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Background. The key gene sets involved in the progression of acute liver failure (ALF), which has a high mortality rate, remain
unclear. This study aims to gain a deeper understanding of the transcriptional response of peripheral blood mononuclear cells
(PBMCs) followingALF.Methods. ALFwas induced byD-galactosamine (D-gal) in a porcinemodel. PBMCswere separated at time
zero (baseline group), 36 h (failure group), and 60 h (dying group) after D-gal injection. Transcriptional profiling was performed
using RNA sequencing and analysed using DAVID bioinformatics resources. Results. Compared with the baseline group, 816 and
1,845 differentially expressed genes (DEGs) were identified in the failure and dying groups, respectively. A total of five and two
gene ontology (GO) term clusters were enriched in 107 GO terms in the failure group and 154 GO terms in the dying group.
These GO clusters were primarily immune-related, including genes regulating the inflammasome complex and toll-like receptor
signalling pathways. Specifically, GO terms related to cell death, including apoptosis, pyroptosis, and autophagy, and those related
to fibrosis, coagulation dysfunction, and hepatic encephalopathy were enriched. Seven Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways, cytokine-cytokine receptor interaction, hematopoietic cell lineage, lysosome, rheumatoid arthritis, malaria, and
phagosome and pertussis pathways weremapped for DEGs in the failure group. All of these seven KEGG pathways were involved in
the 19 KEGGpathwaysmapped in the dying group.Conclusion.We found that the dramatic PBMC transcriptome changes triggered
by ALF progression was predominantly related to immune responses. The enriched GO terms related to cell death, fibrosis, and
so on, as indicated by PBMC transcriptome analysis, seem to be useful in elucidating potential key gene sets in the progression of
ALF. A better understanding of these gene sets might be of preventive or therapeutic interest.

1. Introduction

Acute liver failure (ALF) is a severe syndrome characterised
by hepatic encephalopathy and coagulation dysfunction,
which can lead to multiorgan failure and death [1–3]. High
morbidity and mortality following ALF are major problems
worldwide [2, 3]. Thus, a thorough understanding of key
genes or gene sets that regulate the progression of ALF is
required.

The development of second-generation sequencing, par-
ticularly RNA-sequencing (RNA-Seq), hasmade it possible to
perform global analysis of changes in gene expression during
the course of a disease [4–6].

Taking biopsy samples during an ALF flare places the
patient at high risk for lethal bleeding. More importantly,
biopsy would influence the progression of ALF.

Analysis of the transcriptome of peripheral blood mon-
onuclear cells (PBMCs) has successfully elucidated the
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mechanisms of numerous complex diseases and vaccination
models [7–10]. These studies showed that analysing the
PBMC transcriptome is helpful in identifying key genes and
gene sets that control disease progression.

Here, we performed a comparative analysis of PBMC
transcriptome in a porcine model of D-galactosamine- (D-
gal-) induced ALF to identify candidate genes and gene sets
that play important roles in the progression of ALF.

2. Materials and Methods

2.1. Porcine Model of D-gal-Induced ALF. A D-gal-induced
ALF porcine model was used as previously described by
our group [11]. Briefly, male Bama experimental miniature
pigs were used and 1.3 g/kg body weight D-gal (Hanhong
Chemical, Shanghai, China) was intravenously injected to
induce ALF. Blood samples were collected at baseline (time
zero) and 36 and 60 h after D-gal injection. Pigs were
sacrificed after blood sample collection at 60 h. The general
medical condition of the experimental pigs was monitored
throughout the experiment.

All animal experiments were conducted in the Depart-
ment of Experimental Animals, Zhejiang Academy of Tradi-
tional ChineseMedicine, China, and approved by the Animal
Care Ethics Committee of the Academy. All experimental
animals were treated humanely.

2.2. Clinical Parameters following D-gal-Induced Porcine ALF.
At 0, 36, and 60 h, parameters to quantify the severity
of liver failure were collected including the international
normalization ratio (INR), and alanine aminotransferase,
aspartate aminotransferase, alkaline phosphatase, 𝛾-glutamyl
transpeptidase, total bilirubin, and creatinine levels.

Blood ammonia was measured using an ammonia test kit
(ARKRAY, Tokyo, Japan) with a detection range between 10
and 400 𝜇g/dL. INR was quantified using STA-R (Diagnostic
Stago, Asnieres, France) in the emergency laboratory at the
First Affiliated Hospital, College of Medicine, Zhejiang Uni-
versity. Serum alanine aminotransferase, aspartate amino-
transferase, alkaline phosphatase, 𝛾-glutamyl transpeptidase,
total bilirubin, and creatinine levels were measured using
an automated biochemical analyser (Abbott Aeroset; Abbott
Laboratories, Chicago, IL, USA) in the same laboratory.

2.3. PBMC Isolation and RNA Extraction. PBMCs were iso-
lated using Ficoll-Histopaque (Sigma Aldrich, St. Louis, MO,
USA) immediately after blood sample collection. Subse-
quently, total RNA was extracted using RNeasy Mini kits
(QIAGEN, Hilden, Germany) according to the manufac-
turer’s instructions. All RNA samples were stored at −80∘C
for future analysis.

2.4. mRNA Library Construction, RNA-Sequencing, and Data
Analysis. Total RNA (1 𝜇g) was thawed to create a library
using TruSeq Stranded RNA LT Guide (Illumina, San Diego,
CA, USA) according to the manufacturer’s instructions. An
Agilent 2100 bioanalyser (Santa Clara, CA, USA) was used to
evaluate the concentration and size distribution of comple-
mentary DNA (cDNA) in the library before sequencing with

the Illumina HiSequation 2500 system.The high-throughput
sequencing was performed according to the manufacturer’s
instructions (Illumina HiSequation 2500 User Guide).

The raw data were filtered by FASTX (ver. 0.0.13) before
mapping to the genome using TopHat (ver. 2.0.9). Gene frag-
ments were counted usingHTSeq followed by trimmedmean
of 𝑀 values (TMM) normalization. Significantly differen-
tially expressed genes (DEGs) were identified using Cufflinks
(ver. 2.2.1) [12]. DEGs were then submitted to Visualisation
and Integrated Discovery analysis (DAVID; ver. 6.8) [13] for
gene ontology (GO) term enrichment and clustering and
Kyoto Encyclopedia ofGenes andGenomes (KEGG) pathway
mapping using default parameters, except for an EASE score
setting of 0.05.

2.5. Validation of RNA-Seq Data by qRT-PCR. Quantitative
RT-PCR was performed on selected genes to validate the
data obtained from mRNA sequencing. Briefly, total RNA
was reverse-transcribed into cDNA using the Fast Quant RT
kit (Tiangen, Beijing, China). All qRT-PCR was conducted
using SYBR Green SuperReal PreMix Plus (FP205; Tiangen)
on an ABI 7900HT (Applied Biosystems, Foster City, CA,
USA). Experimental conditions included a 3-min cycle at
94∘C followed by 40 cycles of 20 s at 94∘C, 20 s at 58∘C, and
20 s at 72∘C.

Each qRT-PCR run was performed in triplicate with two
biological replicates. Beta-2-microglobulin (B2M) was used
as the reference gene for data normalization, as previously
described. A correlation analysis of the fold change of selected
genes between qRT-PCR and RNA-Seq was performed.

2.6. Statistical Analysis. RNA-seq data analyses were de-
scribed previously in Section 2.4. Other statistical analyses
were performed by Graphpad Prism (Version 5.0, GraphPad
Software, San Diego, United States). Biochemical parameters
in the progress of ALF were compared using Student’s 𝑡-test.
Linear regression was performed in validation of RNA-Seq
data by qRT-PCR. A 𝑝 value less than 0.05 was considered
significant.

3. Results

3.1. Clinical Features and Biochemical Parameters of D-gal-
Induced ALF in Pigs. All animals enrolled in this experiment
were healthy, with a good appetite and response to the D-
gal injection at time zero (baseline). The ALF model was
successfully established in all the animals at 36 h (failure)
after D-gal injection. The pigs stopped eating and became
obviously restless, with yellow urine. At 60 h post-injection
(dying), the pigs showed ataxia and symptoms of hepatic
encephalopathy, with no reaction to painful stimuli.

The biochemical parameters as ALF progressed are listed
in Table 1. Liver failure was identified by the progressive
increase in liver enzymes, bilirubin, blood ammonia, and
the international normalization ratio in both the failure and
dying groups as compared to the baseline group. A deviation
of bilirubin and liver enzymes, or elevated total bilirubin with
decreased liver enzymes, was observed in the dying group but
not in the failure group.
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Table 1: Biochemical parameters in a porcine model of ALF.

Parameters Baseline Failure Dying
International normalization ratio 0.9 ± 0.05 2.7 ± 0.2∗∗ 4.8 ± 0.8∗∗

Ammonia (𝜇g/dl) 22.3 ± 3.1 76.5 ± 8.7∗∗ 225.5 ± 47.4∗∗

Alanine aminotransferase (U/L) 56.3 ± 8.0 311.5 ± 65.0∗ 230.3 ± 46.5∗

Aspartate aminotransferase (U/L) 36.0 ± 3.3 5023.8 ± 1034.6∗ 1788.5 ± 263.6∗∗

Alkaline phosphatase (U/L) 72.8 ± 16.9 232.8 ± 53.4∗ 564.0 ± 82.6∗∗

𝛾-Glutamyl transpeptidase (U/L) 64.5 ± 9.6 77.0 ± 5.1 96.3 ± 5.0∗

Total bilirubin (𝜇mol/L) 2.3 ± 0.3 40.8 ± 5.7∗∗ 70.8 ± 7.6∗∗

Creatinine (mmol/L) 58.0 ± 2.1 59.3 ± 6.4 49.5 ± 3.3

Data are means ± SEM. ∗𝑝 < 0.05, ∗∗𝑝 < 0.01 versus baseline.

Table 2: Qualitative analysis of PBMC RNA-Seq data in a porcine model of ALF.

Sample name Raw reads 𝑄20 value Clean reads Mapped reads Genic reads Percentage of genic reads Expressed gene number
Baseline-1 80,876,352 94.80% 77,508,054 63,736,589 51,530,237 80.80% 15,249
Baseline-2 122,478,648 95.40% 117,994,584 64,288,782 47,627,719 74.10% 14,990
Baseline-3 97,633,918 95.10% 93,252,338 76,290,007 48,400,655 63.40% 15,470
Baseline-4 91,203,498 95.30% 87,519,976 70,759,871 54,612,207 77.20% 15,642
Dying-1 106,182,528 95.20% 101,728,266 83,553,821 57,816,273 69.20% 15,563
Dying-2 93,997,436 95.20% 90,503,598 74,471,193 60,365,900 81.10% 15,101
Dying-3 118,901,914 94.90% 91,408,790 73,952,809 57,686,330 78.00% 15,712
Dying-4 84,848,674 95.30% 81,623,206 67,004,468 55,869,637 83.40% 15,343
Failure-1 80,262,120 95.20% 76,885,638 63,014,127 49,808,658 79.00% 15,297
Failure-2 100,438,952 95.30% 100,291,397 82,963,827 68,021,072 82.00% 15,812
Failure-3 86,394,661 94.90% 66,295,638 54,080,154 38,129,055 70.50% 15,228
Failure-4 99,697,480 94.80% 95,927,678 79,312,204 60,637,999 76.50% 15,404

3.2. Statistical Analysis of PBMC Transcriptome Data. RNA-
Seq was performed in a total of 12 samples, with 4 samples
in each group (baseline, failure, and dying). More than
9Gb sequence data was the yield in each sample. Overall,
80.3–122.5 million raw reads per sample were generated with
the quality of over 94.8% Q20, in which 66.3–118.0 million
were clean reads.

A total of 54.1–83.5 million reads were mapped to the
porcine genome, in which 63.4–83.4% fell in genic regions
while the remaining were in intergenic regions. 14,990 to
15,812 expressed genes were identified (fragments per kilo-
base of exon per million mapped reads [FPKM] > 0) in
each sample, respectively. Detailed information is presented
in Table 2.

3.3. Differential Expression of Genes Associated with the
Progression of D-gal-Induced ALF. DEGs during progression
of D-gal-induced ALF were identified using Cufflinks (ver.
2.2.1). Genes were identified as significantly different with a
false discovery rate (FDR) when the adjusted 𝑝 value was
(<0.05) and a greater than twofold log change was evident.
Compared to the baseline group, 816 DEGs (Supplementary
Table 1) were identified in the failure group and 1,845 DEGs
(Supplementary Table 2) were identified in the dying group.
A total of 590 identified genes overlapped between the two
groups. Details are presented in Figure 1.

1255 590 226

Baseline (0 h) versus dying (60 h)

versus failure (36 h)
 

Baseline (0 h)

Figure 1: Differential expression of genes involved in the progres-
sion of acute liver failure (ALF).

3.4. Progression of D-gal-Induced ALF: GO Analysis. GO
enrichment analysis and term clustering were performed to
identify DEGs in the failure and dying groups as compared
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to the baseline group. In total, 107 GO terms were enriched
for DEGs identified in the failure group, of which 76 were
within the biological process (BP) category, 15 were within
the cellular component (CC) category, and 16 were within the
molecular function (MF) category. Among these GO terms,
26 were grouped into five independent clusters. The GO
terms in the five clusters were related to positive regulation of
the inflammatory response, the inflammasome complex, the
toll-like receptor (TLR) signalling pathway, cell chemotaxis,
and semaphorin receptor activity. With the exception of
predominantly innate immune-related terms, important GO
terms related to cell death were also enriched for processes
such as apoptosis and pyroptosis. GO terms related to
autophagy, another type of programmed cell death, were
also identified. These terms are the regulation of autophagy,
phagocytic vesicles, and lysosomes. Terms related to the
process of liver fibrosis included gene sets important in the
negative regulation of the fibroblast growth factor receptor
signalling pathway and semaphorin receptor activity, and so
on. Moreover, GO terms related to coagulation dysfunction
andhepatic encephalopathywere also enriched, such as blood
coagulation, astrocyte development, and the semaphorin-
plexin signalling pathway involved in axon guidance, bran-
chiomotor neuron axon guidance, and so on.

In total, 154 GO terms were enriched for the DEGs
identified in the dying group,which included 104BP terms, 25
CC terms, and 25 MF terms. Overall, 20 out of 154 GO terms
were included in two clusters.The representative GO terms in
these clusters were related to regulation of the inflammatory
response and the inflammasome complex.Most enrichedGO
terms were predominantly immune-related. Other important
GO terms were related to cell death, including apoptotic
processes, apoptotic-signalling pathways, negative regulation
of apoptotic processes, pyroptosis, autophagy, lysosomal
membrane, and lysosomal lumen. Fibrosis-related terms such
as collagen catabolic processes and collagen bindingwere also
enriched; hepatic encephalopathy-relatedGO term, astrocyte
development, was also enriched.

Details of GO enrichment and clustering are presented in
Figure 2.

3.5. KEGG Pathways Involved in the Progression of D-gal-
Induced ALF. KEGGpathwaymappingwas used to study the
molecular interactions and relation networks of the identified
DEGs participating in metabolism, cellular processes and so
on following D-gal-induced ALF. A total of seven KEGG
pathways were mapped from DEGs identified in the failure
group, all of which overlapped with the 19 identified KEGG
pathways in the dying group.The seven KEGG pathways that
were common to both included cytokine-cytokine receptor
interaction, hematopoietic cell lineage, lysosome, rheuma-
toid arthritis, malaria, phagosome, and pertussis pathways.
The remaining 12 KEGG pathways identified in the dying
group were predominantly immune-related pathways, such
as the NF-kappa B signalling pathway, the tumour necrosis
factor (TNF) signalling pathway, and the complement and
coagulation cascade pathways. KEGG pathways of diseases
characterised by impaired liver function, such as Chagas
disease (American trypanosomiasis), Salmonella infection,

and Legionellosis, were also mapped using KEGG pathway
mapping. Details are presented in Table 3.

3.6. Validation of RNA-Seq Data by qRT-PCR Analysis. To
validate the RNA-Seq data, qRT-PCR of 12 selected genes
was performed. The forward and reverse pairs of qRT-PCR
primers for each gene are listed in Supplementary Table 3.
Linear correlation analysis was conducted between the RNA-
Seq and qRT-PCR results, which showed that the fold changes
were significantly concordant between RNA-Seq and qRT-
PCR data (𝑟 = 0.95, 𝑝 < 0.0001). Results are shown in
Figure 3 and Supplementary Table 4.

4. Discussion

ALF is a syndrome characterised by severe coagulopathy due
to liver dysfunction and altered consciousness as a result of
hepatic encephalopathy [3]. These features of ALF can be
revealed at the PBMC level by transcriptome analysis, with
the enriched GO term of blood coagulation and the mapped
KEGG pathway of complement and coagulation cascades.
Vemuganti et al. reported that, in association with hepatic
encephalopathy, axon guidance micro-RNA levels changed
in the cerebral cortex of a rat model of ALF [14]. In this
study, three GO terms—branchiomotor neuron axon guid-
ance, the semaphorin-plexin signalling pathway involved in
axon guidance, and the cortical cytoskeleton—were identi-
fied. KEGG mapping analysis also identified disease-related
KEGG pathways characterised by liver dysfunction, such
as malaria, Chagas disease (American trypanosomiasis),
Salmonella infection, and Legionellosis.The ability of PBMCs
to migrate in a transendothelial manner and establish a
dialogue between cells in solid organs has been reported
previously [15–17]. These findings may explain the transcrip-
tome changes observed in PBMCs that parallel the changes
observed in solid organs, such as the liver and brain.

Previous studies have revealed extensive differential gene
expression detected in the liver during the progression of
ALF [18]. In this study, compared to the baseline group, the
number of DEGs identified in the dying group was more
extensive than in the failure group (1845 and 816 genes,
resp.), which suggests that the cascades identified by PBMC
transcriptome analysis change asALF progresses. In addition,
seven common KEGG pathways were identified for DEGs in
both the failure and dying groups, which showed that the key
pathways triggered by ALF result in further cascades at the
transcriptome level.

Systemic inflammatory responses play an important role
in the progression of ALF. Several key innate and adaptive
immunemechanisms of ALF have been described previously,
including acquired neutrophil dysfunction [19, 20], TLR
function [21–23], and the important actions of chemokine
and cytokine storms [24, 25]. All of these immune-related
changes were identified in our GO enrichment and KEGG
pathway mapping studies, which included genes involved in
neutrophil chemotaxis, the TLR signalling pathway, and the
TNF signalling pathway, among others.

Cell death plays an important role in ALF [26, 27].
Apoptosis is a form of hepatocyte death that contributes to
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(b)

Figure 2: (a) Gene ontology (GO) terms of differentially expressed genes (DEGs) in the failure versus baseline group. (b) GO terms of DEGs
in the dying versus baseline group.

ALF [28, 29]. Evidence of apoptotic pathways was identified
in our transcriptome analysis. Two GO terms, the apoptotic
process and apoptotic-signalling pathways, were enriched.
Apart from apoptosis, recent research has focused on a new
formof proinflammatory cell death known as pyroptosis [30].

Until now, studies on pyroptosis in ALF have been limited
[31, 32]. Furthermore, to the best of our knowledge, a role
for pyroptosis in drug-induced ALF has not been reported
previously.The enrichment of pyroptosis GO terms following
D-gal-induced ALF suggests that pyroptosis is an important
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Table 3: KEGG pathways involved in the progression of ALF.

Name
Failure versus baseline Dying versus baseline

Mapped
genes

Fold
enrichment

FDR adjusted
𝑝

Mapped
genes

Fold
enrichment

FDR adjusted
𝑝

Cytokine-cytokine receptor
interaction 25 3.0 4.3𝐸 − 04 38 2.5 3.0𝐸 − 05

Hematopoietic cell lineage 13 4.4 3.8𝐸 − 03 15 2.7 2.1𝐸 − 02

Lysosome 14 3.2 2.1𝐸 − 02 34 4.2 2.9𝐸 − 10

Rheumatoid arthritis 12 3.7 2.3𝐸 − 02 21 3.5 7.0𝐸 − 05

Malaria 9 4.6 2.6𝐸 − 02 14 3.9 1.4𝐸 − 03

Phagosome 15 2.7 3.9𝐸 − 02 26 2.5 1.1𝐸 − 03

Pertussis 10 3.7 4.4𝐸 − 02 20 3.9 4.0𝐸 − 05

NF-kappa B signaling pathway 19 3.1 1.3𝐸 − 03

Transcriptional misregulation in
cancer 26 2.4 1.6𝐸 − 03

Chagas disease (American
trypanosomiasis) 20 2.7 3.3𝐸 − 03

Leishmaniasis 14 3.3 6.6𝐸 − 03

TNF signaling pathway 19 2.5 8.5𝐸 − 03

Salmonella infection 16 2.8 8.8𝐸 − 03

Complement and coagulation
cascades 14 2.8 2.1𝐸 − 02

Mineral absorption 10 3.4 3.1𝐸 − 02

Osteoclast differentiation 20 2.2 3.2𝐸 − 02

Legionellosis 12 2.8 4.4𝐸 − 02

Pentose phosphate pathway 7 4.6 4.6𝐸 − 02

Histidine metabolism 7 4.6 4.6𝐸 − 02
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Figure 3: Correlation of gene fold changes between RNA-
sequencing (RNA-Seq) and qRT-PCR analysis.

route to cell death in a model of drug-induced ALF and
therefore merits further study. In addition to pyroptosis,
necrapoptosis, also known as aponecrosis or apoptotic necro-
sis, is an important proinflammatory cell death pattern that
shared common features and pathways with both apoptosis
and necrosis [33, 34]. Also, this cell death pattern was found

in liver injury [35, 36]. The necrapoptosis GO term or KEGG
pathway was not enriched ormapped in this study.The possi-
ble reason might be that this cell demise pattern has not been
annotated in databases of GO (http://geneontology.org/) and
KEGG (http://www.kegg.jp/), for we cannot retrieve it in
either of two databases so far. However, GO term, the
adenosine triphosphate (ATP) hydrolysis coupled proton
transport, was enriched in this study. ATP has been proved as
a key factor to determine the way out of necrapoptosis [34].
This might verify from another aspect in transcriptome level
that necrapoptosis is an important cell death pattern involved
in the progression of ALF.

Autophagy is a lysosomal pathway taskedwith the process
of self-degradation of cellular components by the sequestra-
tion of these components in double-membrane autophago-
somes [37]. It has been widely reported that autophagy
plays an important role in cancer and other chronic diseases
of the organs [38–42]. Autophagy is an important current
research topic in models of liver disease [43–45]. However,
currently there are limited data on the role of autophagy in the
progression of ALF [46, 47]. In this study, GO terms such as
autophagy, regulation of autophagy, and phagocytic-vehicle
were all enriched. Two KEGG pathways of lysosomal and
phagosome regulation were mapped. These results provide
another potential avenue of transcriptome-level research on
the influence of autophagy on the progression of ALF.

http://geneontology.org/
http://www.kegg.jp/
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The role of fibrosis in the progression of chronic liver
disease has beenwidely studied. Although fibrosis is observed
in ALF [48], an understanding of the underlyingmechanisms
remains limited. GO terms related to the collagen-related
component of liver fibrosis, such as collagen catabolic pro-
cesses and collagen binding, were also enriched in this study.
Semaphorin families are regulators of the progression of
fibrosis in chronic liver diseases [49, 50]. However, the role of
semaphorin families in ALF remains unknown. Semaphorin
receptor activity GO terms were also found in this study,
which constitutes another interesting avenue for research.

In conclusion, this study identified dramatic changes in
the PBMC transcriptome predominantly related to immune
responses in ALF. Enriched GO terms related to coagulation
dysfunction, hepatic encephalopathy, and mapped KEGG
pathways of diseases characterised by liver injury demon-
strated that the PBMC transcriptome reflects the features
of ALF. The enrichment of GO terms related to cell death
and fibrosis indicates that PBMC transcriptome analysis is a
useful method to elucidate potential key gene sets involved
in ALF progression.Thus, a better understanding of the gene
sets identified in this studymay contribute to ALF prevention
or treatment.
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