase shift.
We altered the data into one complex-valued datum 𝑢(𝑥) by
using a weighted average for input of our method.

The original data is less noisy compared to our previous
data. It is very near to the plain parallel wave except at the
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Figure 17: Distribution of 𝐺󸀠 for Mayo Clinic data.

Table 5: Estimation of 𝐺󸀠.

Estimation of 𝐺󸀠 Bottom square Center
Average 3.71 kP 2.92 kP
Standard deviation 0.62 kP 0.24 kP

parts of inclusions. The vectors 𝛽 in Figure 15 are nearly
constant throughout the image. They are perturbed slightly
near at the inclusions and their backsides.

The vectors 𝛼 change their directions more sensibly than
those of vectors𝛽.The lengths of the vectors𝛼 are represented
ten times longer than those of the vectors 𝛽. Therefore, an
average, the values of 𝛼 are smaller than those of 𝛽.

Table 5 shows that 𝐺󸀠 in the bottom square is bigger
than center.This gives the information that the inclusions are
stiffer than the container. The value of standard deviation in
bottom square is bigger than the another, because it nearly
encloses the inclusion. On the result for the bottom square
(Tables 3 and 6), we average 𝐺󸀠 at a biggest inclusion and its
neighborhood. If we take the area to be smaller, the estimated
value of 𝐺󸀠 goes higher. We compared our result with the
result obtained by themodified integralmethod.The result by
that method is believed to be stable and numerically reliable.
It also supports our result of the average value because that
output also has around 3.0 kP in the region without inclusion
part.

The recovered result of 𝐺󸀠 is not fully given. To be more
specific, some part in the right hand side of the recovered
result is intensionally cut off so that the result looks better.We
have to explain why we did so. If 𝛽 is zero or close to zero, we
do not have any problem showing 𝛽 as a vector. However in
this case 𝐺󸀠 will become so large, because 𝐺󸀠 is proportional
to |𝛽|−2 by (15). This happens in the shadowed parts of the
inclusions. In fact it is very difficult to see the nodal points of
wave in these parts which could be coming fromunsuccessful
unwrapping of theMREdata, that is to specify the nodal value
of wave in the MRE data. If there are not any nodal points
in these parts, then the wave length there becomes infinitely
long and hence the modulus of 𝛽 will be very close to zero.
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Figure 18: Distribution of 𝐺󸀠󸀠 for Mayo Clinic data.

Table 6: Estimation of 𝐺󸀠󸀠.

Estimation of 𝐺󸀠󸀠 Bottom square Center
Average 0.58 kP 0.34 kP
Standard deviation 0.36 kP 0.08 kP

This means that we could not trust the MRE data in these
parts and this is why we cut off such parts.

For the recovered values of 𝐺󸀠󸀠, the ratio of 𝐺󸀠󸀠 to 𝐺󸀠 fits
the ratio which is commonly believed; that is, 𝐺󸀠󸀠 is about
one-tenth order of 𝐺󸀠.

5. Denoising and Sharpening

In this section, wewill show that by a simplemodification, the
LWVmethod can be applied as a denoising for theMRE data.
The principle behind this is as follows. For the local multiple-
wave form 𝑢 with 𝑛 local single-wave forms, we have already
observed that𝑊(𝑢; 𝑝, 𝜎)(𝜉) in most cases would have 𝑛 well-
separated Gaussian peaks. This can be used to filter the MRE
data which denoises and sharpens the data.

5.1. LWVDenoising of MREData. Figure 19 is the whole view
of Figure 4 which will be denoised.

The profile of waves is not so clear due to the noise. Our
purpose here is to filter the data to reduce the noise and
interferences of waves in the data shown by Figure 19.

Figure 20 shows the distribution of the modulus of
𝑊(𝑢; 𝑝, 𝜎)(𝜉). From this we can know to which major
directions the waves are propagating. Each Gaussian peak
represents the major propagation direction for a certain
group of waves. If these amplitudes of waves are large, then
the peak becomes large also.

There are twoways to do the filtering.The one is to choose
only the highest peak in the Fourier domain and remove the
others. In detail, for each center point 𝑝 of pixel, we replace
𝑊(𝑢; 𝑝, 𝜎)(𝜉) by

𝑊(𝑢; 𝑝, 𝜎) (𝜉) 𝛿 (𝜉 − 𝜉 (𝑝)) , (16)
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Figure 19: Real part in spatial domain.
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Figure 20: Modulus in Fourier domain.
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Figure 21: Real part in spatial domain.

where 𝛿(𝜉 − 𝜉(𝑝)) is the delta function with a singularity
at 𝜉(𝑝) = argmax

𝜉
|𝑊(𝑢; 𝑝, 𝜎)(𝜉)|; that is, 𝜉(𝑝) gives the

position of the peak of |𝑊(𝑢; 𝑝, 𝜎)(𝜉)|, and then takes the
inverse Fourier transform of (16) which is multiplied by
the characteristic function of the aforementioned pixel. This
process is done for each pixel and we obtain filtered waves
by superposition. As a result we have Figure 21. We can
tune denoising effect by replacing 𝛿(𝜉 − 𝜉(𝑝)) by a Gaussian
window centered at 𝜉(𝑝).

Figure 22 gives themodulus of the Fourier transformation
of Figure 21 and we can see that there are two peaks. Also, as
can be seen in Figure 21, there will be a discontinuity where
two waves correspond to these peaks. Comparing Figures 20
and 22, we know that Figure 22 has much more clear and
sharp images of waves.
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Figure 22: Modulus in Fourier domain.
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Figure 23: Real part in spatial domain.
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Figure 24: Modulus in Fourier domain.

Next, we will show another way of filtering.This is to filter
the wave 𝑢 around the globally strongest wave in the Fourier
domain. That is let 𝜉

∞
be the peak of the modulus of the

Fourier transform of 𝑢. Then this filtering is to filter 𝑢 in the
previous way just around 𝜉

∞
for each pixel. Then, we have

Figures 23 and 24 for the filtered wave.
There is only a single wave which is close to a simple

sinusoidal wave (Figure 23) and single peak in the Fourier
domain (Figure 24).
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Figure 25: Data to be processed.
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Figure 26: Modulus in Fourier domain.

5.2. Testing with Mayo Clinic Data. The LWV denoising
always makes any data smooth taking off segmentations as
well as noise in the data. Hence, if the input data is nearly free
from noise, then the denoising process is unnecessary. For
example, we applied the LWV denoising to the Mayo Clinic
data (Figures 18 and 25).

Then, we obtained Figures 26, 27, and 28.
We can see that the denoising made the boundary of

inclusions smoother and masked the inclusions.

6. Conclusions

We developed a model-independent data analysis for MRE
data based on the FBI transformation to recover the local
wave vector and local attenuation vector of the strongest local
single wave assuming that waves in MRE data are locally
given as a local multiwave form. This can be also applied to
other wave images. We also linked the recovered local wave
vector and local attenuation vector to the storage modulus
and loss modulus by using a nearly incompressible isotropic
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Figure 27: Filtering by the locally strongest wave.
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Figure 28: Filtering by the globally strongest wave.

viscoelastic equation which describes the displacement vec-
tor of time harmonic waves propagating in anMRE phantom.
The recoveries of 𝛽 and 𝐺

󸀠 were quite good and stable.
Further, we showed that a modified version of LWV method
which enables to recover the local wave vector can be used to
denoise the MRE data.

Our MRE data analysis was conducted using a numerical
computational software on Linux-based ordinary desktop
computer. The fast Fourier transformation is not so time
consuming for maximum 256 × 256 pixels MRE data. The
overall calculation finished in order of minutes.

Appendix

Fourier Transformation
(FBI Transformation) of Waves

Let 𝑢(𝑥) be of a single-wave form around a point 𝑝 given by

𝑢 (𝑥) = 𝑒
𝜔(𝛼+𝑖𝛽)⋅(𝑥−𝑝)

, (A.1)

with𝛼, 𝛽 ∈ R2.Thenwe compute its FBI transform as follows.
By taking 𝑥 − 𝑝 as a new variable for the integration, we have

𝑊(𝑢; 𝑝, 𝜎) (𝜉) = ∫

R2
𝑒
𝜔(𝛼+𝑖𝛽)⋅(𝑥−𝑝)

𝑒
−|𝑥−𝑝|

2
/2𝜎
2

𝑒
−𝑖𝑥⋅𝜉

𝑑𝑥

= 𝑒
−𝑖𝑝⋅𝜉

∫

R2
𝑒
𝜔(𝛼+𝑖𝛽)⋅𝑥

𝑒
−|𝑥|
2
/2𝜎
2

𝑒
−𝑖𝑥⋅𝜉

𝑑𝑥.

(A.2)

Further, by 𝜔𝛼 ⋅ 𝑥 − (|𝑥|
2
/2𝜎
2
) = (𝜔

2
𝜎
2
|𝛼|
2
/2) − (|𝑥 −

𝜔𝜎
2
𝛼|
2
/2𝜎
2
) and taking 𝑥 − 𝜔𝜎

2
𝛼 as a new variable in the

integration, we have

∫

R2
𝑒
𝜔(𝛼+𝑖𝛽)⋅𝑥

𝑒
−|𝑥|
2
/2𝜎
2

𝑒
−𝑖𝑥⋅𝜉

𝑑𝑥
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𝜔
2
𝜎
2
|𝛼|
2
/2
𝑒
𝑖𝜔
2
𝜎
2
𝛼⋅𝛽
𝑒
−𝑖𝜔𝜎
2
𝛼⋅𝜉
∫

R2
𝑒
𝑖𝜔𝛽⋅𝑥

𝑒
−|𝑥|
2
/2𝜎
2

𝑒
−𝑖𝑥⋅𝜉

𝑑𝑥.

(A.3)

Note that the integration in (A.3) is the Fourier transform of
the Gaussian with respect to 𝜉 − 𝛽. Hence,

∫

R2
𝑒
𝑖𝜔𝛽⋅𝑥

𝑒
−|𝑥|
2
/2𝜎
2

𝑒
−𝑖𝑥⋅𝜉

𝑑𝑥 = 2𝜋𝜎
2
𝑒
−𝜎
2
|𝜉−𝜔𝛽|

2
/2
. (A.4)

After all, we have obtained

𝑊(𝑢; 𝑝, 𝜎) (𝜉) = 2𝜋𝜎
2 exp[𝑖𝜔2𝜎2𝛼 ⋅ 𝛽 + 𝜔

2
𝜎
2
|𝛼|
2

2

]

× exp[−𝑖 (𝑝 + 𝜔𝜎2𝛼) ⋅ 𝜉 −
𝜎
2󵄨󵄨
󵄨
󵄨
𝜉 − 𝜔𝛽

󵄨
󵄨
󵄨
󵄨

2

2

] .

(A.5)
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