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Electroencephalogram (EEG) signals are not easily camouflaged, portable, and

noninvasive. It is widely used in emotion recognition. However, due to the existence

of individual differences, there will be certain differences in the data distribution of

EEG signals in the same emotional state of different subjects. To obtain a model that

performs well in classifying new subjects, traditional emotion recognition approaches

need to collect a large number of labeled data of new subjects, which is often unrealistic.

In this study, a transfer discriminative dictionary pair learning (TDDPL) approach is

proposed for across-subject EEG emotion classification. The TDDPL approach projects

data from different subjects into the domain-invariant subspace, and builds a transfer

dictionary pair learning based on the maximum mean discrepancy (MMD) strategy. In the

subspace, TDDPL learns shared synthesis and analysis dictionaries to build a bridge of

discriminative knowledge from source domain (SD) to target domain (TD). By minimizing

the reconstruction error and the inter-class separation term for each sub-dictionary, the

learned synthesis dictionary is discriminative and the learned low-rank coding is sparse.

Finally, a discriminative classifier in the TD is constructed on the classifier parameter,

analysis dictionary and projection matrix, without the calculation of coding coefficients.

The effectiveness of the TDDPL approach is verified on SEED and SEED IV datasets.

Keywords: electroencephalogram signals, transfer learning, dictionary pair learning, emotion classification,

across-subject

INTRODUCTION

Emotion is an advanced cognitive activity of human beings and plays an increasingly important role
in human rational thinking, decision-making, perception and learning. Since human emotional
state is a complex psychological and physiological process, the study of human emotion is a
complex cognitive process. At present, emotion classification is an important research direction
in emotional computing and artificial intelligence. Emotion classification has been widely used
in intelligent transportation, distance education, and human-computer interaction. However, as
an interdisciplinary research field, there are still many challenges in emotion classification based
on artificial intelligence technology. Early researchers usually used facial expressions, audio and
peripheral physiological signals (body temperature, blood pressure, pulse, respiration, etc.) to
indirectly study emotions (Shu et al., 2018). However, such information is easy to disguise and
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not objective, it is easy for users to deceive the detection device
by subjectively controlling the external expression of emotions,
making it difficult to objectively and accurately describe the user’s
emotional state. With the development of cognitive science, the
relationship between the specific location of the cerebral cortex
and emotion is gradually recognized, so it is a good choice to
directly study the activity of the cerebral cortex to study the
emotional state. Researchers can use the existing knowledge
of signal processing to directly process physiological signal
data, which also greatly promotes the development of emotion
recognition. Studies have shown that EEG signals can be used as
an informative feature of emotional state. EEG signals have the
advantages of being difficult to camouflage, portable and non-
invasive acquisition, high temporal resolution, and can directly
reflect brain activity (Ramakrishnan and Panachakel, 2021).

Sorkhabi (2014) used continuous wavelet transform (CWT)
algorithm to divide EEG signals into 5 frequency bands. The
CWT algorithm extracted variable-sized window features and
obtained high-frequency information in shorter regions. Based
on this, the researchers detected the activity of EEG signals
within a 1-second time window. The subjects’ self-rating values
in terms of valence dimension and arousal degree were found
to have a stable correlation with their EEG power and power
spectrum entropy, and the high frequency band features had a
more accurate classification effect than the low frequency band
features. Atkinson and Campos (2016) proposed an emotion
classification approach based on the combination of minimum
redundancy-maximum correlation feature selection and kernel
classifier. The significant benefit of this approach is that it
incorporated the feature selection task of EEG signals into
the classification task, identifying a wider range of emotion
recognition approaches while using amulti-label classifier. Zhang
and Lee, 2009 proposed an emotion understanding system. The
system used the asymmetry of the prefrontal lobe of the brain as
a feature and uses support vector machine (SVM) as a classifier,
which can distinguish two emotional states with a recognition
rate of about 73%. Zhuang et al. (2017) used the empirical mode
decomposition (EMD) approach to automatically decompose the
EEG signal into multiple intrinsic mode functions (IMFs), and
achieved a recognition result of 70.41%. Mert and Akan (2018)
used the multivariate extended version of the EMD approach to
extract the multi-channel IMFs of EEG signal.

Neurobiological studies have shown that the human nervous
system adopts a sparse representation strategy to receive and
process external stimuli, and only needs to activate a small
number of neurons in the cerebral cortex to complete the
reception of information (Beyeler et al., 2019). Dictionary
learning is a machine learning method based on this idea. In
dictionary learning, data samples can be sparsely approximated
by linear combinations of basis signals in the dictionary. The
core idea is to learn an optimal dictionary under the certain
constraint, and obtain the optimal sparse representation of the
sample on the learned dictionary (Zhang et al., 2018). For EEG
signals, we can also use sparse representation to avoid a lot
of redundant information. Sheykhivand et al. (2020) took raw
EEG signals directly as the model input and used a dictionary-
learning-based sparse representation classifier. The classifier

showed good performance without involving feature extraction
and selection. Gu et al. (2021) mapped EEG signals in different
frequency bands to subspaces, and learned a shared dictionary of
multiple frequency bands, which can learn more discriminative
knowledge hidden frequency bands. On the basis of this
research, Zhu et al. (2022) proposed a new multi-band dictionary
learning-based EEG emotion analysis model. They divided
the projection matrix of each frequency band into two parts:
common component and private component. The common
component was used to mine the shared knowledge of different
frequency bands, and the private component was used to mine
the unique knowledge of each frequency band. Simultaneously,
the shared dictionary on the multi-band signal in the subspace
established the connection between multi-bands. Barthélemy
et al. (2013) proposed a dictionary learning that considers both
inter-channels links and shift-invariance, which improved the
representation ability and flexibility of the dictionary. Although
traditional EEG-based emotion classification approaches have
been effectively verified and widely used, they are all based
on subject-independent general models and do not consider
individual differences. Studies have shown that subjects of
different genders, ages, races, and health conditions have
great differences in emotional expression, and sometimes this
difference is even greater than the change in emotion (Chaplin,
2015). Therefore, the generalization performance of traditional
emotion classification model is poor.

Traditional emotion classification model assumes that EEG
signals from different subjects (training and test data) have the
same feature space distribution. Transfer learning can relax this
restriction. In target task modeling, transfer learning can use
knowledge from other domain (source domain, SD) to help
target domain (TD) training and modeling (Lin and Tzyy-Ping,
2017). For example, knowledge or patterns learned from other
subjects can be applied to a new subject through transfer learning.
By mining the information shared between different subjects, a
model that adapts to the target subject’s data distribution is finally
constructed. In this study, a transfer discriminative dictionary
pair learning approach (TDDPL) is developed for across-subject
EEG emotion classification. The core idea of TDDPL is to find
the domain-invariant subspace through the projection matrix,
and learn the shared dictionary pair based on the paired
dictionary learning framework in the subspace. By leveraging
SD discriminative information, a shared synthesis dictionary
and analysis dictionary are used to learn more discriminative
domain-invariant low-rank coding to improve the performance
of TD model. Our experiments in SEED and SEED IV datasets
show that TDDPL achieves very competitive accuracy with state-
of-the-art transfer learning approaches.

Specifically, the contribution of this work is fourfold. (1)
By adopting the maximum mean discrepancy (MMD) of low-
rank encoding to mitigate the distribution difference, EEG data
from different subjects are projected into the domain-invariant
subspace, and a bridge is built between SD and TD through
transfer dictionary pair learning approach. (2) By minimizing the
reconstruction error and inter-class separation of each synthesis
sub-dictionary, the reconstruction between each sub-dictionary
and heterogeneous low-rank coding is approximately an empty
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set, which can improve the discriminative ability of synthesis
dictionary. (3) By minimizing the reconstruction error and the
inter-class separation of each analysis sub-dictionary, the learned
low-rank encoding has good sparsity. (4) The discriminative
classifier in the TD is trained on the classifier parameter, analysis
dictionary and projection matrix, the classifier can be directly
used for the classification of test data, avoiding additional time-
consuming coding reconstruction.

The remainder of this paper is organized as follows. Section
Background introduces the study background. Section Domain
Adaptation Sparse Representation Classifier the proposed
approach. Section Experiment reports the experimental results.
Section Conclusion draws conclusions.

BACKGROUND

Transfer Leaning in EEG Emotion
Classification
There are two general classification models for EEG emotion
classification, one is to build an emotion classification model
that can be used for a long time, and the other is to build an
emotion classification model that can be used across subjects.
For the same subject, the EEG signal will change over time.
Compared with the differences in EEG signals between the same
subjects, the differences in EEG signals between different subjects
are greater, resulting in poor model generalization performance
across subjects (Wan et al., 2021). In addition, in the research of
emotion classification, building a general model often needs to
acquire a large amount of subject data, which is often difficult to
achieve. Therefore, the above two problems are how to mine the
shared useful information in the EEG data with large differences,
in which how to construct a general model across subject is
more challenging.

Transfer learning is a machine learning strategy that uses
existing knowledge to solve problems in different but related
domains. The essence of transfer learning is the transfer and
reuse of knowledge, which is, extracting useful knowledge from
one or more SDs to assist in tasks in TD (Li et al., 2020).
For example, Zanini et al. (2018) proposed a transfer learning
model using Riemannian geometry to handle across-session and
across-subject classification tasks in brain-computer interface
(BCI). Using affine transformations of the spatial covariance
matrices of data from each session or subject, the authors
tackled EEG-based BCI across-subject classification problems,
and then calibrated the classifier using data from previous
sessions or subject data. Lan et al. (2018) combined domain
adaptation approaches such as maximum independent domain
adaptation, transfer component analysis, subspace alignment,
and information theoretical learning with non-transfer learning
approaches. The experimental results showed that the models
using domain adaptation techniques outperform the non-
transfer learning approaches. Zhang and Wu (2020) proposed
a manifold embedded knowledge transfer learning model. This
model aligned the covariance matrices of EEG data on a
Riemannian manifold, and then performed domain adaptation
by minimizing the difference in the joint probability distribution,

while preserving the geometry of the original EEG data. Morioka
et al. (2015) proposed a dictionary learning approach with strong
generalization ability. To be suitable for emotion analysis of
multiple individuals, the approach took the EEG signals of the
target individual as the calibration data. Because EEG signals
are weak and easily affected by noise, transfer learning for EEG
emotion classification is still a very challenging research.

EEG Emotion Datasets Used in This Study
The datasets used in this paper are experimented on two public
emotion datasets SEED (Zheng and Lu, 2015) and SEED-IV
(Zheng et al., 2019). The SEED dataset employed six emotion-
labeled movie clips to elicit three emotions in subjects: positive,
neutral, and negative. The subject’s EEG data was recorded
while inducing the subject’s emotion, and the emotional label
represented by the movie was the subject’s EEG label. The mean
age of the 15 Chinese subjects participating in the experiment
was 23.27. Each subject performed a total of 3 trials, and each
trial consisted of 15 trials. Each trial consisted of 5 s prompts,
about 4min of audio stimulation, 45s of self-assessment and 15 s
of rest. Similarly, the SEED-IV dataset employed emotion-labeled
movie clips to elicit four emotions in subjects: happy, sad, fearful,
and neutral. The experiment recorded the subjects’ EEG data
at the same time, and the emotional label represented by the
movie is the EEG label. The 15 healthy subjects who participated
in the experiment were between the ages of 20 and 24. The
experiment designed three different experiments for each subject,
each experiment contained 24 trials (six trials for each emotion),
and each experiment used a completely different movie clip.
The specification comparison between the SEED and SEED-IV
datasets is shown in Table 1.

Synthesis Dictionary and Analysis
Dictionary Learning
Let Y = [y1, ..., yN] ∈ Rd×N be the data matrix. The core
idea of synthesis dictionary learning looks for a dictionary
D ∈ Rd×r that can express each sample, where r is number of
dictionary atoms. Let A ∈ Rr×N be the coding coefficient matrix
obtained by dictionary D. Synthesis dictionary learning model

TABLE 1 | Specification comparison between the SEED and SEED-IV datasets.

SEED dataset SEED-IV dataset

Number of leads 62 62

Original sampling rate 1,000Hz 1,000 Hz

Downsampling 200Hz 200 Hz

Number of subjects 15 15

Emotional stimulation Chinese movie clips Chinese movie clips

Emotional types Positive, neutral, negative Positive, fear, neutral, negative

Number of sessions 3 3

Number of trials 15 24

Trial test length about 4min about 2min
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(Jiang et al., 2013) can be formulated by,

min
D,A

‖Y−DA‖2F + ‖A‖p + f1(Y,D,A), (1)

where ‖·‖p is usually 0 or 1 norm. ‖Y−DA‖2F represents the
reconstruction error. f1(·) can be some constraint terms on
dictionary atoms, training samples and coding coefficients,
such as low-rank constraint, label consistency constraint,
locality constraint, structured sparsity constraint, and Fisher
discriminative constraint (Wang et al., 2017). Synthesis
dictionary learns a comprehensive dictionary by solving a
reconstruction error minimization problem.

Analysis dictionary learning provides an intuitive explanation
(Du et al., 2021). It directly acts dictionary on feature samples
into sparse coding space, which is similar to the feature
transformation. Analysis dictionary learning model can be
formulated by

min
P,A

‖PY− A‖2F + ‖A‖p + f2(Y,P,A), (2)

where P ∈ Rd×r is the learned synthesis dictionary. f2(·) can be
some constraint terms to obtain the stable solution of P and A.

DOMAIN ADAPTATION SPARSE
REPRESENTATION CLASSIFIER

The Objective Function of TDDPL
Suppose the training set Y consists of n SD sets Ysi(1 ≤ i ≤

n) and a TD set Yt ,Y = [Ys1,Ys2, ...,Ysn,Yt] ∈ Rd×N , where
Ysi ∈ Rd×Nsiand Yt ∈ Rd×Nt composing of k classes of training

samples, N =
n
∑

i=1
Nsi + Nt .

Synthesis Sub-dictionary Discriminative Term
The synthetic dictionary learning model learns a synthetic
dictionary D to sparsely represent samples with a linear
combination of a small number of dictionary atoms. We use
the projection matrix to project the data of each domain into
the subspace, and use the projected low-dimensional samples
to learn a shared synthetic dictionary. Suppose the projection
matrices corresponding to the kth class sample on the Ysi and
Yt are �si,k ∈ Rd×m and �t,k ∈ Rd×m, respectively. m is
the dimension of the projected subspace. �T

si,k
Ysi,k and �T

t,k
Yt

represent the kth class projecting samples belonging to SD and
TD, respectively. The synthesis sub-dictionary discriminative
term minimizes the reconstruction error term of each synthesis
sub-dictionary, while minimizing the inter-class separation term.
The designed synthesis sub-dictionary discriminative term is
written as,

min
�,D,A

K
∑

k=1

(

n
∑

i=1

(

∥

∥

∥
�T

si,kYsi,k −DkAsi,k

∥

∥

∥

2

F
+
∥

∥

∥
DkÂsi,k

∥

∥

∥

2

F

)

+
∥

∥

∥
�T

t,kYt,k −DkAt,k

∥

∥

∥

2

F
+
∥

∥

∥
DkÂt,k

∥

∥

∥

2

F

)

(3)

where Asi,k(At,k) is the coding coefficients of Ysi,k(Yt,k), and the

Âsi,k(Ât,k) is the complement set of Asi,k(At,k), Âsi,k

⋃

Asi,k =

A,Âsi,k

⋂

Asi,k = ∅ (Ât,k

⋃

At,k = A,Ât,k

⋂

At,k = ∅ ). Dk ∈

Rm×rk is the kth class sub-dictionary, where rk is the number of
sub-dictionary atoms.

The first item of Eq. (3) is to ensure the discriminative ability
of the synthesis sub-dictionary, and each synthesis sub-dictionary
Dk can represent the data well. The reconstruction structure
of second item of Eq. (3) is approximately zero to achieve the
separation between sub-dictionary classes.

Let �T
k

= [�T
s1,k

, ...,�T
sn,k

,�T
t,k
], [[Mathtype-mtef1-eqn-

42.mtf]],A
k
= [A

s1,k
, ...,A

sn,k
,A

t,k
], Eq. (3) can be combined into

the following form,

min
�,D,A

K
∑

k=1

(

∥

∥

∥
�T

kYk −DkAk

∥

∥

∥

2

F
+
∥

∥

∥
DkÂk

∥

∥

∥

2

F

)

(4)

Analysis Sub-dictionary Discriminative Term
For the Y

si,k
,Pk�

T
si,k

Y
si,k

represents the coding coefficients of

�T
si,k

Y
si,k

on the analysis sub-dictionary Pk ∈ Rm×rk . To achieve
the discriminative ability of each Pk, the k-th low-dimensional
projection data is projected into a non-zero encoding space, i.e.,
Pk�

T
si,k

Y
si,k

≈ A
si,k

. Simultaneously, the j-th low-dimensional
projection data is projected into approximate zero encoding
space, i.e., Pk�

T
sj,k

Ysi,j ≈ 0,∀k 6= j.

Implement this idea on all SDs and TD, the designed analysis
sub-dictionary discriminative term is written as,

min
�,D,A

K
∑

k=1

(

n
∑

i=1

(

∥

∥

∥
Pk�

T
si,kYsi,k − Asi,k

∥

∥

∥

2

F
+
∥

∥

∥
Pk�

T
si,kYsi,kÂsi,k

∥

∥

∥

2

F

)

+
∥

∥

∥
Pk�

T
t,kYt,k − At,k

∥

∥

∥

2

F
+
∥

∥

∥
Pk�

T
si,kYsi,kÂt,k

∥

∥

∥

2

F

)

(5)

Let P
k
= [P

s1,k
, ...,P

sn,k
,P

t,k
], Eq. (5) can be combined into the

following form,

min
�,D,A

K
∑

k=1

(

∥

∥

∥
Pk�

T
kYk − Ak

∥

∥

∥

2

F
+
∥

∥

∥
Pk�

T
kYkÂk

∥

∥

∥

2

F

)

(6)

Domain Adaptation Term
In the projected subspace, the difference of data distribution
between SD and TD ismeasured on low-rank coding usingMMD
strategy. The designed domain adaptation term is written as,

min
A

K
∑

k=1

∥

∥

∥

∥

∥

∥

1

Ns
k

Ns
k

∑

i=1

asi −
1

Nt
k

Nt
k

∑

i=1

atj

∥

∥

∥

∥

∥

∥

2

2

(7)

Let

Q
ij

k
=



























1
Ns
k
Ns
k
, if yi, yj is from SD

1
Nt
k
Nt
k

, if yi, yj is from TD

−1
Ns
k
Nt
k

, if yi(yj) is from SD, and yj(yi) is from TD

0, otherwise
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Eq. (7) can be written in the matrix form,

min
A

K
∑

k=1

Ns
k

∑

i=1

Nt
k

∑

j=1

aTi ajQ
k
ij = min

A

K
∑

k=1

tr(AkQkA
T
k ) (8)

where low-rank matrix A = [As1, ...,Asm,At].

Explicit Rank Minimization Term
Imposing low-rank constraints on the coding coefficients can
significantly reduce the adverse effects of noise in the samples.
A low-rank constraint is imposed on each analysis in this study.
To improve computing efficiency of low-rank computation,
following (Ding and Fu, 2019), the low-rank coding matrix is
expressed as the product of two matrices, A ≈ 32, where 3 ∈

Rm×Kand 2 ∈ RK×N . The designed explicit rank minimization
term is written as,

rank(A) =

K
∑

k=1

‖Ak − 3k2k‖
2
F (9)

Discriminative Classifier Term
A linear classifier based on low rank coding is embedded in the
TDDPL approach. LetWk andHk be the classifier parameter and
class label of k-th class data, respectively. For Wk and Hk with
the same class, the ideal classification result is WkPkXk ≈ Hk.
According to this idea, the designed discriminative classifier term
is written as,

min
P,W,�

K
∑

k=1

∥

∥

∥
Hk −WkPk�

T
kYk

∥

∥

∥

2

F
(10)

Considering Eqs. (4), (6), (8)-(10), the objective function of
TDDPL can be written as,

min
�,D,P,A,3,2,W

K
∑

k=1

(

∥

∥

∥
�T

kYk −DkAk

∥

∥

∥

2

F
+
∥

∥

∥
DkÂk

∥

∥

∥

2

F

+ λ1(
∥

∥

∥
Pk�

T
kYk − Ak

∥

∥

∥

2

F
+
∥

∥

∥
Pk�

T
kYkÂk

∥

∥

∥

2

F
)+ λ2tr(AkQkA

T
k )

+λ3 ‖Ak − 3k2k‖
2
F +λ4

∥

∥

∥
Hk −WkPk�

T
kYk

∥

∥

∥

2

F

)

+ γ ‖W‖2F . (11)

Obviously, we can obtain the projection matrix �, synthesis
dictionary D, analysis dictionary P, low-rank coding A (matrices
3 and 2) by solving the optimization Eq. (11). The projection
matrix� projects the SD and TD samples into a low-dimensional
subspace. According to the MMD strategy, the data distribution
differences between different domains are as small as possible.
The synthesis dictionary D can better reconstruct the projection
sample �TY. The multiplication of the analysis dictionary P

and the projection sample �TY, i.e., P�TY can obtain an
approximate block diagonal coding coefficient matrix with strong
discriminative ability. The shared dictionary pair P and D

become the bridges between SD and TD. The discriminative
knowledge of SD is transferred to TD space to build a
discriminative classifier.

Optimization
Eq. (11) is a non-convex optimization problem. However, it
is a convex optimization problem when only one variable
is optimized while fixing the other variables. Therefore, the
optimization problem Eq. (11) is split into several sub-
optimization problems here.

Let �T
k
Yk = Bk,Pk�

T
k
Yk = Ck, we havePkBk = Ck. Eq. (11)

can be re-written as,

min
�,D,P,A,

3,2,B,C,W

K
∑

k=1

(

‖Bk −DkAk‖
2
F +

∥

∥

∥
DkÂk

∥

∥

∥

2

F
+ λ1(‖Ck − Ak‖

2
F

+
∥

∥

∥
CkÂk

∥

∥

∥

2

F
)+ λ2tr(AkQkA

T
k

)

+ λ3 ‖Ak − 3k2k‖
2
F

+ λ4 ‖Hk −WkCk‖
2
F + λ5(

∥

∥

∥
Bk − �T

kYk

∥

∥

∥

2

F

+‖Ck − PkBk‖
2
F)
)

+ γ ‖W‖2F ,

s.t. ‖di‖
2 = 1, ∀ i (12)

1) Update A, while fixing �,D,P,3,2,B,C,W.
To remove terms which are irrelevant to A, we have,

[A]=

K
∑

k=1

(

‖Bk −DkAk‖
2
F + λ1 ‖Ck − Ak‖

2
F + λ2tr(AkQkA

T
k )

+λ3 ‖Ak − 3k2k‖
2
F

)

, (13)

By setting the derivative of Eq. (13) to zero, we obtain the solution
of Ak,

Ak=(D
T
kDk+(λ1+λ3)I+λ2Qk)

−1(DT
k Bk+λ1Ck+λ33k2k) (14)

2) Update P, while fixing �,D,A,3,2,B,C,W.
To remove terms which are irrelevant to P, we have,

[P]=

K
∑

k=1

(

‖Ck − PkBk‖
2
F

)

, (15)

By setting the derivative of Eq. (15) to zero, we obtain the solution
of P,

Pk=CkB
T
k (BB

T
k + θI)

−1
(16)

where θI is to prevent singular solution in matrix inversion.
3) UpdateW, while fixing �,D,P,A,3,2,B,C.
To remove terms which are irrelevant toW, we have,

[W]=

K
∑

k=1

(λ4 ‖Hk −WkCk‖
2
F)+ γ ‖W‖2F (17)

By setting the derivative of Eq. (17) to zero, we obtain the solution
ofW

k
,

Wk=(λ4HkC
T
k )(λ4CkC

T
k + γ I)

−1
(18)

4) UpdateD, while fixing �,P,A,3,2,B,C,W.
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To remove terms which are irrelevant toD, we have,

[D]=
K
∑

k=1

(

‖Bk −DkAk‖
2
F +

∥

∥

∥
DkÂk

∥

∥

∥

2

F

)

,

s.t. ‖di‖
2
2 ≤ 1, ∀i

(19)

Eq. (19) can be solved via the dual from, then we obtain,

[Dk]= ‖Bk −DkAk‖
2
F +

∥

∥

∥
DkÂk

∥

∥

∥

2

F
+

n
∑

i=1

σk,i(‖di‖
2 − 1) (20)

where σk,i is the Lagrange multiplier of the i th
equality constraint.

Let Ŵk ∈ Rm×m[[Mathtype-mtef1-eqn-105.mtf]], where
(Ŵk)i,i ∈ Rm×m,(Ŵk)i,i = σi, we obtain,

L(Dk,di)= ‖Bk −DkAk‖
2
F +

∥

∥

∥
DkÂk

∥

∥

∥

2

F
+tr(DT

kDkŴk)− tr(Ŵk)

(21)

By setting the derivative of Eq. (21) to zero, we obtain the
solution ofD

k
,

Dk=BkA
T
k (AkA

T
k +Âk(Âk)

T
+Ŵk)

−1
(22)

5) Update 3and 2, while fixing �,P,A,D,B,C,W.
To remove terms which are irrelevant to 3 and 2, we have,

[3k,2k]=

K
∑

k=1

‖Ak − 3k2k‖
2
F (23)

By setting the derivative of Eq. (23) to zero, we obtain the solution
of 3k and 2k,

3k=Ak2
T
k (2k2

T
k )

†
(24)

2k=(3k3
T
k )

†3T
k 3k (25)

where ( � )†is the Moore–Penrose pseudoinverse.
6) Update �, while fixing P,A,3,2,D,B,C,W.
To remove terms which are irrelevant to �, we have,

[�] =

K
∑

k=1

∥

∥

∥
Bk − �T

kYk

∥

∥

∥

2

F
(26)

To set the derivative of Eq. (26) with respect to� to zero, we have,

�k = BkY
T
k (YkY

T
k + θI)

−1
(27)

where θI is to prevent singular solution in matrix inversion.
7) Update and C, while fixing.
To remove terms which are irrelevant to Ck, we have,

[Ck] =

K
∑

k=1

(

λ1(‖Ck − Ak‖
2
F +

∥

∥

∥
CkÂk

∥

∥

∥

2

F
)+ λ4 ‖Hk

−WkCk‖
2
F + λ5 ‖Ck − PkBk‖

2
F

)

, (28)

We use sub-gradient descent method, and compute the gradient
of Eq.(28) with respect to Ck,

∂[Ck]

∂Ck
= λ1(Ck − Ak + CkÂkÂ

T
k )+ λ4(W

T
kWkCk −WT

kHk)

+ λ5(Ck − PkBk) (29)

Ck can be updated by descent method with learning rate α ,

Ck = Ck − α
∂[Ck]

∂Ck
(30)

To remove terms which are irrelevant to Bk, we have,

[Bk] =

K
∑

k=1

(

‖Bk −DkAk‖
2
F + λ5(

∥

∥

∥
Bk − �T

kYk

∥

∥

∥

2

F

+ ‖Ck − PkBk‖
2
F)

)

, (31)

By setting the derivative of Eq. (31) to zero, we obtain the solution
of Bk,

Bk = ((1+ λ5)I+ λ5P
T
k Pk)

−1
(DkAk + λ5�

T
kYk + λ5P

T
kCk)

(32)
Algorithm 1 describes the proposed TDDPL approach.

Algorithm 1 | Transfer discriminative dictionary pair learning approach.

Input: n SD training sets Ysi (1 ≤ i ≤ n)and a TD set Yt.

Output: parameters {�,P,A,3,2,D,B,C,W}

Initialize: initialize P,D and A by dictionary pair learning (DPL) approach,

� as the random matrix; initialize 3 = I,2 = I,B = I,C = I, and W = I;

While not converge do

Fixing �,D,P,3,2,B,C,W, update A by solving Eq. (14);

Fixing �,D,A,3,2,B,C,W, update P by solving Eq. (16);

Fixing �,D,P,A,3,2,B,C, update W by solving Eq. (18);

Fixing �,P,A,3,2,B,C,W, update D by solving Eq. (22);

Fixing �,P,A,D,B,C,W, update 3and 2 by solving Eqs. (24)-(25);

Fixing P,A,3,2,D,B,C,W, update � by solving Eqs. (27);

Fixing P,A,3,�,2,D,W, update C and B by solving Eqs. (30)–(32);

end while

Testing
After obtaining the classifier parameter W, projection matrix �,
and analysis sub-dictionary P, we classify the test samples based
on W, �, and P. For test sample xnew, we use the following
formulation to predict its class label,

l(xnew) = argmaxi≤c(WP�Txnew)i (33)

where (WP�Txnew)i is the i-th element ofWP�Txnew.
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TABLE 2 | Average classification accuracies on session 1 of SEED dataset in the o → o scenario.

Subject SRC DPL TCA MIDA MEKT DASRC TDDPL

1 52.16 54.65 55.66 52.83 60.68 62.68 68.04

2 52.05 52.08 55.09 57.65 60.93 64.94 66.64

3 54.38 54.53 57.61 60.87 61.21 63.21 66.16

4 48.58 55.73 59.33 62.54 69.12 70.12 70.30

5 56.29 55.05 56.30 58.73 58.27 60.27 63.13

6 54.19 60.04 56.35 59.27 64.28 66.28 68.65

7 50.40 49.32 55.25 58.00 56.57 58.57 57.44

8 56.34 49.47 53.60 55.43 54.94 56.93 58.63

9 55.68 62.64 58.52 60.84 65.78 67.78 66.84

10 53.62 48.35 55.61 58.75 58.80 60.80 63.21

11 53.93 52.00 59.75 61.75 62.46 64.45 66.51

12 42.74 59.67 63.35 64.64 64.88 66.89 69.52

13 52.71 61.53 59.16 55.51 66.67 68.67 70.79

14 56.14 57.64 56.05 54.25 59.11 60.11 60.21

15 56.21 61.11 66.62 68.42 69.07 72.08 73.12

Average 53.03 55.59 57.88 59.30 62.18 64.25 65.95

The bold values in Tables 2–5 mean the best values in comparison experiments.

EXPERIMENT

Experimental Setting
For the SEED dataset, EEG features were extracted in non-
overlapping 1s time windows for each segment of preprocessed
EEG data. For the SEED-IV dataset, EEG features were extracted
in non-overlapping 4 s time windows for each segment of
preprocessed EEG data. The feature extraction approach used in
this paper is the differential entropy (DE) feature (Li et al., 2019).
In the experiment, DE features are calculated in 5 frequency
bands for each channel. So the total dimension of the extracted
features is 62×5=310 dimensions. We evaluate the TDDPL
approach on two transfer learning strategies: one SD to one TD
(o → o), and multiple SDs to one TD (m → o). For the o → o
scenario, we choose one subject used as the TD and another
subject used as the SD. If z is the number of subjects in the SEED
and SEED IV datasets, there are z(z-1) different o → o tasks
in total. In the SEED dataset, for the data in the TD, the 30 s
data of each trial is randomly selected for training, and the rest
of the data is used for testing. In the SEED-IV dataset, for the
data in the TD, the 28 s data of each trial is randomly selected
for training, and the rest of the data is used for testing. For the
m → o scenario, one subject is selected as the TD and all the
remaining subjects are used as the SD, so there are z different
tasks in the m → o scenario. Due to the large number of training
samples in the SD, for the SEED dataset and SEED-IV datasets,
we select 1/10 of the SD data for training, and repeat this process
10 times, so that the randomly sampled training data can cover
the entire training dataset. The selection of training set and test
set of the TD is consistent with the o → o scenario.

We compare the TDDPL approach with the following
approaches: 1) Traditional machine learning approaches:
sparse representation-based classification (SRC) (Wright et al.,
2009) and DPL approach (Ameri et al., 2016). 2) Transfer
learning approaches: manifold embedded knowledge transfer

TABLE 3 | Average classification accuracies on session 1 of SEED dataset in the

m → o scenario.

Subject SRC DPL TCA MIDA MEKT DASRC TDDPL

1 59.42 61.25 70.94 66.96 74.59 75.70 81.83

2 58.58 58.46 70.26 73.55 75.52 77.15 81.34

3 59.89 61.27 73.27 74.83 74.43 77.32 80.29

4 54.21 61.91 75.15 76.15 83.12 83.78 84.48

5 62.15 61.47 71.41 73.49 72.46 74.19 77.26

6 60.41 66.48 71.13 73.27 78.55 79.72 82.32

7 57.50 55.79 70.83 71.10 70.86 72.71 71.50

8 63.50 55.03 68.52 69.73 68.41 71.06 73.04

9 61.36 67.37 73.07 75.10 80.13 81.25 80.40

10 60.37 54.03 72.01 73.02 72.60 73.83 76.41

11 60.32 56.54 73.95 75.90 76.57 78.02 80.26

12 48.67 65.70 77.51 78.28 78.34 79.16 82.51

13 58.35 66.38 71.63 69.53 80.03 82.27 83.67

14 62.06 62.85 66.46 68.40 73.27 73.49 74.45

15 63.11 66.31 80.56 81.18 83.23 84.62 85.81

Average 59.33 61.39 72.45 73.37 76.14 77.62 79.70

(MEKT) (Zhang and Wu, 2020), transfer component analysis
(TCA) (Pan et al., 2011), maximum independence domain
adaptation (MIDA) (Yan et al., 2018), domain adaptation sparse
representation classifier (DASRC) (Ni et al., 2021). For TCA
and MEKT, the Gaussian kernel parameter and regularization
parameters are set in the grid {2−6,..., 25}. For SRC, DPL, DASRC,
and TDDPL, the dimension of subspace and the number of
atoms in each class are set in the grid {20, 30,..., 100} and {10,
15,..., 30}, respectively. All the algorithms are implemented
in MATLAB.
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FIGURE 1 | Average classification accuracies on session 2 of the SEED dataset.

FIGURE 2 | Average classification accuracies on session 3 of the SEED dataset.

Experiments on the SEED Dataset
In this subsection, we compare the approaches on DE feature of
the SEED dataset. Tables 2, 3 show the average accuracy of each
approach for the o → o and m → o scenarios on the session 1,
respectively. It can be seen that compared with other approaches,
(1) the classification performances of the approaches using the
transfer learning strategy outperform those of the approaches
without the transfer learning strategy. It is demonstrated that
transfer learning strategy can mitigate the impact of individual
differences to a certain extent. Since the SRC and DPL classifiers
simply combine SD and TD to build a model which may not
be adapted to the test set data distribution, it is difficult to
obtain ideal experimental results. It also indicates that transfer
learning improves the approach’s classification performance in

across-subject EEG emotion analysis. (2) Regardless of the o →

o or m → o scenarios, the TDDPL approach achieves the
best or second best performance in Tables 2, 3. As seen the
results in Table 2, the TDDPL approach improves by 1.70%
compared with the best comparison approach. The TDDPL
approach projects the EEG data of different subjects into the
subspace to reduce the distribution difference between subjects.
The shared analysis dictionary learned by the TDDPL produces
discriminative low-rank coding, and the learned shared synthesis
dictionary has good coding reconstruction ability. Therefore, the
TDDPL approach performs well and is more stable in across-
subject EEG emotion classification.

To verify the performance of our approach on other
commonly used EEG features, we compared the average accuracy
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TABLE 4 | Average classification accuracies on session 1 of SEED IV dataset in the o → o scenario.

Subject SRC DPL TCA MIDA MEKT DASRC TDDPL

1 38.78 40.41 50.47 48.63 54.56 54.36 54.82

2 43.81 42.88 56.74 55.78 56.95 63.72 65.86

3 42.77 43.61 50.74 48.55 53.34 56.82 56.84

4 31.91 33.00 51.41 54.16 58.97 60.47 66.11

5 39.61 40.53 41.38 42.04 43.18 50.32 50.75

6 34.96 35.34 47.89 47.56 55.08 58.42 61.78

7 42.24 43.39 54.67 56.50 59.32 61.48 61.74

8 38.36 39.37 48.70 48.55 56.02 59.59 58.66

9 41.97 43.05 48.06 46.42 49.18 47.37 47.66

10 38.73 39.78 49.32 48.27 52.89 52.95 53.22

11 33.63 33.00 39.28 39.32 40.66 43.96 44.34

12 30.29 33.27 36.02 38.24 37.08 39.85 40.71

13 37.85 36.79 48.96 48.11 46.00 49.31 55.39

14 37.23 40.18 45.25 44.63 50.26 50.21 50.62

15 41.26 43.10 58.45 57.84 62.66 63.64 64.66

Average 38.23 39.18 48.49 48.31 51.74 54.16 55.54

TABLE 5 | Average classification accuracies on session 1 of SEED IV dataset in the m → o scenario.

Subject SRC DPL TCA MIDA MEKT DASRC TDDPL

1 48.06 49.01 57.35 57.44 62.36 63.03 65.39

2 51.16 52.70 62.23 64.98 63.72 74.63 74.92

3 50.08 52.23 57.62 56.28 60.45 64.99 67.40

4 39.21 40.67 61.26 60.73 67.62 75.28 78.93

5 45.77 46.21 49.96 49.12 52.01 58.09 62.32

6 42.00 43.16 55.96 56.59 62.82 70.67 71.89

7 53.09 54.86 61.69 65.43 66.39 71.53 73.07

8 45.18 46.82 57.87 57.87 63.97 65.50 66.94

9 49.67 51.14 58.12 55.75 57.65 55.66 56.42

10 45.04 45.74 57.85 57.42 60.12 61.75 65.01

11 41.03 41.66 46.69 49.38 48.48 51.68 54.60

12 39.49 40.17 45.41 44.95 44.74 48.71 51.14

13 44.78 44.91 56.93 57.54 51.78 63.54 64.06

14 47.22 49.26 51.64 53.32 56.50 59.99 60.99

15 49.71 50.78 66.81 67.76 74.04 75.43 78.66

Average 46.10 47.29 56.49 56.97 59.51 64.03 66.12

of the TDDPL approach with other approaches on session 2
and session 3 of the SEED dataset. The average classification
accuracy is shown in Figures 1, 2. As shown in Figures 1, 2,
the TDDPL approach has the best average classification accuracy
on session 2 and session 3, and the experimental results are
significantly better than other comparison approaches. The
TDDPL approach improves by 10.36% compared with the
traditional DPL classification approach, and also improves by
1.70% compared with the best comparison approach in the o →

o scenario. The results reveal that the TDDPL approach has
excellent across-subject adaptability, and it can accurately and
effectively realize EEG emotion classification.

Experiments on the SEED IV Dataset
Next, we compare the approaches on the DE feature of the
SEED IV dataset. Tables 4, 5 show the average classification
accuracy of each approach for the o → o scenario and the
m → o scenario on the session 1, respectively. As can be seen in
Tables 4, 5, (1) Because the emotion classes of SEED IV dataset
are more complex than the SEED dataset, the average accuracy
of each approach is slightly lower than that of Tables 2, 3.
(2) Similar to the results in Tables 2, 3, the transfer learning
approaches (MIDA, MEKT, and DASRC) outperforms the non-
transfer learning approaches (SRC and DPL), which indicates
that simply mixing SD and TD into a training set is not suitable
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FIGURE 3 | Average classification accuracies on session 2 of the SEED IV dataset.

FIGURE 4 | Average classification accuracies on session 3 of the SEED IV dataset.

for EEG emotion recognition. (3) TDDPL achieved the best
results on the vast majority of individuals. The label information
of the SD data is transferred to TD through the shared dictionary
pair D and P, thereby improving the performance of the task in
TD. TDDPL also combines the advantages of a comprehensive
dictionary approach and an analytical dictionary approach.
Based on the learned analysis dictionary, projection matrix,
and classifier parameters, the classifier learned in TD has good
discriminative ability.

We compare the average accuracy of the TDDPL approach
with other approaches in session 2 and session 3 of the SEED
IV dataset, and the average classification accuracies are shown
in Figures 3, 4. Similar to the results in Figures 1, 2, the

classification performance of the TDDPL approach is the best,
indicating that our proposed TDDPL approach can improve the
performance of the learning task in the TD by using auxiliary
data through dictionary pair learning. We also notice that the
performance of all comparison approaches in the o → o
scenario is slightly worse than that of m → o scenario of
the SEED and SEED IV datasets. This is because in the o →

o scenario, when single-subject data is used as the SD, if the
correlation between the SD and the TD is low, the effect of
transfer learning approach may not be good. In the m →

o scenario, multiple SDs expand the capacity of the training
set, which can also make the performance of transfer learning
approach more stable.
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FIGURE 5 | The average classification accuracy of the TDDPL approach under varying m and rk on the SEED dataset. (A) o → o scenario, (B) m → o scenario.

FIGURE 6 | The average classification accuracy of the TDDPL approach under varying m and rk on the SEED IV dataset. (A) o → o scenario, (B) m → o scenario.

FIGURE 7 | The average classification accuracy of the TDDPL approach under varying Nt in the TD on (A) SEED dataset, (B) SEED IV dataset.
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CONCLUSION

Aiming at the problem of subject differences in the data
distribution of EEG signals; simultaneously, due to insufficient
information in the new domain in EEG emotion classification,
this study studies how to mine knowledge from other related
domains and transfer it to improve the performance of the task in
TD. To this end, we propose a transfer discriminative dictionary
pair learning approach based on subspace transfer learning. In
the subspace, the distribution of TD is similar to that of the
SD, and we learn a shared dictionary pair with discriminative
ability. The label information of the SD is used to construct a
classifier in the TD. However, EEG emotion classification based
on transfer learning still faces many challenges. In the following
research work, we will focus on the following aspects: (1) The
TDDPL approach proposed in this paper is a batch learningmode
with high time complexity and is not adopted used in online
learning situations. How to improve the training efficiency of
TDDPL and propose an online learning approach is an important
topic to be studied urgently. (2) The TDDPL approach mainly
studies the problem that the SD and TD data and label space
are consistent, and it does not consider the situation that the
TD label space is unavailable. In this case, how to construct an
effective subspace, mine the similarities and differences between
domains, and conduct effective knowledge transfer is a direction
for future research. (3) This paper studies the homogeneous
transfer learning problem, that is, the EEG feature space of the SD
is the same as the TD. The problem becomes complicated when
the feature spaces differ between domains. So far, the research
based on heterogeneous transfer learning is not sufficient. How
to use heterogeneous domain knowledge to improve the learning
ability of the TD is an important content that needs to be studied
in the future.

Model Parameter Analysis
The dimension of the subspace m and the number of sub-
dictionary atoms rk per class are key parameters in the TDDPL
approach. Figures 5, 6 show the average classification accuracy
of the TDDPL approach with varying m and. Figure 5 shows
the average classification accuracy of o → o and m → o
scenarios on session 1 of the SEED dataset. Figure 6 shows
the average classification accuracy of the two transfer learning

scenarios on session 1 of the SEED IV dataset. It can be seen that
the TDDPL approach is optimal when the subspace dimension
is about 50 and the number of sub-dictionary atoms per class is
about 20 in the SEED dataset. The TDDPL approach is optimal
when the subspace dimension is 60 and the number of sub-
dictionary atoms per class is about 25 in the SEED IV dataset.
In addition, the dimension of the subspace is much smaller
than that of the original space, indicating that domain-invariant
knowledge can exist in low-dimensional subspaces. The low-
dimensional subspace also reduces the training burden of the
TDDPL approach.

Figure 7 shows the average classification accuracy of TDDPL
under varying training samples in the TD in the o → o andm →

o scenarios of the SEED and SEED IV datasets. As can be seen
from Figure 7A, the classification performance of our approach
is slightly improved with the increase of training samples in
the TD, but its improvement speed is very slow. After reaching
the highest accuracy, it is not very sensitive to the increase of
training samples in TD. We can draw similar observations from
Figure 7B. It shows that the TDDPL approach only needs a small
number of training samples in the TD to establish the transfer
learning model, and obtains the discriminative knowledge
from SD.
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