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Abstract

The increasingly large size of the graphical and numerical data sets collected with modern

technologies requires constant update and upgrade of the statistical models, methods and

procedures to be used for their analysis in order to optimize learning and maximize knowl-

edge and understanding. This is the case for plant CT scanning (CT: computed tomogra-

phy), including applications aimed at studying leaf canopies and the structural complexity

of the branching patterns that support them in trees. Therefore, we first show after a brief

review, how the CT scanning data can be leveraged by constructing an analytical represen-

tation of a tree branching structure where each branch is represented by a line segment in

3D and classified in a level of a hierarchy, starting with the trunk (level 1). Each segment, or

branch, is characterized by four variables: (i) the position on its parent, (ii) its orientation, a

unit vector in 3D, (iii) its length, and (iv) the number of offspring that it bears. The branching

structure of a tree can then be investigated by calculating descriptive statistics on these four

variables. A deeper analysis, based on statistical models aiming to explain how the charac-

teristics of a branch are associated with those of its parents, is also presented. The branch-

ing patterns of three miniature trees that were CT scanned are used to showcase the

statistical modeling framework, and the differences in their structural complexity are

reflected in the results. Overall, the most important determinant of a tree structure appears

to be the length of the branches attached to the trunk. This variable impacts the characteris-

tics of all the other branches of the tree.

1 Introduction

Understanding the structural complexity of tree branching patterns, to explain light intercep-

tion by leaf canopies and incorporate the information in the modeling of biological processes

such as photosynthesis, has been the objective of numerous studies [1–6]. The process by

which tree branches divide and subdivide starting from the trunk has been studied more par-

ticularly in relation to space occupancy and cover by the leaf canopy [4, 5]. Fractals have been

used to quantify the complexity of tree crown architecture [4, 5], but other approaches such

as probability models that rely less on some self-similarity assumption are worth investigating

and assessing to model tree branching patterns provided the required data are available.
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Since the early 2000s, modern technologies such as computed tomography (CT) scanning

have been diverted from their original design (i.e., medical in the case of CT scanning), for

applications with plants in general and trees in particular [7–9]. Tree crowns and plant leaf

canopies [4, 5, 7] may have been CT scanned less often than root systems (for example, see [10,

11] and the review in [12]). This is likely because of the smaller size in general of a root system,

the ‘hidden half’ of a plant, relative to the canopy, but both plant structures can be CT scanned

within their respective limits. Thus, plant biologists are given access to representative and

accurate 3D spatial data sets of a novel type to explore, once duly processed after they were col-

lected non-invasively and non-destructively. Access to original 3D spatial data for crowns of

trees of small size represents a tremendous opportunity for modelers, including statisticians

and biomathematicians. Furthermore, information of this type about tree geometry, if

extended, could enter predictive models for the abundance of tree epiphytes; see [13, 14].

Here, we characterize tree branching patterns with statistical models. We privilege an

approach based on statistical modeling in our analysis, as an alternative to fractal geometry

and Lindenmayer systems. Still, some similarity can be seen with the generation of 3D bush-

like structures by a bracketed L-system [15, Fig 3.3]. We follow a systematic approach, i.e. no

random sampling is performed, and develop and fit hierarchical models for key features of the

branching pattern of three miniature conifers that had their crowns CT scanned in another

study [5].

2 Computed tomography scanning of tree crowns

Regardless of the nature of the specimen, a basic principle of CT scanning technology is X-ray

attenuation after some exposure time [16]. For a large number of “voxels” (i.e., 3D extension

of 2D pixels), indirect measures of material density, called “CT numbers” (CTN), are com-

puted from coefficients of X-ray attenuation measured by detectors. Accordingly, a CT scan-

ner is calibrated so that CTN = −1000 for air and 0 for water. In a CT scanning session, the

scale of observation refers to the size of the scanned specimen, a miniature tree in this work,

while the scale of resolution is given by the dimensions of a voxel, and there is a difference of

three orders of magnitude between the two scales; see Table 1 in [17]. The X-ray tube current

and voltage were 50 mA and 120 kV for all the CT scanned miniature conifers from [5], and

the X-ray doses that the specimens received in one exposure were far from being lethal [18].

The three miniature conifers used for examples here are two white spruces: one Picea glauca
Pixie (height: 22.1 cm; diameter: 12.7 cm) and one Picea glauca Cy’s Wonder (height: 17.5 cm;

diameter: 20.9 cm), plus one Norway spruce, Picea abies Tompa (height: 17.1 cm; diameter:

14.0 cm). These trees are presented in Table 2 and Fig 5 (row-column 2–4, row-column 2–3

and row-column 2–2, respectively) in [5]. Our work focusses on tree branching patterns, the

CTN of branch voxels being in a specific range, but it is possible to display the tree crowns

(including leaves), the leaf voxels having a CTN in a different range; see Fig 5 of [5]. The

dimensions of a voxel depend on the CT scanning settings used for the tree. They are, respec-

tively, 0.35 × 0.35 × 0.4 mm3, 0.47 × 0.47 × 0.4 mm3, and 0.29 × 0.29 × 0.4 mm3 for the ‘Pixie

Tree’, ‘Wonder Tree’, and ‘Tompa Tree’ (surnames used hereafter). Scanning these three trees

yielded about 145, 115, and 112 million CTNs (including air voxels with CTN of −1000), con-

tained in 3D arrays made of 512 × 512 matrices. These are the raw data available for processing

and analysis.

The skeletal branching patterns presented in Fig 1a, 1c and 1e below were prepared in a cus-

tomised MATLAB (The MathWorks, Inc., Natick, MA, USA) graphical unit interface, by trac-

ing branches using the 3D array of CT scanning data collected for the crown of each of the

three miniature conifers [5]. Such tree branching patterns are said to be “skeletal” because they
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have a thickness of 1 voxel. These skeletons are at the basis of our statistical modeling, but are

replaced by 3D branched structures in which each branch at each level is a line segment; see

Fig 1b, 1d and 1f. This replacement is explained in detail in the next section.

3 Analytical representation of tree branching patterns as

hierarchical sets of line segments

Following the graphical and quantitative analyses of CT scanning data reviewed in Section 2, a

skeleton of tree branching pattern is produced where a branch is represented by a curved line

in 3D. The goal of Section 3 is to explain how this skeleton can be approximated with a hierar-

chical set of line segments in 3D, called “analytical representation” of the tree branching pat-

tern. This summarizes the large CT scanning data set in a small spreadsheet and will allow the

characterization of a tree crown structure using the descriptive statistics and statistical models

presented in Section 4.

In the construction of a line segment for a branch in 3D, the origin is identified as the point

with 3D spatial coordinates in the 3 × 1 vector o = (xo, yo, zo)>, at which the branch emanates

from its parent, and the terminal point has coordinates e = (xe, ye, ze)>. The direction v of a

branch is calculated as v = (e − o)/ke − ok, with ke − ok, the Euclidean distance between the

Fig 1. (a)-(b) The Picea glauca Pixie specimen, alias ‘Pixie Tree’. (c)-(d) The Picea glauca Cy’s Wonder specimen, alias ‘Wonder Tree’. (e)-(f) The Picea
abies Tompa specimen, alias ‘Tompa Tree’. (a) Skeletal branching pattern of Pixie Tree (obtained by CT scanning). (b) Analytical representation of the

branching pattern for Pixie Tree. (c) Skeletal branching pattern of Wonder Tree (obtained by CT scanning). (d) Analytical representation of the

branching pattern for Wonder Tree. (e) Skeletal branching pattern of Tompa Tree (obtained by CT scanning). (f) Analytical representation of the

branching pattern for Tompa Tree.

https://doi.org/10.1371/journal.pone.0274168.g001

PLOS ONE Statistics for tree branching patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0274168 September 21, 2022 3 / 15

https://doi.org/10.1371/journal.pone.0274168.g001
https://doi.org/10.1371/journal.pone.0274168


end and origin of the branch, considered to be the length ℓ of the branch; v is a vector in S2, the

unit sphere in 3D space. The position x of the branch relative to its parent is represented by the

Euclidean distance between the origin of the branch o and that of its parent, say op, divided by

the length of the parent branch, so the value of x belongs to the interval (0,1). For a given

branch, n is the number of offspring branches that emanate from the branch considered. Thus,

a branch in our analytical representation for a tree branching pattern is represented by the fol-

lowing four variables:

• x the position of the branch relative to the parent (a non-negative real number smaller than

1);

• v the branch orientation (a unit vector in 3D) is a 3 × 1 vector;

• ℓ the branch length (a positive variable);

• n the number of offspring, (a non-negative integer);

The results of the application of this analytical representation to the branching patterns of

the three miniature conifers introduced in Section 2, as constructed from CT scanning data

given in Fig 1a, 1c and 1e), are shown in Fig 1b, 1d and 1f; the similarity between the left and

right panels of the same tree is noticeable. In the hierarchy, the trunk is the level 1 branch; the

branches attached to the trunk are level 2 branches; level 3 branches originate from level 2

branches; and level 4 branches, from level 3 branches. Level 5 branches are very few and very

small, and are not included in our data sets.

To develop a nested set of line segments, the ancestors must be identified for each terminal

segment. A terminal branch (or terminal segment in the analytical representation) is one that

has no offspring, that is, n = 0. All level 4 branches are terminal in our examples, since the data

sets do not contain level 5 branches. The data sets have one row for each terminal branch, with

values for the 4 variables (x, v, ℓ, n) for each ancestor and the terminal branch; see Table 1. The

data matrix has four sets of columns, one for each level of the hierarchy. In Table 2 a subscript

denotes the level of a variable, for instance x3 is the position of a level 3 branch on its level 2

parent. There are 7 columns per level: one for identifying the branch on its parent, id, one for

the position x, three for the entries of v, one for the length ℓ, and another for the number of off-

spring n, in this order (level 4 has only 6 columns has its branches have no offspring). The

number of rows in the data matrix is equal to the number of level 4 branches plus the numbers

of level 2 and level 3 branches that do not bear offspring.

Table 1 presents the data for a level 4 branch of Pixie Tree; id identifies a branch on its par-

ent at each level. It varies between 1 and the number of branches n of its parent. The first row

gives information about the trunk. The trunk direction is the z–axis, as its v vector is (0, 0, 1)>.

In the first row, n = 46 means that Pixie Tree has 46 level 2 branches. The second row gives

information about a level 2 branch. Since id = 2, it is the second level 2 branch its position x2 =

0.07 means that its origin is the point (0, 0, 1)>0.07 on the trunk. Its direction is v2 = (−0.69,

0.12, 0.72)> and its length is ℓ2 = 0.32. An analytical expression for the line segment of the level

2 branch in Table 1 is (0, 0, 1)> 0.07 + (−0.69, 0.12, 0.72)> 0.32 × z, for z 2 (0, 1) where z are

Table 1. The data entries for a level 4 branch of Pixie Tree.

id x Entries of v ℓ n
1 0 0 0 1 1 46

2 0.07 -0.69 0.12 0.72 0.32 8

1 0.34 -0.90 -0.38 0.21 0.10 3

2 0.98 -0.90 0.21 0.38 0.02 NA

https://doi.org/10.1371/journal.pone.0274168.t001
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the evaluation points in the interval (0, 1). The origin of the level 3 branch in Table 1 corre-

sponds to the value z = x3 = 0.34 on that segment. Analytical representations of the four seg-

ments are constructed recursively; that for the level 4 branch in Table 1 is

0

0

1

2

6
6
6
4

3

7
7
7
5
� 0:07þ

� 0:69

0:12

0:72

2

6
6
6
4

3

7
7
7
5
� 0:32� 0:34þ

� 0:90

� 0:38

0:21

2

6
6
6
4

3

7
7
7
5
� 0:1� 0:98þ

� 0:90

0:21

0:38

2

6
6
6
4

3

7
7
7
5
� 0:02� z; z 2 ð0; 1Þ :

To facilitate comparisons between tree branching patterns, two standardizations are carried

out. First, the length ℓ is divided by the trunk length so that the former is relative to the latter.

Second, the direction of the trunk is the z–axis in the coordinate system where the directions v
are recorded. This is done by multiplying all the unit vectors in the data set by a rotation

matrix that maps the direction of the trunk to the vector (0, 0, 1)>. The analytical representa-

tions for the three trees investigated in this work, normalized in this way, are available as three

text files in the S1 Data.

Table 2 presents the variables, ordered from level 2 to level 4, to which the statistical models

presented in Section 4 will be fitted. The c-variable is the cosine between between the direction

of an offspring and that of its parent. For instance c3 ¼ v>
3
v2. For the terminal branch pre-

sented in Table 1, its numerical value is

c3 ¼ ð� 0:69Þ � ð� 0:90Þ þ 0:12� ð� 0:38Þ þ 0:72� 0:21 ¼ 0:72:

The variable c measures the agreement between offspring and parent orientations. Its maxi-

mum value of 1 occurs when these two unit vectors are equal.

In Section 4, the variables of Table 2 are both dependent and independent variables. The

determination of independent variables follows the hierarchy of Table 2. The explanatory vari-

ables for a given dependent variable are those above that variable in Table 2. Thus the model

for x2 does not have any explanatory variable whereas that for ℓ4 can have up to 10 explanatory

variables. This hierarchy corresponds, at least approximately, to the time at which these vari-

ables can be measured. The parents variables (x, c, ℓ, n) are, in general, determined before

those of their offspring. Among the 4 variables for a branch, x can be measured before c and ℓ

Table 2. Description of the variables used in Section 4.

Level Variable Description

2 x2 Position of a level 2 branch, standardized relative to the length of the trunk.

c2 Directional cosine between the level 2 branch and the trunk.

ℓ2 Length of the level 2 branch, standardized relative to the length of the trunk.

n2 Number of offspring emanating from a level 2 branch.

3 x3 Position of a level 3 branch, standardized relative to the length of the level 2 parent branch from

which it emanates.

c3 Directional cosine between the level 3 branch and the level 2 branch from which it emanates.

ℓ3 Length of the level 3 branch, standardized relative to the length of the trunk.

n3 Number of offspring emanating from a level 3 branch.

4 x4 Position of a level 4 branch, normalized relative to the length of the level 3 parent branch from

which it emanates.

c4 Directional cosine between the level 4 branch and the level 3 branch from which it emanates.

ℓ4 Length of the level 3 branch, standardized relative to the length of the trunk.

https://doi.org/10.1371/journal.pone.0274168.t002
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and n occur after x and c. The large number of candidate explanatory variables highlights the

importance of variable selection that is treated in the next section.

A method for quantifying the canopy structure of large trees is presented in detail by [19].

It involves human beings actually climbing up trees to measure branch positions and lengths

using a metric tape. Branches are organized by level in a hierarchy similar to ours, but without

the subsequent analytical representation and statistical modeling. CT scanning, when possible,

provides more precise measurements than in vivo data collection. Also, CT scanning data

allows a complete reconstruction of the canopy, as illustrated in Fig 5 of [5].

4 Statistical models for the tree branching components in the

hierarchy

This section presents the statistical models for the 4 components, x, v, ℓ, and n, of the tree

branching at each level of the hierarchy, see Tables 1 and 2. All models have a “location param-

eter”, indexed by z, that depends on the relevant explanatory variables of Table 2. The first

three models have, in addition, a shape parameter.

4.1 Modeling the position x of a branch

The relative position x of an offspring branch on its parent branch varies between 0 and 1. We

propose a beta regression model, see [20] for x. Recall that the probability density function of

the univariate beta distribution depends on two parameters, α, β> 0, and is given by

Gðaþ bÞ

GðaÞGðbÞ
xa� 1ð1 � xÞb� 1 x 2 ð0; 1Þ ;

where Γ(�) is the standard gamma function. The reparametrization in terms of the dispersion

parameter ϕ = α + β> 0 and the expected value μz = α/(α + β) 2 (0, 1) gives

f ðxjmz; �Þ ¼
Gð�Þ

Gðmz�ÞGðð1 � mzÞ�Þ
xmz�� 1ð1 � xÞð1� mzÞ�� 1

;

where ϕ> 0. In our beta regression model, the logit link function,

logitðmzÞ ¼ log
mz

1 � mz

� �

allows to express the mean value in terms of explanatory variables

logitðmzÞ ¼ Z>
m
bm :

where the columns of matrix Zμ are explanatory variables selected among those of Table 2 as

discussed in Section 3.

4.2 Modeling the direction v of a branch

For v 2 S2, the 3D unit sphere, we use the small circle model of [21] that depends on a unit vec-

tor u 2 S2 and real parameters, θz and τ> 0. Its density is given by

f ðvju; yz; tÞ ¼
1

Fðyz; tÞ
exp � tðv>u � yzÞ

2
� �

; v 2 S2
ð1Þ

where the normalizing constant in the denominator can be expressed in terms of the standard
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normal cumulative distribution function F as

Fðyz; tÞ ¼ 2p

ffiffiffi
p

t

r

F
1 � yzffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2tÞ

p

 !

� F
� 1 � yzffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ð2tÞ
p

 !" #

: ð2Þ

In our application of this model, u is the known direction of the parent of the branch with

direction v and the parameters (θz, τ) are unknown. Note that the density 1 only depends on

the cosine c = v>u in Table 2. The cosines c in Table 2 are sufficient statistics to fit this model.

The maximum value of (1), corresponds to c = v>u = θz. Explanatory variables Zθ allow this

most likely value of the cosine to depend on explanatory variables such as the branch position

x and ancestor characteristics through the link function

yz ¼ Z>
y
by : ð3Þ

We kept our model for the direction of branches simple, by using the identity link. Other

link functions, such as a modified logit link function, were examined. They did not result in a

noticeably better fit, as measured by the R2 defined in (4).

4.3 Modeling the length ℓ of a branch

The length ℓ of a branch is a positive variable. Its distribution may depend on the position x
and the cosine c of the branch and on some ancestor characteristics. This is modeled using a

Weibull regression model, see [22]. Recall that the Weibull distribution has density

f ð‘jZ; szÞ ¼
Zð‘=szÞ

Z� 1

sz
exp �

‘

sz

!Z #

; ‘ > 0

"

where η is a shape parameter and where the scale parameter σz> 0 may depend explanatory

variables such as x, and c. Note that η = 1 gives the exponential distribution. We used the log

link for σz:

logðszÞ ¼ Z>
s
bs

where βσ is a vector of regression parameter for σ.

4.4 Modeling the number of offspring n of a branch

As the random variable n takes non-negative integer values, we use a Poisson regression model

where n is assumed to be a Poisson random variable with expectation λz> 0; see [23]. The

parameter λz depends on branch characteristics contained in the vector Zλ, through

logðlzÞ ¼ Z>
l
bl :

4.5 A unified approach to model fitting and model selection

The 3D line segment for a level 4 branch depends on eleven characteristics, (x2, v2, ℓ2, n2, x3,

. . ., ℓ4), see Table 2. The models proposed in this section decompose the joint density for the

eleven underlying random variables in terms of the marginal density for x2 times the condi-

tional density of v2 given x2 times the conditional density of ℓ2 given x2 and v2 and so on. In

each model, the conditioning variables are candidates explanatory variable that could enter the

Z matrix for a particular dependent variable. Consider, for example, the cosines of the level 3

branches. According to the hierarchy of Table 2, the data set for this analysis is {(x2i, c2i, ℓ2i, n2i,
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x3i, c3i): i indexes level 3 branches}. When fitting model (1) to this data set we assume that given

the ancestor variables {(x2i, c2i, ℓ2i, n2i, x3i)} the cosines {c3i} of the level 3 branches are statisti-

cally independent. Quadratic functions of the ancestor variables enter in the matrix Zμ of 3.

Our proposal to learn the structure of the three trees considered in this work is to model the

eleven characteristics, (x2, v2, ℓ2, n2, x3, . . ., ℓ4) by selecting, for each one, the most important

explanatory variables.

R-packages are available to fit three of the four models proposed in this section. For the

beta regression of Section 4.1, we used the R package betareg [24, 25]. To estimate the

parameter of the Weibull regression model, we used the R package flexsurv [26] that uses

the parametrization presented in Section 4.3. Finally, the Poisson regression was fitted using

the R function glm [27]. We developed our own computer code to evaluate the log-likelihood

of the Bingham and Mardia model presented in Section 4.2 and used the function nlminb
[27] to maximize it.

The stepwise selection of the explanatory variables Z in each of the model is based on the

Akaike Information Criterion (AIC) that is evaluated as

AIC ¼ 2k � 2L̂

where k is the number of parameters in the model and L̂ is the value of the log-likelihood func-

tion at the model parameter estimates.

The stepwise procedure starts with a baseline model where Z only has an intercept; its AIC

is evaluated. Candidates models obtained by adding to the Z matrix one variable, allowable

according to the hierarchy implied by Table 2, are fitted and their AIC are evaluated. The best

candidate variable is the one corresponding to the model with the smallest AIC. If this AIC is

smaller than the baseline AIC then this variable is added to the baseline model. The selection

procedure is repeated: all variables not already in the model are tried and the AICs of the

resulting model are compared. The procedure stops when adding any variable increases the

baseline AIC. This first step selects linear explanatory variables. The results of this first step,

for the three trees investigated here, are summarized in Table 4. The second step investigates

quadratic terms obtained with the variables selected at step 1. A quadratic term is either a

product of two variables or a variable squared. If q variables are selected at step 1 there are q(q
+ 1)/2 possible quadratic variables. This new pool of explanatory variables is investigated in a

stepwise manner. The procedure is similar to that for step 1. Variables not already in the

model are tried one at a time and the one that gives the smallest AIC is added to the baseline

model if this results in a decrease of the AIC. The model fitting algorithm is described further

in Algorithm 1 in Appendix A of S1 Appendix.

If the set of candidate explanatory variables is of size q, the total number of possible models

is given by

aðqÞ ¼
Xq

k¼0

ð
q

k
Þ2kðkþ1Þ=2 ; ð14Þ

The first five integers in this sequence are 1, 3, 13, 95, 1337. The number of possible candidate

models increases rapidly as the number of candidate variables increases. More information

about this integer sequence can be found in Sloane in [28].

In addition to calculating the AIC for each model, the algorithm also provides the general-

ized R2 [29], which is defined as

R2 ¼ 1 � exp �
2

n
ðLfull � LnullÞ

� �

: ð4Þ
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where Lfull is the value of the log-likelihood function of the full model and Lnull is the log-likeli-

hood of the null model, containing only an intercept. This generalized R2 is derived from the

likelihood test statistic used to test H0: θ = 0 vs. H1: θ 6¼ 0 for some parameter θ [29, 30].

5 Results and discussion

The means �m and the standard deviations s in Table 3 provide interesting information about

the trees’ branching strategy. The size of the data set n• for a given level i for a tree is the total

number of offspring branches at the previous level, i − 1, for that tree. For instance the size

n• = 146 for the level three branches of Pixie Tree is equal to the number of level 2 branches,

46, times 3.17, the mean for variable n2. Fig 2 gives a biplot representation of the 11 variables

and of the three trees to help with the interpretation of the results. The x3 variable point is

Table 3. Summary statistics of Pixie Tree, Wonder Tree and Tompa Tree (in this order, from top to bottom in each cell of the table) for the variables defined in

Table 2.

Variable �m s n• min max Tree

x2 0.48 0.31 46 2 × 10−3 0.99 Pixie

0.39 0.22 24 0.07 0.76 Wonder

0.47 0.25 15 0.09 0.82 Tompa

c2 0.66 0.25 46 0.05 0.96 Pixie

0.78 0.14 24 0.45 1.00 Wonder

0.58 0.19 15 0.27 0.92 Tompa

ℓ2 0.19 0.13 46 0.02 0.43 Pixie

0.37 0.18 24 0.15 0.79 Wonder

0.32 0.18 15 0.06 0.59 Tompa

n2 3.17 2.70 46 0 9 Pixie

2.25 3.89 24 0 15 Wonder

2 2.75 15 0 7 Tompa

x3 0.59 0.26 146 0.10 1 Pixie

0.46 0.20 54 0.04 0.82 Wonder

0.41 0.27 30 0.05 0.80 Tompa

c3 0.62 0.28 146 -0.49 1.00 Pixie

0.67 0.25 54 -0.13 0.99 Wonder

0.58 0.21 30 0.12 1 Tompa

ℓ3 0.09 0.05 146 0.01 0.34 Pixie

0.23 0.11 54 0.08 0.79 Wonder

0.23 0.15 30 0.03 0.54 Tompa

n3 0.37 1.20 146 0 9 Pixie

0.50 1.68 54 0 11 Wonder

0.93 1.36 30 0 4 Tompa

x4 0.64 0.33 54 0.04 1 Pixie

0.44 0.16 27 0.10 0.72 Wonder

0.62 0.07 28 0.51 0.75 Tompa

c4 0.60 0.30 54 -0.6 0.99 Pixie

0.67 0.22 27 0.01 0.91 Wonder

0.59 0.20 28 -0.25 0.92 Tompa

ℓ4 0.08 0.06 54 0.02 0.39 Pixie

0.21 0.10 27 0.09 0.47 Wonder

0.09 0.04 28 0.03 0.21 Tompa

https://doi.org/10.1371/journal.pone.0274168.t003
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close to the tree point for Pixie, showing that the largest mean value for x3 is that of Pixie Tree;

indeed Pixie Tree has the largest mean values for �xk, where k = 2, 3, 4 represents the branch

level in the hierarchical model and �x4 is larger than both �x2 and �x3 for all trees. The three vari-

able points c2, c3, c4 are close to each other in the bottom right quadrant of the biplot and close

to the tree point Wonder. This shows a positive association between �ck; k ¼ 2; 3; 4 that tend

to decrease with k, also Wonder Tree has the largest mean cosines �ck; k ¼ 2; 3; 4. For length,

the distribution of the tree points relative to the variable points ℓ2, ℓ3 and ℓ4 reflects that Won-

der Tree has the largest mean lengths at levels 2 and 4, and shares the largest mean length with

Tompa Tree at level 3; also, the mean lengths f�‘kg decrease with k and the smallest mean

lengths are for Pixie Tree whose shape is conical and distinct from the rounded form of the

two others. The mean values �n2 and �n3 are negatively associated showing a different branching

strategy for Pixie Tree, with �n3=�n2 ¼ 12%, as compared to �n3=�n2 equal to respectively 22%

and 47% for Wonder Tree and Tompa Tree respectively.

In Table 3, the standard deviation s provides a coarse measurement of the variability for

each variable at different levels. To investigate whether and to which extent this variability

could be explained, the models of Section 4 were fitted using the stepwise model selection pro-

cedure presented in Section 4.5. The explanatory variables that were found for each variable

are reported in Table 4. A detailed presentation of the models selected for each of the 3 x

11 = 33 dependent variables is given in the Appendices B, C, D, and E. Table 4 presents the

main effects selected by our stepwise selection algorithm, for each of the dependent variable.

In total, the models for Pixie Tree and Tompa Tree have more explanatory variables (22 each)

than those for Wonder Tree (14). The explanatory variable selected most often (i.e., in 11 mod-

els out of 24) is ℓ2, emphasizing that the length of the level 2 branch is a key determinant of the

structure of the tree branching patterns. It is interesting to note the absence of relationships

between offspring and parents variables, such as xk and xk−1. Indeed in 36 models fitted to

Fig 2. Biplot representation of the 11 variable means and of the three tree species constructed using the mean

values reported in Table 3.

https://doi.org/10.1371/journal.pone.0274168.g002
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levels 3 and 4 variables the parent variable is selected only 4 times (4/36), that is in 11% of the

cases.

From Table 4, it appears that many of the level 2 variables are important predictors for

almost all of the responses. Interestingly, this result applies to the level 4 response variables,

whereas the level 4 branches are directly connected to the level 3 branches rather than the level

2 branches. This finding is further discussed below. Table 4 supports the expectation that lon-

ger branches tend to have more offspring as ℓk is selected as an explanatory variable for nk,
with a positive coefficient, in 5 of the 6 models for k = 2, 3.

To get a better understanding of the explanatory power of the ancestor variables, the R2 val-

ues for each of the models selected was calculated using (4) and is reported in Table 5.

It is noticeable from Table 5 that certain models perform better than others. Position (x)

and orientation (c) are not explained well, with the exceptions of orientation of the level 4

branches for Pixie Tree (R2 = 0.52) and Tompa Tree (R2 = 0.39). The length (ℓ) and number

(n) of offspring are explained quite well to very well depending on the level or the tree (0.31�

Table 4. Results of the stepwise model selection procedure. Letters P, W and T represent Pixie Tree, Wonder Tree and Tompa Tree, respectively. A green (blue) shaded

sub-cell means that the covariate has a positive (negative) estimated coefficient in the fitted model.

Variable

x2 c2 ℓ2 n2 x3 c3 ℓ3 n3 x4 c4

Model response c2 P

ℓ2 P P

W W

T T

n2 P P P

W W

T T

x3 P

T

c3 P P

W

ℓ3 P P P

W W W

T T T T

n3 P P P P P P

W

T T T

x4

W

T T

c4 P P P

W

T T

ℓ4 P P P

W W W

T T T T T T T

https://doi.org/10.1371/journal.pone.0274168.t004
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R2� 0.99). Specifically, the R2 value of ℓ2 is higher than those of ℓ3 and ℓ4 for Pixie Tree and

Wonder Tree, whereas the highest R2 value for ℓ is at level 3 for Tompa Tree. We further notice

that the selected model for n2 has a higher R2 value than that for n3, and this for all three trees.

In the biological discussion that follows, we focus on the observed effect of the level in our

application of the hierarchical models of tree branching, on the effect of the known differences

in traits of Pixie Tree, Wonder Tree and Tompa Tree, and on a possible interaction between

these two effects. To begin with, these three trees were chosen from the 15 conifers studied by

[5] because the structural complexity of their branching pattern ranged from high (Pixie Tree)

to low (Tompa Tree) with Wonder Tree in-between. This was measured with fractal dimen-

sion estimates (FD) by [5] [Table 2]: FD = 1.35–2.00 for Pixie Tree; 1.16–1.95 for Wonder

Tree; and 1.09–1.47 for Tompa Tree. This difference in structural complexity, as measured by

FD, is ‘diffused’, or distributed over our results here. The age of the three trees, or the stage of

development that they had reached at the time of their CT scanning, is another important fac-

tor to bear in mind when interpreting our results. For example, for a Picea glauca Pixie speci-

men, the growth rate is known to be less than 2.5 cm per year. With a measured height of 22.1

cm, the ‘equivalent age’ of our specimen (Pixie Tree) may be estimated to be about 9 years. A

similar reasoning shows that the estimated ages of Wonder Tree and Tompa Tree are also 9

years. The apparent difference in space occupancy for Pixie Tree and Wonder Tree versus

Tompa Tree is reflected by the increasing ratios �n3=�n2 as a function of FD. It is also appears in

the negative versus positive minimum value of the directional cosine c at level 3: min c3 =

−0.49 (Pixie Tree), -0.13 (Wonder Tree), and 0.12 (Tompa Tree), while max c3 is equal or close

to 1.0 for the three trees (Table 3). It means that offspring branches started to ‘lean down’ as

soon as at level 3 in Pixie Tree and Wonder Tree, whereas the Tompa Tree branches show

such a pattern only at level 4, min c4 = −0.25. This difference in branching pattern may be

related to the small number of level 2 branches for Tompa Tree, n2 = 15, compared to n2 = 46

for Pixie Tree and 24 for Wonder Tree.

Level 2 branch variables are important predictors for the level 4 branch response variables.

This may be counter-intuitive because the level 4 branches are directly connected to the level 3

branches, rather than the level 2 branches. Basically, prediction consists in the explanation of

the variability contained in data, targeting the spatial distribution and space occupancy of the

branches. Here, it means that at the stage of development of the trees, level 2 branches (directly

connected to the trunk) were better established than level 3 branches which might show more

Table 5. The R2 values for the selected modes of Table 4, including interaction effects presented in the supplemen-

tary material.

Model R2 of the R2 of the R2 of the

Response Pixie Tree Wonder Tree Tompa Tree

x2 NA NA NA

x3 0.16 0 0.16

x4 0 0.29 0.24

c2 0.15 0 0

c3 0.08 0.04 0

c4 0.52 0.18 0.45

ℓ2 0.79 0.86 0.48

ℓ3 0.31 0.60 0.83

ℓ4 0.33 0.67 0.67

n2 0.89 0.99 0.96

n3 0.68 0.84 0.82

https://doi.org/10.1371/journal.pone.0274168.t005
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uncontrolled or noisy variability in their position, orientation, length, and number. It is possi-

ble that for the same reason, ℓ4 is more difficult to predict for the three trees, and ℓ2 is better

predicted for two of the trees, i.e., Pixie Tree and Wonder Tree.

In closing, the satisfactory model fitting for branch orientation at level 4 for Pixie Tree (R2

= 0.52) and Tompa Tree (R2 = 0.39), but not for Wonder Tree, is a result that departs from the

other results showing a greater similarity between Pixie Tree and Wonder Tree, along the gra-

dient of structural complexity of tree branching as measured by FD. It suggests that one or two

FDs do not capture all aspects of a tree branching pattern, and the statistical models that we

present and apply here provide complementary information.

6 Conclusion

We have shown how to leverage CT scanning data for a tree crown by constructing an analyti-

cal representation of the tree branches as a hierarchical set of 3D line segments. The determi-

nants of these line segments are the position, the orientation, the length, and the number of

offspring, measured in a hierarchy with three levels. These variables, discussed in Section 3,

characterizes the geometry of a tree canopy. If measurable in experiments with multiple trees

of large size, they could be explanatory variables in predictive models developed with the same

objective as [13, 14]. For instance, branch orientation could be an important predictor and

branches orthogonal to the dominant wind direction might have higher epiphyte abundance.

Section 4 has presented statistical tools and distributions for a within tree analysis of the

variables in the analytical representation. Results of the statistical modeling for three miniature

conifers with different structural complexity of the crown were presented. The four geometric

characteristics of the analytical representation defined in Section 3 have the same range,

regardless the size and species of the tree. The position x is in the interval (0,1), v is a 3D unit

vector, and the length ℓ (relative to that of the trunk) is a positive variable, while the number n
of offspring is a non-negative integer. Thus, the models proposed in Subsection 4.1 are widely

applicable and could be extended to many other trees.

The different levels of structural complexity of the three tree crowns were corroborated by a

between-tree analysis based on the mean values and by the models selected to explain the vari-

ation at successive levels of the hierarchy. Section 5 shows important between-tree differences.

The models with the poorest explanatory power (median R2 of 8%) are those for branch orien-

tations. In future work, it will be interesting to investigate more complex directional models

including predictors such as the direction of the mother branch and that of the trunk.

The three trees considered in Fig 1a, 1c and 1e, are from different species. The statistical

analyses presented in this work is conclusive in that it has identified geometric characteristics

that explain differences among tree crowns. With several CT scanned trees of the same species,

the statistical analysis and modeling would allow a quantification of the within-species varia-

tion of the geometric characteristics of crowns. A non-destructive, repeated CT scanning of

the same tree can also be envisaged, and would provide supplementary data to investigate the

strategy followed by a tree in the growth of its crown.

Last but not least, if several trees were CT scanned for a large number of species, other

explanatory variables such as age and physico-chemical properties of the growth medium

could be added to the Z-matrices of the models of Section 4. This might lead to a universal

modeling applicable to a wide range of tree crowns.

Supporting information

S1 Data. The zipped file DMRSuppMat contains the analytical representations for the

three trees condidered in this work. It also contains an R script, basic_example.R, for fitting

PLOS ONE Statistics for tree branching patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0274168 September 21, 2022 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0274168.s001
https://doi.org/10.1371/journal.pone.0274168


length models of Pixie Tree, thus reproducing the results presented in Table 12 in S1 Appen-

dix.

(ZIP)

S1 Appendix.

(PDF)
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