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Background
Ubiquitin [1, 2] is a small protein composed of 76 amino acids in eukaryotes. Through 
the catalytic action of activating enzyme (E1), binding enzyme (E2), and ligase (E3) [3, 4], 
ubiquitins can covalently connect to the lysine residues of the target proteins [5, 6]. As 
a major member of the family, small ubiquitin-related modifier (SUMO) proteins have 
similar 3D structures and biological modification processes to ubiquitins [7, 8]. They 
are both highly conserved in evolution and related to diverse cellular activities includ-
ing gene location, gene expression, and genome replication [9]. However, numerous 
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potential Ubiquitylation and SUMOylation sites remain to be discovered from protein 
sequences.

Since most ubiquitinated and SUMOylated proteins are short-lived proteins with poor 
stability, the experimental approaches to identify protein Ubiquitylation and SUMOly-
tion sites might be costly and time-consuming [10]. Therefore, it is worthwhile to study 
the computational approaches.

At present, several sequence-based approaches have been proposed to carry out the 
prediction of protein Ubiquitylation and SUMOylation sites respectively. Huang et  al. 
[11] developed a method called UbiSite, using an efficient radial basis function (RBF) 
network to identify protein Ubiquitylation sites. Next, Chen et al. [12] established Ubi-
Prober, which extracted a set of features including physico-chemical property (PCP) and 
amino acid composition(AAC) to make Ubiquitylation site prediction. Subsequently, 
Radivojac et  al. [13] proposed a random-forest based predictor UbPred, in which 586 
sequence attributes were detected from the input features. GPS-sumo [14] employed 
a group-based prediction system (GPS) by a similarity clustering strategy to identify 
SUMOlytion sites. JASSA by Guillaume et al. [15] uses a scoring system based on a posi-
tion frequency matrix. Then, pSumo-cd [16] applied a covariance discriminant algorithm 
in combination with a pseudo amino acid composition model. A recent work HseSUMO 
[17] only employed four half-sphere exposure-based features to predict SUMOylation 
sites. In addition to the individual prediction of Ubiquitylation or SUMOylation sites, 
mUSP was proposed to predict their crosstalk. They treated these three types as three 
binary problems independently. However, these traditional machine learning methods 
employed feature engineering, which may lead to incomplete representations and biased 
results.

Deep learning as a cutting-edge representation learning technique enables the produc-
tion of high-level semantic features without handcrafted design [18], it has been widely 
applied to several PTM problems with large datasets [19, 20]. Wang et al. [21, 22] pro-
posed a deep learning predictor MusiteDeep, based on convolutional neural networks, 
to predict and visualize protein post translational modification sites. Chen et  al. [23] 
built a computation model, MUscADEL, based on the long short term memory (LSTM) 
recurrent neural network. Fu et al. [24] used Matlab to implement deepUbi, a protein 
Ubiquitylation site prediction tool. Due to that its backend Matlab is a closed commer-
cial software, its availability is limited. Although deep learning has been applied to PTM 
problems, the similarities between the two PTMs have not been recognized or fully 
exploited. To our best knowledge, there is no site prediction tool based on deep learning 
to predict protein Ubiquitylation and SUMOylation sites simultaneously.

In this paper, we proposed an ensemble deep learning based predictor for identifying 
protein Ubiquitylation and SUMOylation sites as well as their crosstalk sites simultane-
ously. The ensemble learning layer integrated different types of physico-chemical prop-
erties of amino acids. The network can learn the high-level representation from the raw 
protein sequence and its corresponding physico-chemical properties. Owing to the simi-
larity of biochemical processes of Ubiquitylation and SUMOylation, the Ubiquitylation 
and SUMOylation datasets were used for training simultaneously, which not only cir-
cumvents the scarcity of training data but also endows the model with more discerning 
power.
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Result
Overview

Figure 1 provides an overview of our workflow. We formulated the process of protein 
Ubiquitylation and SUMOylation site prediction as a multi-label classification problem. 
First, we collected the protein sequences of Ubiquitylation and SUMOylation from Uni-
Prot/Swiss-Prot, used CD-HIT to remove the redundant sequences that have more than 
40% sequence identity, and split the remaining data into the training set, validation set, 
and testing set. Next, all the fragments of sequences were encoded and inputted into 
seven respective deep networks. Then, we proposed an ensemble learning layer to inte-
grate multiple protein representations as shown in Fig. 2. It integrates seven supervised 
learning subnets, each of which utilized convolution layers or fully connected layers, to 
extract deep representations from protein sequence features. At last, since we targeted 
two categories for multi-label classification, we defined the output of our tool using 
dummy code, in which Ubiquitylation and SUMOylation sites independently associated 
with different labels. The 2-dimensional code 10 was set to represent Ubiquitylation sites 
and 01 was assigned to SUMOylation sites, while code 11 denoted the crosstalk (both 
Ubiquitylation and SUMOylation) sites and code 00 was encoded for negatives. The out-
put layer of our deep model was set to 2 neurons to generate multi-label results by using 
the sigmoid [25] activation function, which independently produced a probability for 
each category.

Comparative results among the ensemble model and seven meta classifiers

We compare between the ensemble model and seven meta classifiers to provide deeper 
insight into the advantage of our ensemble learning strategy. As we have pretrained 
each meta subnet before integrating to the ensemble architecture, the performance of 
the meta classifiers can be easily assessed on the same test data by loading pretrained 
weights. The comparative results are shown in Fig. 3.

From this figure, we can observe the meta classifiers showed varying degrees of effec-
tiveness, and offered deep representations from different perspectives. Such meta clas-
sifiers with sufficient precision and diversity provided a good ensemble foundation. In 
addition, these meta classifiers performed differently between protein Ubiquitylation 
and SUMOylation sites. For instance, the physico-chemical subnet performed top-3 
rank out of the 7 meta classifiers on Ubiquitylation sites while it ranked as last of the 
7 meta-classifiers on SUMOylation sites. This demonstrated how an adaptive ensemble 
was required to properly combine all meta classifiers for different categories.

Results of protein Ubiquitylation and SUMOylation sites prediction

We compared our method with several popular and accessible protein ubiquitina-
tion and SUMOylation site prediction tools (Ubisite [11], Ubiprober [12], Ubpred [13], 
psumo-cd [16], JASSA [15], sumoplot [26], GPSsumo [14], and MUscADEL) [23] by sub-
mitting our testing dataset to their websites. Their performance was plotted as ROC and 
PR curves in Fig. 4. Our AUC values were 0.838 on Ubiquitylation site prediction and 
0.888 on SUMOylation site prediction respectively. A similar situation appeared on the 
PR curves, where the AP value of Ubiquitylation site prediction was 0.683 and the AP 
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Fig. 1  The overview of our workflow for predicting protein Ubiquitylation and SUMOylation sites. a Data 
collection and preprocessing of Ubiquitylation and SUMOylation sites. b Encode fragments of proteins and 
input seven networks. c The deep network architecture adopts CNN and DNN. The output layer integrated 
the prediction results of the seven subnets. d The output contains four types of sites: negative, Ubiquitylation 
site, SUMOylation site and Crosstalk site
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Fig. 2  Our proposed deep architecture. The architecture consisted of seven subnets to separately handle 
one-hot and six physical-chemical properties, and then their detective high-level representation into an 
ensemble layer to predict final results
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value of SUMOylation site prediction was 0.804. As shown in Fig. 4, the performance 
of the proposed deep learning architecture was superior to other protein Ubiquitylation 
and SUMOylation site prediction tools for each measure.

The graphical sequence logo was generated by the WebLogo tool to visualize amino 
acid residue conservation at a given position as Fig.  5. Amino acid residues Glu (E), 
Glu(G), Lys(K), Leu (L) appeared more frequently in positive samples of Ubiquitylation 
fragments, while Glu (E), Leu (L), Pro(P), Arg(R) were more enriched in positive samples 
of SUMOylation fragments. The results indicated the dependencies of upstream and 
downstream amino acid sites, which is consistent with the article of Chen et al. [27].

t-SNE [28] plot was employed to visualize the discriminating ability of the raw inputs 
and merged deep representations from three classes as Fig.  6 shown. Different colors 
represented different classes. It clearly showed that the distributions of original features 
were disordered and messy. After mappings of multiple hidden layers, the sample distri-
bution tended to separate, which implied that our multi-label classification model may 
detect distinguishing representations and fuse seven subnets to further enhance the dis-
criminative ability of our model. But in the meanwhile, some overlaps resulting in not 
complete distinctive boundaries also can be observed from the t-SNE plot. We reasoned 
such heterogeneous samples located closely at feature space implied crosstalk sites and 
some potential unlabeled positive samples. We investigated the crosstalk sites from our 
experimental data and found they accounted for nearly 2% out of total Ubiquitylation 
and SUMOylation sites. Such crosstalk samples reflected characteristics of Ubiqui-
tylation and SUMOylation sites and were marked either Ubiquitylation sites (in red) or 

Fig. 3  Comparisons between our ensemble network and seven subnets ROC curves on a Ubiquitylation 
site prediction and b SUMOylation site prediction, and PR curves on c Ubiquitylation site prediction, and d 
SUMOylation site prediction
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Fig. 4  Comparisons between our method and others on our test set. The performance of the multi-label 
model with ROC curves on a ubiquitylation site prediction and b SUMOylation site prediction, and PR curves 
on c ubiquitylation site prediction, and d SUMOylation site prediction. The red line represents the average 
result of the tenfold cross-validation for our tool. The dashed lines and marks in other colors represent the 
results of popular Ubiquitylation and SUMOylation site prediction tools. The reason we used marks here is 
that those tools returned classification results instead of predictive probabilities. We are unable to plot ROC 
and PR curves with the predictive probabilities

Fig. 5  WebLogo visualization of the position-specific amino acid composition at a difference between 
upstream and downstream fragments around the Ubiquitylation sites b difference between upstream and 
downstream fragments around the SUMOylation sites
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SUMOylation sites (in blue) in Fig. 6. Therefore, the overlaps between red and blue dots 
likely represented the crosstalk sites. Almost negatives (in green) in Fig. 6 were concen-
trated in a region except a small part scattered at the zones enriched in red dots and blue 
dots.

Compared with dimensional reduction using PCA

Principal component analysis (PCA) is a popular feature selection method that conducts 
a linear transformation to convert the original variables to a set of new orthogonal vari-
ables [29], which enables to avoid manual feature selection. Venkatarajan et al. reduced 
the multidimensional scaling of 237 physicochemical properties to 5-dimensional repre-
sentations by using PCA [30]. We used this method to reduce the dimension from 402 to 
6 as the original input, to include the principle componenets of physical-chemical prop-
erties for comparisions (Fig. 7).

Independent dataset results

For fair evaluations, we built another independent set whose protein sequences were 
collected from UniProt/Swiss-Prot database updated after November 2020. At that point 
we had completed our data collection and all other tools had been published. Thereby, 
this dataset never appeared in our tool nor others, and served as an independent com-
parison. The details of this newly collected dataset are summarized in Additional file 1: 
Table S1. The performance of our method and others on the independent set is shown in 
Fig. 8. We also obtained an AUC and AP of 0.765 and 0.441 on crosstalk site prediction 
respectively.

Discussion
In our pipeline, ensemble learning is used to simultaneously identify protein Ubiquityla-
tion sites and SUMOylation sites as well as their crosstalk sites. Different from common 
ensemble approaches of using a simple average or predefined weights, our ensemble 
subnet enabled learning combined weights in a data-driven fashion.The led us to outper-
form other meta classifiers on both Ubiquitylation site prediction and SUMOylation site 
prediction.

Since we used the ensemble layer to synthesize two types of input features, the model 
can adaptively learn effective features. In addition, two PTMs mutually supported and 

Fig. 6  t-SNE visualization of a input layers and b merged layer
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boosted the multi-label prediction performance. Because crosstalk cannot be positive 
in both categories for ROC and PR curves, we calculated its AUC and AP of 0.862 and 
0.552 respectively.

We also explored overlapping samples with similar deep features in t-SME to Ubiqui-
tylation sites and/or SUMOylation sites that were potentially unrevealed positive sites, 
since only a small fraction of protein post-translational modification (PTM) sites were 
experimentally annotated in the records from Swiss-Prot [31].

The comparative results of PCA showed our deep architecture enables to gener-
ate more informative representations. As shown in Fig. 7, our model can obtain more 
potential associations between features and better classification results.

Our tool showed stronger discerning power than all other listed tools on the unseen 
samples in terms of AUC and AP. This can be attributed in part to adaptively integrating 
richer input modalities with seven descriptors and applying bootstrapping strategy to 
balance positive and negative samples in modeling.

Methods
Benchmark dataset

We built a benchmark dataset by collecting annotations from UniProt/Swiss-Prot (Nov 2020 
release) [32]. This database provides high-quality protein sequences and manual annotations, 

Fig. 7  Comparisons between our model and PCA model. The performance of the multi-label model 
with ROC curves on a Ubiquitylation site prediction and b SUMOylation site prediction, and PR curves on 
c Ubiquitylation site prediction, and d SUMOylation site prediction. In each panel, the red line indicates 
the classification results were computed by our model while the blue line is the results based on the PCA 
of physical and chemical properties in Mathura’s research. The red line in the figure was higher than the 
blue line, which showed that our model can obtain more potential associations of features and better 
classification results
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including the descriptions of amino acid residue modification. To avoid the overestimation of 
model performance caused by homogenous sequences, we used the Cluster Database at High 
Identity with Tolerance (CD-HIT) [33] to remove proteins that have more than 40% sequence 
identity. Afterwards, 1983 proteins of Ubiquitylation and 4728 proteins of SUMOylation 
remained. Experimentally validated lysine (K) residues, based on the annotation from Uni-
Prot/Swiss-Prot, were taken as positive samples. The rest of the lysine (K) residues in the pro-
teins were regarded as negative samples. In total, we obtained 4222 ubiquitylated sites, 56544 
non-ubiquitylated sites, 16432 SUMOylated sites, 203533 non-SUMOylated sites. Then, we 
retrieved the crosstalk sites from Swiss-Prot database by the keyword ‘cross-link’. Through 
this search, we collected 401 crosstalk sites for our basic datasets. We organized all details 
of the datasets including the number of Ubiquitylation and SUMOylation sites, and the ratio 
between positive and negative samples into the Additional file 2: Table S2. For the further 
details of the involved proteins, we saved all sequence names and fragments of the retrieved 
proteins in Additional file 3: Tables S3 and Additional file 4: Table S4 respectively.

In this study, we employed tenfold cross-validation to evaluate the performance of the 
model. In this process, all the proteins of Ubiquitylation and SUMOylation were parti-
tioned into 10 equal parts. The ratio of the training, validation and testing sets was 8:1:1. 
The details of the tenfold cross-validation dataset and the independent testing set are 
listed in the Additional file 1: Table S1 and Additional file 2: Table S2.

According to our previous grid search, a sliding window with a length of 24×
2+1=49 to intercept the protein sequence containing lysine residues (K) in the mid-
dle was optimal to deliver robust Ubiquitylation site prediction. The same settings 

Fig. 8  Comparisons to other methods on the independent test set ROC curves on a ubiquitylation site 
prediction and b SUMOylation site prediction, and PR curves on c ubiquitylation site prediction, and d 
SUMOylation site prediction
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were applied in this study consider the similarity between protein Ubiquitylation and 
SUMOylation. The details of optimized window size is explored in our previous work 
[34]. If the number of upstream and downstream positions was less than 24, then the 
placeholder was used to supplement. Moreover, the identifier “X” (unknown) was 
used to represent amino acids in the sequence that was not recognized by current 
sequencing techniques. “X” will be assigned an average value of 20 amino acids.

Encoding of protein fragments

The following two types of encoding were adopted to encode the amino acid composi-
tion of the original protein fragment [35].

The first encoding converted 20 amino acids and one placeholder to a binary fea-
ture matrix. The corresponding state of the amino acids on each vector was 1, and 
the remaining indeices were 0. All of the 49-length amino acid fragments were then 
organized as a matrix of size 49*21.

We also utilize physical-chemical properties (PCPs) encoding, which can be found 
and downloaded from the AAindex database [36]. In this study, all physical-chemical 
properties were divided into six highly correlated clusters. Then, each sequence frag-
ment was coded into 6 two-dimensional (2D) matrices. The details of six physical-
chemical properties are shown in Table 1.

Deep learning architecture

Our deep learning architecture consists of seven subnets to handle seven input 
modalities (one-hot and six physical-chemical properties encoding matrices). The 
structure and detailed hyper-parameters of these subnets can be found in Table 1.

The first subnet was designed to extract the internal correlation between adjacent 
amino acids, and highlight the meaningful part of the feature maps. Thereafter, we 
merged all the newly generated feature maps with three dense layers, to produce a 
low dimensional feature representation. The rest of the subnets would each take one 
of the six groups of the physical-chemical properties defined by Tomii et  al. in the 
AAindex database [36]. These included alpha and turn propensities, beta propen-
sity, composition, hydrophobicity, physicochemical properties, and other properties. 
According to the dimension of the input feature matrices, the layers and hyperparam-
eters of the network structure were adjusted accordingly.

These subnets separately detected intra-correlations and generated deep represen-
tations for each group of physical-chemical properties. Baseline experiments were 
conducted by training convolution layers and fully-connected layer with sigmoid 
activation function and nesterov adaptive moment estimation (Nadam) optimiza-
tion algorithm, and a categorical cross-entropy loss function [37]. Since the number 
of samples between each class and negatives were imbalanced, a class-weight was set 
inversely proportional to the number of samples in the class to equalize the contribu-
tion of each class and the negatives. The class weights were calculated as follows:

(1)vi =

1

ci

avg(
∑n

i=0
1

ci
)
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The number of samples for each class is represented by n and Ci represents the weight of 
the class i. category. And binary cross-entropy [37] was used as the loss function to drive 
model fitting. The output layer independently maps the embedding from previous layers 
to generate two probabilities for Ubiquitylation and SUMOylation via the sigmoid func-
tion. All models were respectively trained using a maximum of 100 epochs and stopped 
early if there was no further improvement in loss for any 10 continuous epochs.

Ensemble learning

Our deep learning predictor incorporated an ensemble learning strategy, to predict pro-
tein Ubiquitylation sites and SUMOylation sites precisely and conveniently as well as 
their crosstalk sites. The seven well-trained subnets can be considered as seven meta 
classifiers for the parallel completion for the prediction task [38]. We included an 

Table 1  Hyper-parameters of proposed deep architecture

Subnets Layer category Hyper-parameters

Activation function Size Filters Dropout

Sequence 1D Convolution Relu 2 201 0.4

Relu 3 151 0.4

Relu 5 101 0.4

Dense Relu 256 – 0.3

Relu 128 – 0

Sigmoid 2 – –

Physico-O Dense Relu 256 – 0.2

Relu 128 – 0.1

Sigmoid 2 – –

Physico-P Dense Relu 512 – 0.3

Relu 256 – 0.2

Relu 128 – 0.1

Sigmoid 2 – –

Physico-H Dense Relu 1024 – 0.4

Relu 512 – 0.3

Relu 256 – 0.2

Relu 128 – 0.1

Sigmoid 2 – –

Physico-C 1D Convolution Relu 2 201 0.2

Relu 3 151 0.1

Dense Sigmoid 2 – –

Physico-B 1D Convolution Relu 2 201 0.3

Relu 3 151 0.2

Relu 5 101 0.1

Dense Sigmoid 2 – –

Physico-A 1D Convolution Relu 2 201 0.4

Relu 3 151 0.3

Relu 5 101 0.2

Relu 7 51 0.1

Dense Sigmoid 2 – –

Ensemble Dense Relu 7 – –

Sigmoid 2 – –
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additional fully connected layer to integrate the outputs from the seven subnets. Such 
stacking-based ensemble learning enables us to adaptively coordinate inter-class diverse 
meta-learners and generate better predictions [39, 40]. When training the whole ensem-
ble network, we loaded the pretrained weights of all layers before the logits of each 
meta subnet respectively, and carried out the training procedure with the same training 
settings.

Since only a small number of lysine post-translational modification sites occur in pro-
tein sequences, the distribution of positive and negative samples is extremely imbal-
anced. Therefore, we employed bootstrapping for resampling the training data.This can 
help generate a more stable and unbiased model. Assuming that pos and neg represented 
the number of positive samples and negative samples, bootstrapping randomly selected 
pos positive samples and neg negative samples during the sampling process to form a 
balanced training set. Therefore, the network can be trained N (N= the number of nega-
tives / the number of positives) times to learn the weight. In this study, by randomly 
resampling the negative samples in equal proportionto the positive number, we were 
able to balance positive samples (including Ubiquitylation sites and SUMOylation sites) 
and negative samples involved in each training iteration. According to the distribution 
between positives and negatives, as seen in Additional file 2: Table S2, such boostrap-
ping procedure would go through 13 iterations in a training epoch to take as many nega-
tives as possible in training. The specific data points from each class after balanced are 
described in Additional file 5: Table S5.

Conclusion
In this paper, we proposed a novel ensemble deep learning based predictor for simulta-
neously identifying protein Ubiquitylation sites and SUMOylation sites as well as their 
crosstalk sites. Overall, the highlight of our method is mainly due to its data-driven fea-
ture, multi-label formulation for Ubiquitylation and SUMOylation sites, and ensemble 
learning. Because of the natural structural and functional similarity between Ubiquityla-
tion and SUMOylation, the data regarding two PTMs supported each other and boosted 
the multi-label prediction performance. The designed ensemble learning layer synthe-
sized the results of multiple meta classifiers and avoided the possibility of poor generali-
zation performance due to a single classifier.

By comparing with the results of similar tools, our ROC curves and PR curves were 
stable at a higher level. This demonstrated the effectiveness of our method and robust-
ness of the ensemble models, and reflected the potential of the deep learning algorithm 
in the field of Ubiquitylation and SUMOylation protein sites prediction. Because the 
input of our architecture is not particularly designed for Ubiquitylation and SUMOyla-
tion, our architecture can extend to other PTMs easily without any adjustment. Further 
research will explore incorporating newly updated Ubiquitylation and SUMOlytion data 
to incremenetally upgrade our model, and extending our architecture to other types of 
PTMs.
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