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Alzheimer’s disease (AD) is the most common form of dementia and is a progressive

neurodegenerative disease that primarily develops in old age. In recent years, it has

been reported that early diagnosis of AD and early intervention significantly delays

disease progression. Hence, early diagnosis and intervention are emphasized. As a

diagnostic index for AD patients, evaluating the complexity of the dependence of the

electroencephalography (EEG) signal on the temporal scale of Alzheimer’s disease

(AD) patients is effective. Multiscale entropy analysis and multifractal analysis have

been performed individually, and their usefulness as diagnostic indicators has been

confirmed, but the complemental relationship between these analyses, which may

enhance diagnostic accuracy, has not been investigated. We hypothesize that combining

multiscale entropy and fractal analyses may add another dimension to understanding the

alteration of EEG dynamics in AD. In this study, we performed both multiscale entropy

and multifractal analyses on EEGs from AD patients and healthy subjects. We found

that the classification accuracy was improved using both techniques. These findings

suggest that the use of multiscale entropy analysis and multifractal analysis may lead to

the development of AD diagnostic tools.
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1. INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia and is a progressive
neurodegenerative disease that primarily develops in old age (Liu et al., 2014). The World Health
Organization estimates that the global prevalence of AD will increase to 0.6% in 2030 and 1.2%
by 2046 (Brookmeyer et al., 2007). Although there is no effective treatment for AD, in recent
years, it has been reported that early diagnosis of AD and early intervention significantly delay
the progression of the disease. Hence, it would be ideal to diagnose AD early in its clinical course
(Liu et al., 2014).

In AD, there are three significant anatomical changes: progressive neuronal death,
neurofibrillary tangles, and senile plaques in extensive brain areas (Sims et al., 2017; Yamaguchi-
Kabata et al., 2018). Positron emission tomography (PET) and magnetic resonance imaging (MRI)
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are often used to diagnose AD and detect neurotransmitter
activity disorders, amyloid beta plaque deposition, and brain
atrophy (Ewers et al., 2011; McKhann et al., 2011; Sperling et al.,
2011). As methods focused on functional neural activity, studies
based on the temporal behavior of neural activity were conducted
using electroencephalography (EEG), magnetoencephalography
(MEG), and functional magnetic resonance imaging (fMRI)
(Greicius et al., 2004; Jeong, 2004; Stam, 2005; Dickerson and
Sperling, 2008; Takahashi, 2013; Yang and Tsai, 2013; Wang et al.,
2017; Nobukawa et al., 2020).

Among all these evaluations, EEG is cost-effective, widely
available, and non-invasive, making it ideal for clinical
applications (Vecchio et al., 2013; Kulkarni and Bairagi, 2018).
AD’s pathological progression alters EEG behavior, such as
slow waves, low synchronization of neural activity among brain
regions, and low temporal complexity. Complexity analysis is a
good approach to detect cortical disconnection in AD because
this state impairs mutual neural interaction among widespread
brain regions. Studies assessing EEG signals’ complexity in
patients with AD focused on deterministic chaos and fractal
dimensions, such as the correlation dimension and Lyapunov
exponent (Kantz and Schreiber, 2004). These studies reported
a reduction in the complexity of neural activity in AD patients
(Woyshville and Calabrese, 1994; Besthorn et al., 1995; Jelles
et al., 1999; Jeong, 2004; Smits et al., 2016; Al-Nuaimi et al., 2017).
Moreover, EEG dynamics at each temporal scale and frequency
band, such as theta, beta, and gamma bands, are associated with
differentmemory function components, cognitive and perceptual
function (Klimesch et al., 2007). Hence, as a diagnostic index for
AD patients with various brain function defects, the evaluation of
the complexity with temporal scale dependence in EEG signal is
effective (Mizuno et al., 2010; Nobukawa et al., 2019, 2020).

Multiscale entropy (MSE) analysis and multifractal (MF)
analysis are known as typical temporal scale complexity
dependency analyses (Takahashi, 2013; Yang and Tsai, 2013). In
addition to EEG’s temporal dependency in AD, MSE analysis
also showed lower complexity on a small temporal scale in the
frontal region in AD; in comparison, higher complexity was
observed across this brain region in AD on a larger temporal scale
(Mizuno et al., 2010; Ni et al., 2016). Zorick et al. reported that a
statistical model based onMF analysis could detect clinical stages
of severity and degree of progress from cognitive impairment
to AD (Zorick et al., 2020). As described above, MSE and MF
analyses have a high ability to detect the complexity in EEG
signals of AD. As such, these indices might become biomarkers
for AD to evaluate the alteration of EEG complexity (Mizuno
et al., 2010; Ni et al., 2016; Nobukawa et al., 2020).

Recent studies have focused on the enhancement of
classification accuracy combining several feature values,
including complexity indexes in EEG of AD patients (Wang
et al., 2015; Gómez et al., 2017; Ieracitano et al., 2020; Nobukawa
et al., 2020). Particularly, Wang et al. (2015) and Gómez
et al. (2017) showed that combinations of spectrum and
bispectrum entropy measures enhance the accuracy of EEG
signals classification in AD. Therefore, these combinations of
complexity measures are a new avenue for the diagnosis of AD
EEG signals. Furthermore, Cukic et al. showed that multiscale

TABLE 1 | Physical characteristics of healthy control (HC) and subjects with

Alzheimer’s disease (AD).

HC participants AD participants p-values

Male/female 7/11 5/11 0.72

Age(year) 59.3 (5.3, 55–66) 57.5 (4.7, 43–64) 0.31

MMSE score NA 15.5 (4.7, 10–26) NA

analysis (MSE) and fractal dimension provide complementary
information on brain activity in healthy subjects (Cukic et al.,
2018). This complementary relationship may enhance the
accuracy of AD identification. In this context, we hypothesize
that the combination of MSE and fractal analysis may contribute
to a better understanding of EEG dynamics’ alteration in AD. In
this study, we performed MSE analysis and multifractal analysis
on the EEGs of patients with AD and healthy controls (HC).

2. MATERIALS AND METHODS

2.1. Subject
The subjects of this study were 16 patients with AD and 18 sex-
matched and aged-matched healthy old individuals (see Table 1)
(Mizuno et al., 2010; Nobukawa et al., 2019, 2020). The sample
size of AD and HC groups was determined based on previous
works on complexity analysis (Abásolo et al., 2008; Mizuno et al.,
2010; Nobukawa et al., 2019, 2020). For this study, we defined
healthy old individuals as nonsmokers and not on medication.
Subjects with medical or neurological conditions, including
epilepsy or head trauma in the past, and subjects with a history of
alcohol or drug dependence were excluded.We recruited patients
with AD or probable AD who met the NINCDS-ADRDA criteria
and in a state before the onset of primary dementia based on
DSM-IV criteria. Recruited patients with AD were not receiving
medications that act on the central nervous system.

Each patient was evaluated using the Function Assessment
Stage (FAST) and Mini-Mental State Examination (MMSE).
Three patients had mild dementia (FAST 3); seven moderate
dementia (FAST 4); and six severe dementia (FAST 5). The
MMSE score ranged from 10 to 26, with an average of 15.56.
Table 1 shows subjects’ characteristics. All subjects provided
informed consent prior to the start of the study. The research
protocol was approved by the Ethics Committee of Kanazawa
University. All procedures in this study were conducted in
accordance with the Declaration of Helsinki.

2.2. EEG Recordings
As reported in previous studies, methods have been established
to record and preprocess EEG data (Mizuno et al., 2010).
When recording the EEG, the participants were seated in
an electrically shielded and soundproof recording room, and
the room lighting was controlled. For the EEG measurement,
16 electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2,
F7, F8, Fz, Pz, T5, and T6) were used in the electrode
arrangement called the International 10–20 System. EEG activity
was measured using the binaural connection as a reference.
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EEG-4518 manufactured by Nihon Kohden Co., Ltd. Tokyo,
Japan, was used for measurement. Eye movements were tracked
using bipolar electrocardiography (EOG). The EEG signal
was recorded using a sampling frequency of 200 Hz and
bandpass filtered at 2.0–60 Hz. As pre-processing steps were
not conducted (i.e., filtering except for bandpass, artifacts
removal, or data reconstruction), because such processing may
destroy the data’s intrinsic dynamics, we visually selected epochs
without artifacts. The electrode/skin conductance impedance
was carefully controlled at each electrode to < 5k�. Each
subject’s EEG signal was measured for 10–15 min in a resting
state with eyes closed. A video surveillance system was used
to visually inspect the subjects’ alertness and to confirm that
only epochs with closed eyes and a wakefulness state (not light
sleep) weremeasured. Visual inspection of EEG and EOG records
identified EEG time series segments recorded in a wakefulness
state with closed eyes. Subjects were considered fully awake when
predominant alpha activity appeared in the posterior region in
response to the fast eye movements of the EOG channel (Wada
et al., 1996). MSE analysis and MF analysis were conducted
against a continuous 50-s(10000 data points) epoch.

2.3. Multifractal Analysis
In MF analysis, wavelet readers derived from the coefficients of
the discrete wavelet transform are widely used (Jaffard et al., 2006;
Wendt and Abry, 2007). The discrete wavelet coefficient of the
discrete signal X(t) is given by

dX(j, k) =

∫

R
X(t)2j,ψ0(2

−jt − k)dt (j = 1, 2, ..., k = 1, 2, ...),

(1)

where ψ0 is a compact-supported mother wavelet function. One-
dimensional wavelet leaders were expressed by

Lx(j, k) = sup
λ′⊂3λj,k

|dX(j, k)|. (2)

Here, λ = λj,k = [k2j, (k + 1)2j] represents the time interval

of scale 2j, and 3λj,k−1 = ∪λj,k ∪ λj,k+1 represents the adjacent
time (Wendt and Abry, 2007). The singular value spectrumD(h),
which is the distribution of the fractal dimension represented by
the Hölder exponent h, is represented by wavelet leaders (Jaffard
et al., 2006; Wendt and Abry, 2007):

D(h) = inf
q 6=0

(1+ qh− ζL(q)). (3)

Here, q indicates the moment for scaling index ζL(q). The scaling
index ζL(q) and the structural function SL(q, j) are represented by
Equations (4, 5), respectively:

ζL(q) = lim inf
j→0

(

log2 SL(q, j)

j
,

)

(4)

SL(q, j) =
1

nj

nj
∑

k=1

|LX(j, k)|
q. (5)

FIGURE 1 | Singular value spectra D(h) in multi-fractal analysis for one healthy

control (HC) subject. Here, h exhibits Hölder exponent. c1 shows h-value

where D(h) = 1.0 (q = 0); absolute value of c2 corresponds to the range of

D(h) distribution between q = −5 and 5.

Here, nj indicates the number of samples of X when the scale
is 2j. As Hölder exponent h approaches 1.0, the shape of the
time series becomes more differentiable. In contrast, as Hölder
exponent h approaches zero, the shape of the time series becomes
nearly discontinuous. If the scaling index ζL(q) is a linear
function and D(h) converges to a particular h, then the signal
is monofractal. On the other hand, in the scaling index, where
ζL(q) deviates from linearity and D(h) is distributed over a
wide range of h, the signal is multifractal. In this study, to
capture the profile of D(h), we used the primary cumulant c1 of
D(h), which corresponds to a dominant component of D(h) as
smoothness index estimated in the entire time-series. Moreover,
we used the secondary cumulant c2, which corresponds to
the magnitude of fluctuation intermittently appearing as the
index for multifractality. Figure 1 shows the results of multi-
fractal analysis of one HC subject. c1 shows h-value where
D(h) = 1.0 (q = 0), which corresponds to the degree of
differentiability in the dominant component of the entire time-
series, i.e., smoothness. The absolute value of c2 corresponds to
the range of D(h) distribution between q = −5 and 5. In the
monofractal time-series, D(h) converges at a particular h (in the
time-series with no multifractality, D(h) converges at h-value
with q = 2), while in the multifractal time-series, the range of
D(h) becomes wider (Ihlen, 2012; Mukli et al., 2015). Therefore,
the degree of variation of D(h) corresponding to c2 reflects the
multifractality. In this study, multifractal analysis was performed
using the wavelet toolbox of MATLAB (https://jp.mathworks.
com/products/wavelet.html).

2.4. Multiscale Entropy Analysis
To perform the multiscale entropy (MSE) analysis, we used the
dependence of the EEG time series complexity on the temporal
scale (Costa et al., 2002). The sample entropy for the time-series
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of random Z-scored variable {x1, x2, ..., xN} is defined as

h(r,m) = − log
Cm+1(r)

Cm(r)
. (6)

Cm(r) is the probability of |xmi − xmj | < r(i 6= j, i, j = 1, 2, ...).

xmi indicates anm-dimensional vector xmi = {xi, xi+1, ..., xi+m−1}.
{xi, xi+1, ..., xN} is obtained course-grained process:

xj =
1

τ

jτ
∑

i=(j−1)τ+1

yi(1 ≤ j ≤
N

τ
). (7)

where, {y1, y2, ..., yN} is observed signals. τ (τ = 1, 2, ...) is the
temporal scale. In this study, we set m = 2 and r = 0.2 (Costa
et al., 2002). In this study, MSE analysis was performed using the
Physio Toolkit, a toolbox of MATLAB (http://physionet.incor.
usp.br/physiotools/sampen/).

2.5. Statistical Analysis
For c1 and c2, repeated measures analysis of variance (ANOVA)
with the groups (HC vs. AD) as the between-subject factor
and the electrodes (16 electrodes from Fp1 to T6) as
the within-subject factors was performed to test for group
differences. The result of ANOVA is represented by F-value
based on a comparison of variances within/between groups.
The Greenhouse-Geisser adjustment was applied in degrees of
freedom. The α bilateral level of 0.05 was used, considered a
statistically significant criterion to avoid type I errors. Post-hoc t-
tests were used to assess the significant main effects of group and
per-electrode interactions. Benjamini–Hochberg false discovery
rate (FDR) correction was applied to the t-score for multiple
comparisons in c1 and c2 (q < 0.05) (16 p-values: 16 electrodes).

For sample entropy, repeated measures ANOVA with groups
(HC vs. AD) as the between-subject factor and electrode (16
electrodes from Fp1 to T6) and temporal scale (30 temporal
scales) as within-subject factors, was performed to test for group
differences. The Greenhouse-Geisser adjustment and α bilateral
level of 0.05 were applied. The result of ANOVA is represented
by F-value based on a comparison of variances within/between
groups. Post-hoc t-tests were used to assess the significant main
effects of the group and per-electrode and per-temporal-scale
interactions. The FDR correction was applied to the t-score for
multiple comparisons (q < 0.05) (480 p-values: 16 electrode ×
30 scales).

Receiver operating characteristic (ROC) curves were used
to evaluate the ability to identify AD. To identify AD, a
logistic regression model based on the sample entropy, c1 and
c2, was used. Here, the logistic regression model outputs the
identification probability of AD for each subject. Subsequently,
the true positive rate/false positive rate at each threshold of
identification probability from 0 to 1.0 in both groups are
measured. Principal component analysis is used as a preprocess
for dimensionality reduction. Logistic regression was applied
to the 1st–3rd principal components of each evaluation index.
The identification accuracy was evaluated by measuring the
area under the ROC curve (AUC), which is an index of
identification accuracy. Subsequently, according to AUC values,

FIGURE 2 | Singular value spectra of Alzheimer’s disease (AD) group and HC

group. The mean and standard deviation among each group of D(h) and h.

Since the distribution is wide, it is considered that it reflects the multi-fractal

property of both groups’ EEG signal.

TABLE 2 | AD vs. HC repeated measure ANOVA analysis results [F-value (p

value)] in multifractal (MF) analysis results, F and p value with p < 0.05 are

represented by bold characters.

Group Group × nodes

c1 F = 9.088 (p = 0.005) F = 1.460 (p = 0.204)

c2 F = 0.654 (p = 0.425) F = 1.981 (p = 0.072)

the classification accuracy is graded in logistic regression models
based on the sample entropy, c1 and c2. Here, AUC =

1.0 corresponds to complete identification, and AUC = 0.5
corresponds to random identification.

3. RESULTS

3.1. Multifractal Analysis
We performedMF analysis on both HC and AD groups. Figure 2
shows the mean and standard deviation for each group of D(h)
and h. Since the distribution is wide, it reflects the multi-fractal
property (Sikdar et al., 2018) of both groups’ EEG signal. Table 2
shows the repeated measures ANOVA results of 1st (c1) and 2nd
(c2) cumulants of singular spectrum. The significant main effect
in c1 was confirmed. The mean values of c1 and c2 in the AD
and HC groups and the result of the post-hoc t-test between AD
and HC are shown in Figure 3. The significantly higher c1 values
in the AD group (q < 0.050 corresponding to p < 0.012) was
confirmed at F3, Fz, F4, C3, C4, P3, Pz, and P4.

3.2. Multi Scale Entropy Analysis
We performed an MSE analysis in the HC and AD groups.
Table 3 shows the repeated measures ANOVA results of MSE
analysis. Significant group × scale interactions without the main
effect of sample entropy were confirmed. As post hoc t-test,
the mean values of sample entropy in HC and AD groups
and the t-value between HC and AD are shown in Figure 4.
The results demonstrated a significantly lower sample entropy
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FIGURE 3 | (A) 1st cumulant of singular value spectrum c1. Mean value of c1 in the HC (left) and AD (right) groups. (B) t-values between the AD and HC groups. The

warm (cold) color represents higher (smaller) c1 values of AD than those for HC. The left and right correspond to the t-value and t-value satisfying the false discovery

rate (FDR) correction criteria q < 0.050 corresponding to (p < 0.012). c1 of the AD group had significantly higher values at F3, Fz, F4, C3, C4, P3, Pz, and P4. (C) 2nd

cumulant of singular value spectrum c2. Mean value of c2 in the HC (left) and AD (right) groups. (D) t-value between the AD and HC groups warm (cold) color

represents higher (smaller) c2 values of AD than those for HC. There are no-significant high/low t-values satisfying FDR correction criteria q <0.05 (corresponding to

p < 0.003).
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of AD (q < 0.050 corresponding to p < 0.002) in the
temporal scale region 1 to 5 (0.005 to 0.025 s). The result of
MSE analysis was reported in our previous studies (Mizuno
et al., 2010; Nobukawa et al., 2020). Particularly, in the study by

TABLE 3 | AD vs. HC repeated measure ANOVA results [F-value (p-value)] in multi

scale entropy (MSE) analysis results, F and p value with p < 0.05 are represented

by bold characters.

Group Group × node Group × scale Group × node × scale

F = 1.233

(p = 0.275)

F = 1.860

(p = 0.129)

F = 11.457

(p = 0.003)

F = 0.979

(p = 0.451)

Mizuno et al. (2010), multiscale entropy analysis against AD EEG
signals was reported, while our recent study (Nobukawa et al.,
2020) showed the relationship between functional connectivity
characterized by phase synchronization and multiscale entropy
in AD EEG signals.

3.3. ROC Curve
To evaluate the classification ability in c1 and c2, we evaluated
ROC curves. Figure 5 shows the result of ROC in the case with
1st–3rd principal components in each evaluated index. In the
sample entropy case, the values are averaged in 1 to 5 temporal
scale. AUC in the c1 case exhibits the highest classification
ability (AUC = 0.85 in the case c1; AUC = 0.78, in the case
of c2; AUC = 0.82 in the case sample entropy). Furthermore,

FIGURE 4 | Multi-scale entropy analysis in HC and AD group. The horizontal axis represents the temporal-scale factor, τ . (A) Mean values of sample entropy from 1

(0.005 s) to 30 (0.15 s) scale factors in HC (left part) and AD (right part). (B) t-value between the AD and HC groups(left part). The warm (cold) color represents a

higher (smaller) sample entropy value for AD than that for HC. The t-value satisfying the FDR correction criteria q < 0.050 corresponding to (p < 0.002). Significantly

smaller sample entropy of AD low temporal scale regions 1 to 5 (0.005 to 0.025 s).
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FIGURE 5 | Receiver operating characteristic curve (ROC) for c1, c2, and

sample entropy. The area under the ROC curve (AUC) is shown in the legend.

As classifier, logistic regression is used. In this case, c1, c2, and sample

entropy, each 1st-3rd principal component was used separately. In the case

represented by “ALL, all 1st–3rd principal components component of c1, c2,

sample entropy were used. We evaluated ROC in the case using all these

values; the results show the enhancement of classification ability (AUC = 1.00).

we evaluated ROC using all these values; the results showed
an enhancement of classification ability (AUC = 1.00). To
investigate why the combination of c1, c2, and sample entropy
enhances classification ability, we evaluated their relationship by
correlation analysis. Figure 6 shows a scatterplot among the 1st
component of c1, c2 and sample entropy used for ROC evaluation
in Figure 5. The correlation coefficients R are shown in Table 4.
The results show a high negative and positive correlation between
c1 and sample entropy, a positive correlation between c2 and
sample entropy, and a relatively low negative correlation between
c1 and c2. This relatively low correlation between c1 and c2
suggests that c2 includes complementary information regarding
multifractality in the classification. Moreover, to investigate the
correlation between c1 and c2, not the principal components,
the correlation coefficient R between c1 and c2 in HC and AD
groups is demonstrated in Figure 7. The results show the spatial
dependency of correlation coefficient R, which might contribute
to the enhancement of classification accuracy shown in Figure 7.

To demonstrate that the decision region for AD is determined
by c1, c2, and sample entropy, decision regions for AD with
decision probability > 0.9 by logistic regression model were
depicted on the plane between the 1st principal component of c1
and the 1st principal component of c2 and the plane between the
1st principal component of c1 and the 1st principal component
of the sample entropy (see Figure 8). Here, all other components
except the plane axis were set to average among subjects in both
the HC and AD groups. As a result, we confirmed that the
decision region exhibits dependent on all of them.

4. DISCUSSIONS

This study evaluated AD identification accuracy by focusing
on the complementary relationship between two complexity
analyses. The MF and MSE of EEG signals in HC and AD

were evaluated, and classification accuracies quantified by the
AUC of logistic regression models were compared. The results
of c1 as the index for the smoothness of the EEG time
series by MF analysis showed that c1 of AD significantly
increased. However, the results of c2, as the index for the
EEG time series’ multifractal nature by MF analysis, show
that no significant AD alteration was observed. MSE analysis
showed a significant region-specific reduction of small-temporal-
scale sample entropy of AD (corresponding to the complexity
of faster temporal EEG behaviors). In the comparison of
classification accuracy between c1, c2, and small-temporal-scale
sample entropy, c1 exhibits the highest classification accuracy.
Moreover, the classification accuracy with c1 was enhanced
by considering the complementary relationship of c2 and
sample entropy.

We must discuss the reason why c1 as the degree of
smoothness increase in AD. In the alteration of EEG/MEG
signals in AD, a reduction in temporal complexity has been
widely observed (Woyshville and Calabrese, 1994; Besthorn
et al., 1995; Jelles et al., 1999; Jeong, 2004; Wickramasinghe
and Geisler, 2008; Smits et al., 2016; Kulkarni, 2018; Smailovic
et al., 2019). Correspondingly, our results of sample entropy at
a small temporal scale also exhibited a reduction in complexity.
Considering the negative correlation between c1 and the small-
temporal-scale sample entropy (see Table 4), the increase in
c1, that is, the enhancement of EEG signal smoothness in AD,
was caused by the decrease in small-temporal-scale complexity.
Therefore, the enhancement of c1 reflects the loss of temporal
complexity of neural activity in AD. This finding agrees with
previous studies onMF analysis in AD (Jaffard et al., 2006;Wendt
and Abry, 2007).

Furthermore, we must consider why small temporal scale
complexity decreases in AD. Dysfunction of the gamma-
aminobutyric acid (GABA) signaling system caused by
deposition of amyloid β and tau protein have been reported.
These changes lead to the reduced oscillation of the gamma
band activity produced by GABA signaling (Nava-Mesa et al.,
2014; Govindpani et al., 2017; Calvo-Flores Guzmán et al., 2018).
Consequently, dysfunction of the mutual interaction of gamma
band activity can reduce the complexity more on the faster than
on the slower temporal scales (Ahmadlou et al., 2011; Nobukawa
et al., 2019).

Next, it is necessary to consider why the classification
accuracy was highest when c1, c2, and sample entropy were used.
According to Cukic et al., sample entropy and fractal dimension
by mono-fractal analysis show a complementary relationship
among temporal scales (Cukic et al., 2018), and this relationship
can enhance the ability to detect an alteration of complexity.
Our results (see Figure 8) also showed that a decision region for
AD with decision probability > 0.9 by logistic regression model
exhibits a dependency on c1, c2, and sample entropy. Therefore,
the combination of c1 corresponding to the fractal dimension and
sample entropy might enhance the accuracy of AD detection. In
addition to these findings, a recent MF analysis in AD showed
that the multifractal degree reflects disease-specific alterations
of complexity (Zorick et al., 2020). Although the classification
ability in case of separate use of multifractals measured by c2
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FIGURE 6 | Scatter plots for 1st principal component of c1, c2 and sample entropy used to evaluate of ROC in Figure 5. (A) Scatter plots between c1 and c2. The

result showed a relatively low negative correlation (R = −0.56(HC),R = −0.42(AD)). (B) Scatter plots between c1 and the sample entropy. The results showed a high

negative correlation [R = −0.77(HC),R = −0.85(AD)]. (C) Scatter plots of the between sample entropy and c2. The result showed a positive correlation

[R = 0.82(HC),R = 0.78(AD)].

TABLE 4 | Correlation coefficient values (R) for each combination of c1, c2, and

sample entropy in HC and AD.

c1 vs. c2 c1 vs. Sample entropySample entropy vs. c2

Correlation coefficient(HC) R = −0.56 R = −0.77 R = 0.82

Correlation coefficient(AD) R = −0.42 R = −0.85 R = 0.78

is relatively low, the combination with c2 may contribute to the
improvement of classification accuracy.

To investigate whether the high heterogeneity of severity
in patients with AD affects classification, we investigated
distributions of c1, c2, and mean sample entropy in a scale
from 1 to 5 according to severity as classified by FAST (3 (mild
dementia), 4 (moderate dementia), and 5 (severe dementia),
through repeated measures ANOVA with severity as a between-
subject factor and electrode as a within-subjects factor. The
results showed that severity did not have any significant main
effect or interaction in c1 (F = 0.412, p = 0.671), c2 (F = 0.706,
p = 0.512), and sample entropy (F = 0.532, p = 0.6); while
a significant interaction between severity and electrodes in c1
(F = 2.103, p = 0.036) appeared. Therefore, although in larger
AD groups a severity-dependent effect may appear, the bias of

high heterogeneity of severity is limited. Additionally, in patients
with mild dementia, no differences in the distribution of c1, c2,
and sample entropy compared to more severe patients appeared
in the repeated measures ANOVA. Therefore, the classification
accuracy may not change in case of a classification between
HC and patients with mild dementia, which corresponds to the
condition assumed for early diagnosis.

Finally, we must consider the limitations of this study. First,
EEG signals do not always reflect the neural activity directly
under the electrode. In this study, 16 electrodes were used to
measure EEG, but the spatial resolution was too low to identify
AD’s complex functional connection structure. However, it is
possible to use MEGs with a high spatial resolution and cortical
positioning to solve this problem. Second, pre-processing for
EEG signals was not adopted except for a band-pass filter.
However, a recent study by Racz et al. (2018) indicated that
appropriate pre-processing is needed for complexity analysis.
Artifacts and noise are to be avoided, especially at the stage of
clinical application. Therefore, this pre-processing for complexity
analysis must be developed and adopted in future studies.
Third, we consider that for our EEG data set, the multifractal
analysis method proposed by Jaffard et al. (2006) and Wendt
and Abry (2007) is sufficient, because a corrupted/inversed
D(h) distribution did not arise (see Figure 2). Additionally,
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FIGURE 7 | Correlation coefficient R between c1 and c2 in HC and AD groups. Spatial dependency of correlation coefficient R was confirmed, which might contribute

the enhancement of classification accuracy shown in Figure 5.

FIGURE 8 | Decision region (given by red region) for AD with decision probability more than 0.9 by logistic regression model was shown on the plane between 1st

principal component of c1 and 1st principal component of c2 (left part) and plane between 1st principal component of c1 and 1st principal component of sample

entropy (right part). Here, the other components except axis of planes were set to average among subjects in both HC and AD groups. The dependency on all of them

in the decision region was confirmed.

this study was conducted on the assumption of multifractality
in EEG signals (Takahashi, 2013; Yang and Tsai, 2013; Sikdar
et al., 2018). However, several studies highlighted the issues
of incorrect estimation of multifractal indexes in time-series
without multifractality (Grech and Pamula, 2012; Mukli et al.,
2015). Therefore, multifractal analysis methods with higher
robustness (Mukli et al., 2015) are desired at the stage of clinical
application, since proper validation of EEGmultifractality (Mukli
et al., 2015; Racz et al., 2018) is an important issue. Fourth, the
AD group had high heterogeneity of severity, and the sample
size of the AD group was small, which could have influenced
the classification accuracy. Therefore, the classification ability of
our proposed method must be evaluated in larger AD groups.
Additionally, a Bayesian statistic approach is more suitable for
small size and high sample heterogeneity than that based on
frequentist inference.

5. CONCLUSION

In this study, both MSE and MF analysis showed a reduction
in EEG complexity in AD patients. Classification accuracy is
better by combining MSE analysis and MF analysis than when

applying each one individually. Despite its limitations, this study
shows that MSE and MF analysis play complementary roles in
detecting the alteration of neural activity in AD. The use of both
MSE and MF analysis may facilitate the development of AD
diagnostic tools.
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