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Abstract: Measuring the colorimetric signals produced by the biospecific accumulation of colorimetric
probes and recording the results is a key feature for next-generation paper-based rapid tests. Manual
processing of these tests is time-consuming and prone to a loss of accuracy when interpreting faint
and patchy signals. Proprietary, closed-source readers and software companies offering automated
smartphone-based assay readings have both been criticized for interoperability issues. Here, we
introduce a minimal reader prototype composed of open-source hardware and open-source software
that has the benefits of automatic assay quantification while avoiding the interoperability issues
associated with closed-source readers. An image-processing algorithm was developed to automate
the selection of an optimal region of interest and measure the average pixel intensity. When used to
quantify signals produced by lateral flow immunoassays for detecting antibodies against SARS-CoV-2,
results obtained with the proposed algorithm were comparable to those obtained with a manual
method but with the advantage of improving the precision and accuracy when quantifying small
spots or faint and patchy signals.

Keywords: lateral flow test; COVID-19; immunosensor; biosensor; open-source; image processing;
rapid test reader

1. Introduction

Colorimetric paper-based devices have become crucial tools for managing infectious
diseases by allowing the rapid immunodetection of antigens, host antibodies, and inflam-
mation biomarkers at the point of care (POC) [1–6]. The key to this success lies in combining
a paper-based microfluidic system with the outstanding specificity of antibody recognition
elements and a signal transduction mechanism that can be interpreted by eye [7,8]. The latter
is commonly achieved by using gold nanoparticles as colorimetric probes [9]. The naked-eye
detection scheme maximizes the portability and cost-effectiveness of the analytical platform.
However, naked-eye detection also comes with limitations. Faint color changes on the test
strip can be nearly indistinguishable from the background substrate. This is especially prob-
lematic for POC tests since different settings may have incomparable lighting environments
that affect the interpretation of results. This means that samples that are close to the limit
of detection may be miscategorized [10,11]. Additionally, evidence suggests that results
from point-of-care tests often go unrecorded, and even when results are recorded, they tend
to be qualitative and unstandardized [12]. Measuring the colorimetric signal produced by
the biospecific accumulation of colorimetric probes and recording the results can overcome
these limitations [13]. In many laboratories, this is achieved with reflective densitometry.
This is typically performed by imaging the test, manually selecting the region of interest
(ROI) within the colored spot, and measuring the average pixel intensity of a responsive
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color channel [11,14–16]. This approach, however, is too laborious and time-consuming for
rapid mass testing schemes, and it is prone to human error when selecting the ROI, which
reduces the accuracy of the measurements.

In this article, we introduce an open-source solution that automatically performs
all the image processing steps required for accurate signal quantification in paper-based
biosensors. The software was developed with a minimal reader prototype composed of
open-source hardware electrical components (Figure 1A). As a result of the open design,
anyone can make a copy of the device and modify it for their own purposes, enabling
community-driven development based on FAIR principles. The open reader design also
allows for new possibilities for rapid fabrication in mass-testing schemes, with streamlined
interoperability [17,18]. When tested on printed calibrators, measurements obtained with
the proposed reader showed a good correlation with those obtained with a traditional
densitometry scheme based on manually selecting the ROI and were more accurate than
the manual approach for small signals. When tested on commercial lateral flow tests for
measuring antibodies against SARS-CoV-2, the reader gave highly reproducible results,
even when the sensor produced patchy signals that yielded disparate results with the
manual method.
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play screen, (iv) push buttons, (v) solder board, (vi) single board computer, (vii) LED ring; (B) Pho-
tographs of the reader mounted on an 8 × 8 × 5 cm 3D-printed box with a detached bottom panel; 
(C) Image capture and post-processing algorithmic workflow: (i) image capture upon edge detec-
tion, (ii) split RGB channels, (iii) crop outer edge of G channel image, (iv) measure background, (v) 
center crop and resize, (vi) duplicate, (vii) threshold, (viii) invert, (ix) binarize for mask, (x) dilate 
and erode mask, (xi) apply mask to duplicate, (xii) measure ROI. 

2. Materials and Methods 
2.1. Hardware 

Wire jumper cables, a 38 mm ring of WS2812B 12-bit LEDs, and a 128 × 64 Pixel I2C 
OLED display module with a SSD1306 chip were purchased from AZ-Delivery Microe-
lectronics. Pushbuttons, button caps, and resistors were purchased from ELEGOO Elec-
tronics. A Pi Camera V2.1 based on the 8MP Sony IMX219 image sensor and a Raspberry 
Pi 4 model B from the Raspberry Pi foundation were also purchased. The pushbuttons 
were soldered to a Onogal Model 4112 PCB prototype board and connected to the Rasp-
berry Pi general input/output (GPIO) pins. A 3D box with a white square detection area 
and small slots for cables and the camera lens was designed in-house. The box has one 
detached panel on the bottom for loading a paper-based test for measurement. The 3D 
printing resin for the box is neutral gray, similar to an 18% gray card used in photography, 

Figure 1. Reader hardware and software for automated quantification of colorimetric signals in paper-
based immunosensors: (A) Reader components, (i) connecting cables, (ii) image sensor, (iii) display
screen, (iv) push buttons, (v) solder board, (vi) single board computer, (vii) LED ring; (B) Photographs
of the reader mounted on an 8 × 8 × 5 cm 3D-printed box with a detached bottom panel; (C) Image
capture and post-processing algorithmic workflow: (i) image capture upon edge detection, (ii) split
RGB channels, (iii) crop outer edge of G channel image, (iv) measure background, (v) center crop and
resize, (vi) duplicate, (vii) threshold, (viii) invert, (ix) binarize for mask, (x) dilate and erode mask,
(xi) apply mask to duplicate, (xii) measure ROI.

2. Materials and Methods
2.1. Hardware

Wire jumper cables, a 38 mm ring of WS2812B 12-bit LEDs, and a 128 × 64 Pixel
I2C OLED display module with a SSD1306 chip were purchased from AZ-Delivery Mi-
croelectronics. Pushbuttons, button caps, and resistors were purchased from ELEGOO
Electronics. A Pi Camera V2.1 based on the 8MP Sony IMX219 image sensor and a Rasp-
berry Pi 4 model B from the Raspberry Pi foundation were also purchased. The pushbuttons
were soldered to a Onogal Model 4112 PCB prototype board and connected to the Raspberry
Pi general input/output (GPIO) pins. A 3D box with a white square detection area and
small slots for cables and the camera lens was designed in-house. The box has one detached
panel on the bottom for loading a paper-based test for measurement. The 3D printing resin
for the box is neutral gray, similar to an 18% gray card used in photography, and it is 3 mm
thick to prevent light artifacts in the image capture step. The box also serves to align the
test with respect to the lights and camera (Figure 1B). The hardware components were
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arranged on the 3D-printed box that also serves to stabilize the photographic conditions
(Figure 1A,B). A printable calibrator set was also developed in-house. Circular-shaped
and rectangular-shaped calibrators were designed to approximate the kinds of colorimetric
signals found in paper-based colorimetric devices and were printed with an HP 4500 series
printer on Torrascontrast high-quality printer paper. The size and shape of each calibrator
were printed in a series of step-wise grayscale intensities from 0 (black) to 225 (almost white).
Two sizes of circular shapes (3 mm and 1 mm diameters) and two sizes of rectangular shapes
(5 × 1.5 mm, and 3 × 0.5 mm) were assayed for each grayscale intensity. The LED ring was
configured to an optimal luminosity and composite white light for signal measurement.
Calibration details are shown in Figure 2.
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Figure 2. Impact of luminosity in imaging conditions using composite white light with and without
fluorescence (shown in inset): (A) Impact of light intensity (lux) on densitometric signal S with
fluorescence (black) and without fluorescence (red); (B) Photographs of the same calibrator taken
with fluorescence at different luminosity values.

2.2. Software

Open-source drivers and scripts that accompany the hardware components were
downloaded and installed on the Raspberry Pi 4 via Github. The OLED is run with the
python package “adafruit_CircuitPython_ssd1306”. The LED ring runs with “rpi-ws281x”.
The camera interface is facilitated by the PiCamera API. Communication from the buttons
to Raspberry Pi are handled through the python package “RPi.GPIO 0.7.0”. Other open-
source licensed code was also used for functions related to image pre-processing [19–21].
All software packages hold open-source licenses. The post-processing algorithm was
developed in-house, with the OpenCV computer vision library and the PiCamera API.
Custom button call-backs and a shell program that initiates the user interface upon device
start-up were also developed in-house. A Jupyter notebook detailing the algorithmic steps
for image processing and signal quantification, as well as all source code, is available in the
repository of supplemental information available at https://github.com/SMR-83/Open_
Reader (accessed on 20 February 2022).

https://github.com/SMR-83/Open_Reader
https://github.com/SMR-83/Open_Reader
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The example scripts associated with the hardware components were modified to
calibrate the illuminant with respect to the image sensor. The preprocessing script pairs
with the hardware via a white paper square on the detached panel of the box that acts
as a detection area. The position of the sample with respect to the camera is regularized
and quality-checked using the edges of the white square as a reference to align the digital
images. Sets of calibration images and lateral flow test images were acquired in this way.

2.3. System Integration and User Interface

Upon hitting the blue button, scripts that control the hardware for the image capture
step are called. The lights and camera turn on, and image capture starts by searching
for the edges of a white paper square “detection area” on the bottom panel. When the
camera finds the square, the color channels are split, and the green channel of the image is
aligned using the edges of the detection area as a guide, as shown in Figure 1C(i–iii). A
message is displayed on the screen to inform the user if the image capture is successful or
not. The yellow button calls a post-processing algorithm to measure captured images. The
post-processing algorithm measures the background substrate and then crops the edges and
scales the image so that signals are more uniformly centered, as shown in Figure 1C(iv,v).
The image is then duplicated. One duplicate remains unchanged, and the other is processed
into a mask. By algorithmically deriving a mask based on the information contained in
the image, the background measurement from before is used as a thresholding limit. This
causes all pixels below that limit to be changed to black, as shown in Figure 1C(vi,vii).
The thresholding yields an initial segmentation of the signal area from the background.
However, the masking process requires a binary black and white image in order to make
an ROI. White areas of the mask become transparent when applied to another image, while
black areas block out pixel information. As a result, the mask is inverted and binarized, as
shown in Figure 1C(viii,ix). The mask is then refined using erosion and dilation operations
so that noise is reduced, and more homogeneous regions are selected for the ROI. When
the mask is applied to the unchanged duplicate image, the ROI is visible while everything
else has a pixel intensity of zero, as shown in Figure 1C(x–xii). The number of pixels that
compose the signal is calculated using an operation that counts all non-zero pixels, that is,
all non-black pixels after the mask is applied. The pixel intensity of the ROI is calculated by
taking the sum of the pixels in the image and dividing by the number of non-zero pixels.
The result is displayed on the screen, or an error message is displayed in the event of an
unreadable signal. The red button turns the device off.

2.4. LFIA Analysis of Plasma Sample

A plasma sample from a volunteer who had been recently vaccinated against SARS-
CoV-2 was serially diluted from 1:2 to 1:128 in phosphate buffer saline (PBS) in order to
generate samples with different concentrations of antibodies against the virus. The samples
were tested with lateral flow immunoassays (LFIA) for COVID-19 IgG/IgM using rapid test
cassettes from SureScreen Diagnostics. Each LFIA was imaged and measured three times in
order to determine the error associated to the measurement. A plasma sample diluted 1:2
in PBS from an unvaccinated volunteer obtained before the COVID-19 pandemic was used
as negative control in order to define the instrumental limit of detection (above 3 times
the standard deviation of the control). Images of the tests were acquired with the reader
and measured manually and automatically. Manual measurement for solid test lines was
performed by selecting an ROI inside the signal avoiding the edges, resulting in rectangular
or circular areas slightly smaller than the test line. The mean pixel intensity within the ROI
was calculated with the histogram function of ImageJ. Manual measurement of faint and
patchy test lines posed a question of what constitutes an ROI that is most representative of
the signal. The colorimetric signal S is the average pixel intensity of the ROI.
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3. Results and Discussion

The brightness of the LED ring (Figure 1A(vii)) was optimized to avoid signal bleaching.
White light from the LEDs is a composite of red, green, and blue light. Phosphor-covered
LEDs can also be added to the light composition to achieve brighter white light with
fluorescence (shown in Figure 2A, inset). The luminosity of each type of white light at
step-wise intensities was measured with a lux meter. As shown in Figure 2A, both types of
lighting yielded similar results when tested on a lightly colored spot with the luminosity
ranging between 100 and 3500 lux. The range between 2000 and 3500 lux yielded slightly
higher values without fluorescence. As a result, composite white light near the upper end of
the range was chosen as the optimal light setting. Luminosity values higher than 3500 are
only achievable with fluorescence and result in an exponential decrease in the colorimetric
signal. Photographs in Figure 2B show the decrease in signal caused by sensor saturation.
Subsequent experiments were performed with light at approximately 3236 lux.

Using the reader shown in Figure 1B to capture images, we compared automated signal
quantification against the manual method. Colorimetric signals in paper-based biosensors
are usually circular (e.g., dot blots) or rectangular (e.g., lateral flow immunoassays). With
this in mind, we printed circular and rectangular patterns of increasing color intensity
and measured them with both methods (Figure 3A,B). Measurements were performed in
triplicate with the same printed calibrators in order to determine the instrumental error.
Figure 3A,B show that there is a linear correlation between both methods when the circles
have a diameter of 3 mm and the rectangles have dimensions of 5 × 1.5 mm. The slope of
the linear regression and the Pearson correlation coefficient are very close to one in both
cases, which indicates an almost perfect correlation between both methods. The relative
error (standard deviation) was always smaller than one regardless of the method used to
perform the measurements, and no trend was observed with regards to the color intensity
(Figure 3C,D). This results in minuscule error bars, located within the circular data points
in Figure 3A,B. These experiments demonstrate that the proposed software compares well
with the manual signal quantification method when measuring large colored spots. Yet,
the former only requires pushing a button and waiting a few seconds, whereas the latter
requires trained personnel and takes several minutes to yield an answer.

Figure 4A,B show that there is still a strong linear correlation between both methods
when the dimensions of the circle and the rectangle are reduced to 1 mm diameter and
3 mm × 0.5 mm, respectively. However, the standard deviation of measurements performed
with the software was never higher than one, whereas it often exceeded this value when the
measurements were performed with the manual method (Figure 4C,D). That is, the manual
method is less accurate when measuring small signals. This is ascribed to the lower number
of pixels in smaller objects. In large spots, selecting different regions of interest manually
does not change the measured colorimetric signal significantly because discrepancies are
reduced when calculating the average pixel intensity. Smaller spots have fewer pixels and
do not average out differences as well as their larger counterparts. These experiments
demonstrate that results obtained with the algorithm are comparable to those obtained with
a manual method but with the advantage of improving the precision when quantifying
smaller colored spots.
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After testing the performance of the reader for detecting the pixel intensity in printed
patterns, we sought to test its adequacy for quantifying a real colorimetric biosensor. To
this end, LFIAs were used for detecting antibodies (IgG and IgM) against SARS-CoV-2 in
serially diluted plasma samples. LFIA test controls were also performed with an undiluted
(or diluted 1:2) plasma sample from healthy, vaccinated volunteers to demonstrate the
presence of IgG antibodies against SARS-CoV-2 (IgM antibodies were not detected). Control
image datasets are available in the Github repository. Figure 5A shows photographs of
the colorimetric signals yielded by IgG anti-SARS-CoV-2 antibodies after serial plasma
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dilutions. The test line of each LFIA was imaged three times with the reader and mea-
sured with the manual method and the automated algorithm. In Figure 5B, there is an
exponential relation between the inverse of the dilution factor and the colorimetric signal
measured with the algorithm. The limit of detection based on the 3σ criterion using a
control plasma sample without antibodies was 1:64. The analysis of the same samples
with the manual method yielded very similar results when the concentration of antibodies
was high (dilutions 1:8 to 1:2). However, the highly diluted 1:32 sample yielded a patchy
signal whose colorimetric signal greatly varied depending on how the ROI was selected,
which is shown in Figure 5C. Figure 5C(i) shows the segmentation step performed by the
automated software in order to select the ROI. Figure 5C(ii) shows the ROI selected in the
same way as it was selected in less diluted samples. Calculating the pixel intensity in this
region yielded the signal highlighted as a purple square in Figure 5B, which is below the
limit of detection. When choosing an ROI manually, there are more factors to consider.
Whether only homogenously colored regions (Figure 5C(ix)), regions where the signal is
a gradient (Figure 5C(iv–viii)), or a central region with both colored and uncolored areas
(Figure 5C(iii)) are chosen, the ROI yielded different results that were sometimes above
or below the limit of detection (red triangles in Figure 5B). In other words, the manual
method risks yielding a false positive or false negative result, depending on how the signal
is measured. These experiments demonstrate that algorithmically deriving an optimal ROI
increases the accuracy of densitometric analysis by removing the human error associated with
manually selecting an ROI in faint and patchy signals.
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Figure 5. Colorimetric detection of LFIA for host antibodies against SARS-CoV-2: (A) Photographs of
the assays; (B) signal quantification with the automated software (black dots) or the manual method
(red triangles and purple square), where error bars are the standard deviation of 3 measurements
on the same LFIA, LODm is the limit of detection obtained with manual method, and LODa is
the one obtained with the automated software; (C) ROI for the 1:32 samples obtained with the
automated software (i) or through manual selection that gives rise to the different results reported for
sample 1:32 (ii–ix).
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4. Conclusions

In conclusion, an algorithm that automatically performs all the steps required for
quantifying the pixel intensity in colorimetric paper-based immunosensor was introduced
with a minimal reader. Results obtained with the automated method correlated well with
the traditional approach based on manually selecting the region of interest and calculating
the mean pixel intensity within it. Yet, the automated method was more advantageous
in that it increased the precision when measuring small colored spots and the accuracy
when quantifying incomplete and faint signals. This granted the reliable measurement of
colorimetric signals that were close to the limit of detection when analyzing an LFIA for
human anti-SARS-CoV-2 antibodies. Open-source image processing software such as this,
combined with a minimal reader prototype comprised of open-source hardware, makes
community-driven development possible. A key advantage of this approach is that it can
avoid interoperability issues intrinsic to closed-source smartphone apps and commercial
readers. A repository of image datasets, hardware specifications, and source-code is openly
available at https://github.com/SMR-83/Open_Reader (accessed on 20 February 2022).
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