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Idiopathic pulmonary fibrosis (IPF) is a severe lung disease with poor

survival that warrants early and precise diagnosis for timely therapeutic

intervention. Despite accumulating genomic, transcriptomic, proteomic,

and lipidomic data on IPF, evidence from water-soluble metabolomics is

limited. To identify biomarkers for IPF from water-soluble metabolomic

data, we measured the levels of various metabolites in bronchoalveolar

lavage fluid (BALF) and serum samples from a bleomycin-induced murine

pulmonary fibrotic model using gas chromatography/mass spectrometry.

Thirty-two of 73 BALF metabolites and 29 of 74 serum metabolites were

annotated. We observed that the levels of proline and methionine were

higher in BALF but lower in serum than those in the control. Further-

more, analysis of public RNA-Seq data from the lungs of patients with

IPF revealed that proline- and methionine-related genes were significantly

upregulated compared to those in the lungs of healthy controls. These

results suggest that proline and methionine may be potential biomarkers

for IPF and may help to deepen our understanding of the pathophysiology

of the disease. Based on our results, we propose a model capable of reca-

pitulating the proline and methionine metabolism of fibrotic lungs, thereby

providing better means for studying the disease and developing novel ther-

apeutic strategies for IPF.

Idiopathic pulmonary fibrosis (IPF) is a progressive

lung disease, and its diagnosis and management

remain challenging [1,2]. It is believed that alveolar

epithelial damage, and subsequent dysregulated

wound repair, may lead to progressive pulmonary

fibrosis [3,4]. Factors that damage the epithelium such

as smoking, wood dust, and epithelial endoplasmic

reticulum stress have been linked to IPF [4]. In addition,

multiple wound repair signaling pathways, such as the

coagulation cascade, are dysregulated in IPF [4].

While a number of IPF biomarkers have been dis-

covered, their diagnostic and predictive abilities lack

sensitivity and specificity due to the heterogenic nature

of the disease [4,5]. Given the current progress in next-
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generation sequencing and mass spectrometry, consider-

able attention has been paid to omics approaches and

biomarker discovery for understanding this heteroge-

neous disease. Despite accumulating genomic, tran-

scriptomic, and proteomic data for IPF, evidence from

metabolomics has been minimal [6].

Among the various omics, metabolomics is based on

the global profiling of metabolites in a biological sys-

tem [7,8] and it is broadly acknowledged to be the

omics closest to the phenotype [9]. Metabolic profiling

of biofluids and tissues provides information on

changes in the abundance of endogenous metabolites

associated with cellular responses to disease. One of

the major advantages of metabolomics is that there is

great similarity among species [10]. Thus, metabolo-

mics allows us to discuss the direct connection between

mouse and human.

Lipidomics has revealed how lipids, such as prosta-

glandin E2, take part in the pathophysiological molec-

ular mechanism of IPF development [11–13], and has

led to the identification of several candidate biomark-

ers for IPF [14]. Although several water-soluble

metabolites are significantly altered in the lungs of IPF

patients compared with the healthy controls [7], it

remains poorly understood whether water-soluble

metabolites could be useful biomarkers for IPF and

how water-soluble metabolites are involved in the

pathophysiology of IPF development.

Here, we report the results of gas chromatography/

mass spectrometry (GC/MS)-based water-soluble

metabolomics in bronchoalveolar lavage fluid (BALF)

and serum samples derived from pulmonary fibrosis

model mice treated with bleomycin in an effort to

identify novel IPF biomarker candidates. Furthermore,

after analyzing a public RNA-Seq database of IPF

patient lungs, we report changes in gene expression

related to water-soluble metabolites.

Materials and methods

Bleomycin-induced pulmonary fibrosis model

mice

Sex-, age-, and weight-matched C57BL/6J mice (8–
10 weeks of age) were anesthetized using 13 lL�g�1 of 4%

tribromoethanol. A maximal 1-cm midline cervical incision

was made to expose the trachea, followed by intratracheal

instillation of PBS as a vehicle or 1.2 U�kg�1 of bleomycin

(Nippon Kayaku, Tokyo, Japan). The cervical incision was

closed with n-butyl cyanoacrylate (Vetbond, 3M Health

Care, St. Paul, MN, USA), and the mice were returned to

their cages to recover. Mice were sacrificed 7 days after

instillation to obtain BALF and serum samples. All experi-

mental procedures were performed according to guidelines

of the Committee on Ethical Use of Laboratory Animals

of the Osaka University Medical Department.

Azan staining and Ashcroft scoring

The lung samples were processed and then stained with the

Azan stain as previously described [15]. Fibrosis was quan-

titatively evaluated from the light microscope images (920

magnification) of the stained tissue sections by Ashcroft

scoring [16]. To assess the severity of the fibrosis in the

lungs (independent of inflammation), 10 fields/slide were

evaluated. Each field was assigned a score between 0

(healthy lung) and 8 (total fibrosis). The average score of

the 10 fields was defined as the Ashcroft score of the corre-

sponding tissue section.

Collection of BALF and serum samples

The trachea of each animal was surgically exposed and

intubated with a syringe catheter. The lungs underwent

lavage with 1 mL prewarmed PBS three times. After that,

the cells in BALF were pelleted by centrifugation at 500 g

for 10 min, and the supernatant was collected as BALF.

Blood samples were collected independently from mice trea-

ted with PBS or bleomycin through cardiac puncture under

the appropriate anesthesia and centrifuged to isolate animal

serum; the supernatants (serum samples) were used for sub-

sequent analyses. All mice were immediately euthanized

using carbon dioxide according to the standard protocol of

our animal facility. Four mice per group were utilized for

the preparation of BALF and serum samples. We referred

to a previous report by Tsujino et al. [17] to decide on the

sample collection methods and the number of animals.

Sample preparation for GC/MS analysis

Bronchoalveolar lavage fluid samples (1 mL) were placed

in 2-mL Eppendorf tubes, frozen with liquid nitrogen, and

dried using a lyophilizer. Dried samples were extracted with

500 µL of extraction solvent consisting of 2.5 : 1 : 1 (v/v/v)

methanol, distilled water, and chloroform, and then

Fig. 1. Characterization of metabolomic data. PCAs, heatmap, and volcano plots for metabolomic data of BALF (n = 4; A, C, E) and serum

(n = 4; B, D, F) derived from lung tissue of pulmonary fibrosis model mice. In the heatmaps, hierarchical clustering was performed by the

ward.D2 method. Each colored bar indicates the z-score. In the volcano plots, significant metabolites were determined by Welch’s t-test

with a threshold of P < 0.05. The green line indicates the threshold. Not Sig, not significant. The control group mice were treated with only

PBS.
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vortexed for 20 s. Serum samples (50 µL) were added to

450 µL of extraction solvent composed of 5.6 : 1.2 : 2.2 (v/

v/v) methanol, distilled water (considered as serum), and

chloroform, and then vortexed for 20 s. The internal stan-

dard, composed of 0.4 mg�mL�1 ribitol and 0.4 mg�mL�1

10-camphorsulfonic acid, was then added. Subsequently,

the mixtures were incubated for 30 min at 37 °C before

centrifuging at 16 000 g for 5 min at 4 °C. Aliquots of the

supernatants (BALF, 400 lL; serum, 450 µL) were trans-

ferred to clean 1.5-mL Eppendorf tubes, and distilled water

was added (BALF, 200 lL; serum, 400 µL). After mixing,

the solutions were centrifuged at 16 000 g for 5 min at

4 °C and the supernatants (BALF, 300 lL; serum, 400 µL)
were dispensed into fresh 1.5-mL Eppendorf tubes and

capped. The extracts were evaporated using a vacuum cen-

trifuge dryer for 2 h and finally lyophilized overnight.

For oximation, 100 lL of methoxyamine hydrochloride

in pyridine (20 mg�mL�1) was added to the lyophilized

samples and the samples were incubated for 90 min at

30 °C. For trimethylsilylation, 50 lL of N-methyl-N-

(trimethylsilyl)trifluoroacetamide was added to the samples

and the samples were incubated for 30 min at 37 °C. Sub-
sequently, the samples were centrifuged at 16 000 g for

5 min at 20 °C; 1 lL aliquots of the resultant supernatant

were injected into the GC/MS.

GC/MS analysis

Samples were analyzed using an AOC-20is series injector

(Shimadzu, Tokyo, Japan), a GC-2010 Plus (Shimadzu),

and a GCMS-QP2010 Ultra (Shimadzu). Both platforms

utilized a 30 m 9 0.25 mm i.d. fused silica capillary column

coated with 0.25 lm CP-SIL 8 CB Low Bleed/MS (Agilent

Technology, Santa Clara, CA, USA). The front inlet tem-

perature was 230 °C, and the helium gas flow rate through

the column was 1.12 mL�min�1. The column temperature

was held at 80 °C for 2 min, isothermally, and then raised

by 15 °C�min�1 to 330 °C and maintained for 6 min,

isothermally. The transfer line and ion source temperatures

were 250 and 200 °C, respectively. Scans were recorded at a

rate of 20 scans�s�1 over a mass range of 85–500 m/z.

Data processing and metabolite annotation

MS data were exported in the ANDI format. Peak detec-

tion and alignment were performed using the METALIGN

software (Wageningen University, The Netherlands, freely

available at https://www.wur.nl/en/show/MetAlign-1.htm)

[18]. Metabolites were annotated using AIOUTPUT2 (version

1.01) [19,20] based on comparison of each MS spectrum

with an in-house library prepared from authentic standard

chemicals [21].

RNA-Seq analysis of public data

To investigate the expression profile of pulmonary fibrosis-

related genes, we obtained public RNA-Seq data

(GSE92592) of lung tissues from IPF patients (n = 20) and

healthy controls (n = 19) from NCBI GEO (https://www.

ncbi.nlm.nih.gov/geo/). The data quality of the fastq files

was verified with the FASTQC tool (http://www.bioinformatic

s.babraham.ac.uk/projects/fastqc/). Read trimming was per-

formed by TRIMMOMATIC version 0.36 (http://www.usade

llab.org/cms/?page=trimmomatic) [22] with the Illumina

Truseq adapter removal process (2 : 30 : 10) and the fol-

lowing options: LEADING:20, TRAILING:20, SLIDING-

WINDOW:4:20, and MINLEN:25. Trimmed reads were

mapped to the reference human genome, GRCh38, avail-

able in the Ensembl genome database (https://asia.ensembl.

org/Homo_sapiens/Info/Index) using STAR program version

2.7.0b (https://github.com/alexdobin/STAR) [23] with mis-

match option --outFilterMismatchNmax 2. RNA-Seq by

EXPECTATION-MAXIMIZATION software version 1.3.0 (https://de

weylab.github.io/RSEM) [24] was used for calculating the

expression values in transcripts per million (TPM). Differ-

entially expressed genes were identified using a cutoff false

discovery rate of < 0.05. The false discovery rate was calcu-

lated by Storey’s method [25] using qvalue package version

2.16.0 on R environment version 3.6.0 (https://www.r-projec

t.org/).

Bioinformatics analyses

In the metabolome analysis, the signal intensities relative to

the internal standard ribitol were used for downstream

analyses. In the RNA-Seq analysis, genes expressed in at

least one sample were considered for downstream analysis,

and the TPM values were converted to log2(TPM + 1).

Principal component analysis (PCA) and heatmap genera-

tion were performed by the prcomp function and pheatmap

package version 1.0.12, respectively. Disease enrichment

analysis was performed by DOSE package version 3.10.2

and then visualized by enrichplot package version 1.4.0. All

Fig. 2. Metabolic network analyses using significantly changed metabolites in BALF and serum. (A) Enriched metabolic networks in BALF

and serum. The green line indicates the threshold (P = 0.05). The number above each bar indicates the number of mapped metabolites in

the network. (B) (L)-Proline pathways and transport in METACORE version 19.4. The green, red, and gray arrows indicate positive effect,

negative effect, and unspecified effect, respectively. Closed red circles or mixed red/blue circles indicate differentially changed metabolites

in BALF or serum samples from fibrotic lung mice, while red squares indicate proline- or methionine-related genes. Further explanations are

provided at https://portal.genego.com/legends/MetaCoreQuickReferenceGuide.pdf.
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analyses described above were performed using R environ-

ment version 3.6.0. The metabolic network analysis was

performed using METACORE software version 19.4 (Clarivate

Analytics, Philadelphia, PA, USA). Among the annotated

metabolites, only those having significant variations were

used as the input data for the metabolic network analysis.

Statistical analyses

In the metabolome analysis, statistical significance was

determined by Welch’s t-test using R environment version

3.6.0. P values < 0.05 were considered to be significant.

Statistical analyses of metabolic networks were automati-

cally calculated by a default method in METACORE.

Results and Discussion

Metabolomic profiling analyses

Azan staining and Ashcroft scoring showed that the

average Ashcroft scores of the control and bleomycin

groups were 0 and 3.55, respectively. These results

indicate that the bleomycin-induced pulmonary fibrotic

mice remarkably exhibited lung fibrosis (Fig. S1A,B).

The BALF and serum samples used in this study were

obtained from four mice treated with or without bleo-

mycin. Of the 73 water-soluble metabolites detected in

BALF, 32 were annotated. For serum, 29 of the 74

detected molecules were annotated. Notably, clusters

between control- and bleomycin- groups were clearly

separated by the PC1 axis in BALF and by the PC2

axis in serum. For PCA, the first principal component

(PC1) described 60.5% of the variability in BALF and

31% of the variability in serum, while the second prin-

cipal component (PC2) described 13.4% of the vari-

ability in BALF and 29.2% of the variability in serum

(Fig. 1A,B). As expected, separation of BALF was

more remarkable than that of serum. Collectively,

metabolites, by our strategy, could discriminate bleo-

mycin-treated model mice from control mice.

While most metabolites in BALF were increased in

response to bleomycin treatment, different results were

observed in serum samples (Fig. 1C,D). In the volcano

plot, 37 water-soluble metabolites (25 annotated) were

increased in response to bleomycin treatment in

BALF, whereas 12 water-soluble metabolites (4 anno-

tated) were decreased in serum (Fig. 1E,F). The meta-

bolomic profile of serum was heterogeneous, whereas

that of BALF was homogeneous. Metabolites known

to be upregulated in the lungs of IPF patients [7] such

as glycine, glutamic acid, proline, and 4-hydroxy-L-

proline, were significantly upregulated in BALF of the

mouse model (Fig. 1C,E). The metabolic profile posi-

tively correlates between BALF of mice and humans

[26]. The results of the present study suggest that the

metabolic profile of BALF from the model mice is

similar to that of BALF from IPF patient lungs. Of

interest, proline, methionine, and urea were increased

in BALF, whereas they were decreased in serum

(Fig. 1C–F). Thus, BALF was more useful than serum

for discovering water-soluble metabolites as IPF

biomarkers.

Metabolic network analysis shows the metabolic

events in the fibrotic lung

To understand the global dynamics in metabolism, we

performed a metabolic network analysis. While 30 net-

works were enriched in BALF, only nine were enriched

in serum (Fig. 2A). Of note, seven networks over-

lapped between BALF and serum (Table 1). While

amino acid metabolism- and transport-related net-

works were often enriched in BALF, several carbohy-

drate metabolism-related networks were enriched in

both BALF and serum (Fig. 2A and Table 1). The

metabolic network involving (L)-proline pathways and

transport was enriched in BALF and serum (Fig. 2A).

Proline, ornithine, and trans-4-hydroxy-proline were

mapped on the network (Fig. 2B). The network and

publications cited in the database showed that (a)

Table 1. Metabolic networks enriched in BALF and serum.

Metabolic network

BALF Serum

P-value In data P-value In data

Lipid metabolism_Glycosphingolipid metabolism 2.56E-09 5 0.000318 4

Aminoacid metabolism_Ala,Ser,Cys,Met,His,Pro,Gly,Glu,Gln metabolism and transport 2.56E-09 5 0.000318 4

(L)-Proline pathways and transport 2.98E-06 9 0.000909 3

Carbohydrate metabolism_TCA and tricarboxylic acid transport 0.00108 6 0.00079 3

Carbohydrate metabolism_Pyruvate metabolism and transport_new 0.00186 5 0.0091 2

60-sialyllactose pathways and transport 0.0266 4 0.0145 2

Carbohydrate metabolism_Fructose metabolism and transport 0.0362 4 0.0174 2
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SLC1A4 is a transporter that moves proline into cells

[27], (b) collagen prolyl 4-hydroxylase (P4H) catalyzes

the conversion of proline to trans-4-hydroxy-proline

[28], and (c) ornithine and urea are generated through

the hydrolysis of arginine by arginase 2 (ARG2) [29].

In addition, ornithine aminotransferase (OAT) con-

verts ornithine into proline; its gene expression is

increased in the lung tissue of IPF patients compared
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with that of healthy controls [7], and SLC7A5 is a

transporter that moves methionine into cells [30].

Public RNA-Seq data of IPF lungs reveal the

expression profiles of proline- and methionine-

related genes

To investigate the expression profiles of genes encod-

ing the enzymes described above, we analyzed public

RNA-Seq data of lung tissue from IPF patients. Using

PCA, clusters of control and IPF patients separated

along the PC1 axis (Fig. 3A). Disease enrichment anal-

yses showed that IPF, pulmonary fibrosis, and lung

diseases were highly enriched (Fig. 3B), indicating that

the features of IPF at the transcript level were

included in the data (Fig. 3B). The volcano plot

showed that the expressions of SLC1A4, SLC7A5,

ARG2, OAT, P4HA3, and P4HB were increased signif-

icantly in the lung tissue of IPF patients (Fig. 3C).

Thus, we speculate that the transport and metabolism

of differentially expressed metabolites may be altered

in fibrotic lung tissue.

The lungs of IPF patients are exposed to potent

oxidative stress [31]. Indeed, the level of oxidized

methionine is increased in BALF of IPF patients com-

pared with that in healthy controls [32]. Because

methionine plays a role in diminishing oxidative stress

by auto-oxidation [33], it might be transported from

blood to the lungs to decrease oxidative stress caused

by fibrosis. Proline and hydroxyproline are major com-

ponents of collagen that are necessary for repairing

injured lungs [34]. Thus, proline might be transported

from blood to the lungs to support collagen synthesis

for injury repair.

We analyzed water-soluble metabolomic data of

BALF and serum derived from mouse fibrotic lung tis-

sue. Interestingly, proline, methionine, and urea were

increased in BALF, whereas they were decreased in

serum. Previous reports showed that proline, hydrox-

yproline, valine, leucine, isoleucine, alanine, and

phenylalanine were elevated in exhaled breath of IPF

patients [35]. These metabolites were also elevated in

BALF of our mouse model. This result suggests that

exhaled breath could partially reflect the metabolite

signature in BALF. Moreover, RNA-Seq data showed

that transporters that take part in the uptake of these

metabolites were increased significantly in the lungs of

IPF patients. Based on these results, we believe that

these metabolites may be transported from the blood

to the lungs to repair the injury or to ameliorate

oxidative stress caused by bleomycin treatment.

In this study, we analyzed two single-layer omics

independently. Because single-layer omics are not

sufficient to discover novel biomarkers [36], we need to

integrate additional omics layers, such as the pro-

teome, transcriptome, and genome. Therefore, in the

future we will analyze human BALF, serum samples,

and exhaled breath samples using multi-omics and

validate our findings using in vitro or in vivo assay

systems.

Conclusions

In this study, we found that proline and methionine

levels were significantly increased in BALF derived

from pulmonary fibrosis model mice treated with bleo-

mycin, whereas they were significantly decreased in

serum samples compared to those in the control. These

results suggest that proline and methionine in BALF

may be potential biomarkers for lung fibrosis. In addi-

tion, the expression of proline- and methionine-related

genes encoding transporter or converting enzymes,

SLC1A4, SLC7A5, ARG2, OAT, P4HA3, and P4HB,

was significantly increased in the lungs of patients with

IPF compared to that in the lungs of healthy controls.

Finally, we presented a potential mechanism underly-

ing the pathogenesis of lung fibrosis. We believe that

proline and methionine are transported from the blood

to the lungs and their metabolism may contribute to

fibrotic lung progression via inducing the expression of

proline- and methionine-related genes encoding their

transporter or converting enzymes.
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Fig. S1. Azan staining and Ashcroft scoring of the

lung from bleomycin-induced pulmonary fibrotic mice.

A; Azan staining of the lung from the fibrotic mice.

Bars indicate 100 lm. B; Ashcroft scores were 6 evalu-

ated using the images in Fig. S1-A, as described in

Materials and Methods section. Error bar 7 indicates

standard deviation (n = 4). Statistical significance was

determined by Welch’s t-test.

2436 FEBS Open Bio 10 (2020) 2427–2436 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Novel biomarker candidates for lung fibrosis Y. Nojima et al.


	Outline placeholder
	feb412982-aff-0001
	feb412982-aff-0002
	feb412982-aff-0003
	feb412982-aff-0004
	feb412982-aff-0005

	 Mate�ri�als and meth�ods
	 Bleomycin-in�duced pul�monary fibro�sis model mice
	 Azan stain�ing and Ashcroft scor�ing
	 Col�lec�tion of BALF and serum sam�ples
	 Sam�ple prepa�ra�tion for GC/MS anal�y�sis
	feb412982-fig-0001
	 GC/MS anal�y�sis
	 Data pro�cess�ing and metabo�lite anno�ta�tion
	 RNA-Seq anal�y�sis of pub�lic data
	 Bioin�for�mat�ics anal�y�ses
	feb412982-fig-0002
	 Sta�tis�ti�cal anal�y�ses

	 Results and Dis�cus�sion
	 Metabolomic pro�fil�ing anal�y�ses
	 Metabolic net�work anal�y�sis shows the metabolic events in the fibrotic lung
	feb412982-tbl-0001
	feb412982-fig-0003
	 Public RNA-Seq data of IPF lungs reveal the expres�sion pro�files of pro�line- and methion�ine-re�lated genes

	 Con�clu�sions
	 Acknowl�edge�ments
	 Con�flict of inter�est
	 Author con�tri�bu�tions
	 Data acces�si�bil�ity
	feb412982-bib-0001
	feb412982-bib-0002
	feb412982-bib-0003
	feb412982-bib-0004
	feb412982-bib-0005
	feb412982-bib-0006
	feb412982-bib-0007
	feb412982-bib-0008
	feb412982-bib-0009
	feb412982-bib-0010
	feb412982-bib-0011
	feb412982-bib-0012
	feb412982-bib-0013
	feb412982-bib-0014
	feb412982-bib-0015
	feb412982-bib-0016
	feb412982-bib-0017
	feb412982-bib-0018
	feb412982-bib-0019
	feb412982-bib-0020
	feb412982-bib-0021
	feb412982-bib-0022
	feb412982-bib-0023
	feb412982-bib-0024
	feb412982-bib-0025
	feb412982-bib-0026
	feb412982-bib-0027
	feb412982-bib-0028
	feb412982-bib-0029
	feb412982-bib-0030
	feb412982-bib-0031
	feb412982-bib-0032
	feb412982-bib-0033
	feb412982-bib-0034
	feb412982-bib-0035
	feb412982-bib-0036


