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Explainable and generalizable 
AI‑driven multiscale informatics 
for dynamic system modelling
Chen Luo , Ao‑Jin Li , Jiang Xiao , Ming Li  & Yun Li *

Ultra-precision machining requires system modelling that both satisfies explainability and conforms 
to data fidelity. Existing modelling approaches, whether based on data-driven methods in present 
artificial intelligence (AI) or on first-principle knowledge, fall short of these qualities in high-
demanding industrial applications. Therefore, this paper develops an explainable and generalizable 
‘grey-box’ AI informatics method for real-world dynamic system modelling. Such a grey-box model 
serves as a multiscale ‘world model’ by integrating the first principles of the system in a white-box 
architecture with data-fitting black boxes for varying hyperparameters of the white box. The physical 
principles serve as an explainable global meta-structure of the real-world system driven by physical 
knowledge, while the black boxes enhance local fitting accuracy driven by training data. The grey-box 
model thus encapsulates implicit variables and relationships that a standalone white-box model or 
black-box model fails to capture. Case study on an industrial cleanroom high-precision temperature 
regulation system verifies that the grey-box method outperforms existing modelling methods and is 
suitable for varying operating conditions.

Keywords  Grey-box model, System modelling, High-precision control system, Explainable artificial 
intelligence

Recently, large language models (LLMs) in artificial intelligence (AI) have shown certain potential for dynamic 
system modelling and control, but their industrial applications face challenges, as they are fundamentally data-
driven black boxes based on artificial neural networks (ANNs)1,2, which lack underlying knowledge that the 
systems were built upon. For example, high-precision temperature control for cleanroom manufacturing relies 
on a plant model that is derived from thermodynamic principles of a heating, ventilation, and air conditioning 
(HVAC) system3–6. In such a practical case, black-box approaches based on classical transfer functions are also 
inadequate since the HVAC system is intrinsically nonlinear and may be time varying7–12. Furthermore, this 
time-varying behaviour represents not only a single variation in the system parameters over the time but is also 
closely related to the current state of the system. For similar reasons, other black-box models such as fuzzy logic, 
Statistical Output Error, Box-Jenkins, and Autoregressive Moving Average (ARMA) models are also inadequate 
and lack explainability11,13–21. Nonetheless, a black-box model often yields the most straightforward data fitting 
solution, and can be updated regularly as the operating conditions change, although it can hardly extrapolate 
for operations outside the range of the training data13,22–24.

On the contrary, a white-box model, which is based on the working mechanism of the system, offers explain-
ability of the system being controlled25–31. However, a white box may not capture the detailed dynamics reflected 
from the data or accommodate all complexity of the system as certain dynamics are impossible to model using 
first principles. Factors contribute to this failure include multiple levels of system complexity, minor dynamics 
that are not understood, and distributed (as opposed to a fully lumped) nature of the problem26,27,32. Thus, white-
box models often have limited data-fitting accuracy33–37.

Conversely, the black-box approach38–41 fits input–output (I/O) data more accurately42–48. At the same time, 
demand for explainable artificial intelligence (XAI) has emerged in recently, so as to incorporate scientific knowl-
edge or practical experience into black-box models and thus to enhances the transparency and interpretability 
of machine learning and ‘world models’49,50. Examples include Theory-Guided Data Science (TGDS) approach 
with Physically-Guided Neural Network (PGNN) models51,52, Physically-Informed Neural Networks (PINN)53, 
and Theory-Guided Neural Network (TgNN) frameworks to incorporate physical principles with partial dif-
ferential equations (PDEs) and boundary conditions54. By embedding domain knowledge in AI models, their 
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trustworthiness is improved by mapping relationships between variables and by incorporating a priori knowledge 
existing in industrial practice. Hence, the grey-box model in this paper places an emphasis on structuring model-
ling on a white box for the first principles, and then organically augmenting it with local black boxes for fitting 
accuracy, whereas existing XAI is dominated by data-driven modelling augmented with some knowledge or expe-
rience. This paper is thus to make the best out of both black-box and white-box methods, as illustrated in Fig. 1.

For an HVAC system, white-box modelling techniques are adopted so far25,55–57. For process control in gen-
eral, the plant model is usually constructed based on physical and/or chemical principles such as composition, 
mass, momentum and energy balances, forming underlying relationships between the inputs and outputs of the 
system. The underlying principles are usually expressed in terms of ordinary differential equations (ODEs), which 
are approximate to dynamics where partial differential equations (PDEs) are more adequate. The high-precision 
temperature control system for cleanroom manufacturing exhibits characteristics such as high thermo-inertia, 
time-lags, and uncertain perturbation factors17. These factors contribute to the system’s high-order dynam-
ics and nonlinear characteristics, necessitating accurate system identification and modelling for the design of 
high-performance control algorithms. However, due to assumptions, a large number of parameters or neglect 
of parameter variations19,58,59, white-box models often fail to fully capture the system’s complex attributes and 
dynamics, leading to inadequately data fitting13,22.

Conversely, models that account for all necessary physical parameters and conditions often become overly 
complex, rendering it impractical to design control systems60,61. Therefore, hybrid models have been developed to 
combine the strengths of both white-box and black-box approaches61–64. However, HVAC system models labeled 
as “grey-box models” are merely a series or parallel connection of the two types22,65,66, thus clattering the two 
structures and failing to offer advantages of both approaches. Table 1 lists a comparation of the three modelling 
techniques in areas such as semiconductor and aerospace industries.

In this paper, we define the “grey-box model” in the AI age first, and then illustrate it with an application to 
high-precision temperature control system modelling for industrial cleanroom ultra-precision manufacturing. 
Building a more accurate model for an ultra-precision system enables its control algorithm better to handle 
perturbations, constraints, uncertainties, time-varying dynamics, time delays, and slow-moving processes across 
a wide range of operating conditions.

Because the model structure is not replaced by artificial structures in a generic black-box approximator, the 
grey-box representation helps meet the requirements of interpretability, adaptability, and generalizability. As 
such a grey box approach is stemmed from a white box, it can accommodate other HVAC and complex dynamic 
systems for fault detection, diagnostic, or building energy efficiency strategy development through the introduc-
tion of knowledge and causality.

AI‑driven grey‑box modelling
To tackle the challenges of modelling complexities and control specifications, we introduced the evolutionary 
grey-box model first in 2002, which was validated on hydraulic system and process modelling61. It has since 
undergone further development and research25,29,35,41,42,64,75,76,97. In the AI age, we now define the “grey-box 

Figure 1.   Advantages and disadvantages of white-box and black-box modelling approaches.
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model” as an explainable white box driven by real-world knowledge, with coefficients generalized through 
data-driven black boxes.

Definition—generic grey-box model:
The Grey-Box Model G(u, y, t) is defined as a generic nonlinear white-box state-space model (SSM) derived 

from the fist-principle knowledge, whose hyperparameter set θ(x, u, t) is dependent on input–output training 
data and is time varying:

where

•	 u(t) and y(t) are the plant input and output training data sets, respectively;
•	 x(t) are the state variables, which are dynamic intermarries between u(t) and y(t);
•	 f  and h are white-box nonlinear functions whose hyperparameter set θ is comprised of black-box functional 

approximators;
•	 R∗

= R ∪ R1
∪ R2

· · · ∪ R∞;
•	 L(·) : R∗

→ R is a loss function of the Grey-Box Model.

Grey-box modelling hence respects the original physical laws of the system by using a valid SSM without 
altering its “white” structure, thus retaining its interpretability. By filling its parameters with “black” boxes, it 
acknowledges the system’s empirical data while reduces modelling errors. A data-driven black-box approach 
can hence be employed to automatically adjust the model parameters by monitoring the operating condition 
variables, thus enhancing the performance of the mechanistic model. Therefore, the hyperparameters accom-
modate diverse working conditions and operation scenario. Further, they can also be written in the form of 
generalized time-varying matrices, thus extending the generic Grey-Box Model to a generalized Linear Time-
Varying Grey-Box Model.

Corollary—linear time-varying grey-box model:
A generalized Linear Time-Varying Grey-Box Model is a time-varying linearized generic Grey-Box Model with 

p inputs, q outputs and n state variables:

where A(·) is termed the “state matrix”, with certain elements varying dynamically with x(t) , u(t) and implicitly 
t  , and dim[A(·)] = n× n ; B(·) is termed the “input matrix”, with certain elements varying dynamically with x(t) , 
u(t) and implicitly t  , and dim[B(·)] = n× p ; C(·) is termed the “output matrix”, with certain elements varying 

(1)

{
ẋ(t) = f (x(t), u(t), θ(x, u, t), t)
y(t) = h(x(t), u(t), θ(x, u, t), t)
θ = argmin

θ∈R∗L[θ(x, u, t)]

(2)

{
ẋ(t) = A(x, u)x(t)+ B(x, u)u(t)
y(t) = C(x, u)x(t)+D(x, u)u(t),
θ = argmin

θ∈R∗L[A(x, u, t),B(x, u, t),C(x, u, t),D(x, u, t)]

Table 1.   Comparative study of the three modelling techniques.

Modelling techniques Weaknesses Strength Field of applications

Physics-based white box
Poor accuracy67–69

Relies entirely on knowledge of the process 
and the laws of physics that control it70,71

Complex72,73

Easy to analyse and represent the system 
more closely74

Requires less training data75,76

Better generalization ability77

Semiconductor device design72, aerody-
namic modelling74, aerospace RTM process 
modelling73, silicon-based transistor 
modelling71, aerospace alloy notch fatigue 
assessment75,76, bipolar transistor compact 
modelling68, Gummel-Poon compact 
model69, predictive modelling in aircraft 
design67, computational modelling of aircraft 
performance77

Data-based black box

Requires a large amount of training data 
and relies entirely on measured data for 
input and output variables71,78

Do not reflect actual physical behaviour79

Poor generalization79–81

Do not require understanding of system 
physics82,83

Provides good prediction accuracy84

Simplicity and reduce computational 
cost85,86

Semiclassical device simulation with ML72, 
semiconductor device simulation86, subsonic 
blade row modelling85; novel transistor 
circuit-level analysis79, MOS transistor 
modelling83, modelling of fatigue damage 
processes82, atomic modelling of devices, 
prediction of atomic forces84, circuit-level 
analysis of novel transistors79, electrother-
mal interaction modelling80,Fatigue life 
prediction81

Gray box based on both data and physics
Requires more effort to develop72

Accuracy is highly dependent on the rich-
ness of the data used to train the model87

Higher accuracy88–91

Relatively less complex92,93

Easy to generalize90,94,95

Relatively low computational cost89,96

Semiconductor device design72, multi-axis 
fatigue predictive modelling90, helicopter 
fatigue predictive modelling88, aerospace 
fluid dynamics modelling93, nonlinear 
model simplification for computational 
fluid dynamics92, semiconductor device 
modelling for emerging devices91, corrosion 
fatigue modelling94, wave load prediction95, 
electronic conductivity prediction for 
large systems89, aircraft structural health 
monitoring96
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dynamically with x(t) , u(t) and implicitly t  , and dim[C(·)] = q× n ; D(·) is termed the “feedthrough matrix”, 
with certain elements varying dynamically with x(t) , u(t) and implicitly t  , dim[D(·)] = q× p . Eq. (2) form the 
structure of the SSM white box with A, B, C and D matrices, which are fit with black boxes determined by θ.

Such a ‘world model’ is constructed from physical knowledge and is hence dominantly interpretable, while 
it can complementarily fit unknown or complex minor dynamics accurately from training data. By decompos-
ing it into the white-box and the black-box levels, a real-world or nonlinear dynamic system model is thus 
approximated by the structurally modular linear time-varying grey-box model, whose parameters can also be 
determined structurally modularly with multiple scales. This provides ease of informatics implementations for 
development when using a graphical processing unit (GPU). More detailed description is illustrated in Fig. 2.

Figure 3 presents an explainable and generalizable AI architecture for grey-box modelling, with a high-
precision temperature control system as a case study. This is detailed in “Ultra-precision machining temperature 
conditioning system” section to enhance the robustness, generalization, and interpretability of the plant model.

Figure 2.   A generalized Linear Time-Varying Grey-Box Model for data and mechanism dual-driven modelling.

Figure 3.   (a) Framework of explainable and generalizable AI-driven grey-box modelling. (b) Modelling 
procedures.
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Ultra‑precision machining temperature conditioning system
System description
System components and requirements for precision control
The high-precision temperature conditioning system ensure efficient heat transfer from stable ambient air tem-
perature (approximately 24–26 °C) to a consistently maintained chilled water temperature (around 12–16 °C, 
supplied by the chillers). The system is divided into two subsystems based on the difference in outputs, as depicted 
in Fig. 4. The subsystem for controlling the outlet water temperature (the pink-outlined block) includes a water 
valve and adjustable water heating. The subsystem for controlling the outlet air temperature (the blue-outlined 
block) comprises a heat exchange coil and two-stage adjustable electric heating (#1 and #2). Notably, the output 
of the water temperature system serves as the input for the air temperature system. The system’s temperature 
control objectives (T) are twofold: (1) achieving temperature accuracy with an error of △T ≤ 0.01 °C for the 
outlet air compared to the set value, and (2) maintaining the inlet air pressure and temperature, as well as the 
inlet water temperature, within a specified range.

The temperature conditioning system is designed to pump air through a fan and coil for heat exchange with 
cold water, ensuring that the ambient temperature does not exceed the reference level. This approach is used 
because heating air to reference level is more controllable than cooling it. The system then makes coarse and fine 
adjustments through two stages of air heaters, and the mixer outputs air at the required temperature. Cold water 
is supplied by external equipment, where a water temperature pre-adjustment system controls the flow rate and 
temperature of the water entering the coil. Adjustable heaters control the water and air temperatures using pulse-
width modulation (PWM) with controlled duty cycles. For high-precision operation, two temperature sensors 
with an accuracy of 0.001 ℃ are deployed at the air inlet and outlet. Temperature sensors with an accuracy of 0.1 
℃ are installed at the water inlet and outlet, and the water valve uses the average value from these two sensors. 
The temperature control algorithm utilizes a trajectory controller network (TCN)98 based on proportional-
integral-derivative (PID) scheme99. This method is used to control both water and air temperatures in real time.

Challenges of modelling
The challenges in modelling of such a system lie in:

1.	 Nonlinearities. Real-world temperature control systems often exhibit nonlinear behavior, such as nonlinear 
relationships in heat transfer and refrigeration. Nonlinearities can lead to unpredictable system behavior, 
rendering standard control strategies ineffective.

2.	 Time-variance. Ultra-precision control is influenced by various time-varying factors including changes in 
internal and environmental conditions, as well as equipment aging. Time-varying characteristics can also 
arise when operation levels change due to system nonlinearity.

3.	 Distributed nature of air. The dynamics of air require modelling through partial differential equations with 
complex boundary conditions. However, this approach is often overly costly in engineering practice, leading 
to the use of ordinary differential equations (ODEs) as a lumped approximation.

4.	 Incomplete or noisy data representation. In practice, measured data may be incomplete for various reasons, 
such as sensor imperfection, disturbances or communication noise.

Figure 4.   Schematic of a cleanroom high-precision temperature conditioning system.
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To ensure optimal control for an ultra-precision temperature systems, model development must account for 
these factors, handle large amounts of complex data, and provide flexibility to adapt to changes. These challenges 
have in common that they increase the complexity of modelling and control system design.

System modelling on a white‑box global structure
The global structure of the white-box model consists of three subsystems: the heat exchange coil (HEC), the 
adjustable air heater (AAH), and the adjustable water heater (AWH). All parameters, units and physical explana-
tions are shown in Appendix Table 6.

1.	 Heat exchange coil
	   The HEC serves to reduce the incoming air temperature below the target value. It functions as a secondary 

air temperature regulation component, with the inlet air supplied by the primary central air conditioner. 
Consequently, the input air temperature remains relatively stable (24–26 °C), and there is no return air as 
input. The inlet water for the HEC sourced from the output of the AWH, is stable at 18.5 °C and undergoes 
minor fluctuations based on current operational conditions and the set value of the outlet air temperature. 
Therefore, it is reasonable to assume that the inlet water temperature of the HEC remains relatively stable.

	   Two primary heat exchange processes occur within the HEC: (1) heat exchange between the cold water 
and the coil metal, and (2) heat exchange between the air and the coil metal. The energy balance equation 
for the cooling coil is represented by Eq. (3), while Fig. 5 illustrates the energy balance diagram.

	   Parameters to be identified are Cwm , Cpw , Cpa , UAcc , c1 , and c2 . Here, UAcc reprensents the total thermal 
conductivity; T is the temperature; C is the specific heat capacity; and m is the flow rate. The subscripts W , A , 
i and o stand for water, air, input, and output, respectively, while c1 and c2 are the compensation parameters. 
Note that the above equations and the subsequent sub-model equations appliy when the temperature of the 
input medium is constant and the thermal equilibrium has been reached in the flow state100,101:

2.	 Adjustable air heater
	   The AAH consists of two stages: a primary stage (2000W) and a secondary stage (500W), each with a range 

of 0–1000 for the open degrees. The primary electric heating stage coarsely adjusts the air temperature to 
approach the set temperature, while the secondary electric heating stage finely adjusts the air temperature 
to match the set value. Given that the equipment operates continuously and is well-sealed and insulated, 
heat exchange with environment and within the equipment can be neglected. The simplified energy balance 
equation for the AAH is provided in Eq. (5), and its corresponding energy balance diagram is shown in Fig. 6.

	   Parameters to be identified include Ka , Cpa , are CAAH , where Pa denotes adjustable air heater power, Ka 
denotes effective power factor, and CAAH denotes thermal conductivity.

3.	 Adjustable water heater
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Figure 5.   First-principle modelling based on energy balance of the HEC.
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	   The AWH is similar to the AAH, with the primary difference being the heat exchange medium used. The 
AWH pre-heat the cold water entering the HEC to ensure a stable and controllable input to the HEC. To 
regulate the amount of cold water entering the HEC more effectively, the AWH incorporates a water valve 
to control the water flow through the heating element. Since the system is connected to a central chiller, the 
water valve operates under constant pressure on both sides and follows an equal percentage flow character-
istic. Consequently, an exponential function approximates the flow characteristics of the water valve.

	   The simplified energy balance equation for the AWH is given by Eq. (6), and its corresponding energy 
balance diagram is illustrated in Fig. 7.

	   Parameters to be identified are Kw , Cpw , and CAWH , where Pw denotes adjustable water heater power, Kw 
denotes thermal conductivity, CAWH denotes thermal conductivity, Ov denotes the opening of the water valve, 
and v denotes the flow characteristic coefficient. Equation (7) is obtained from the instruction manual for 
the water valve.

System model critical factor identification
The white-box mathematical models of the HEC, AAH, and AWH require prior knowledge, such as characteristic 
coefficients based on equipment-specific lookup tables. However, these a priori knowledge factors possess certain 
limitations. Firstly, the true values of these factors, including the effects of equipment wear and tear, surface foul-
ing, and uncertainties in heat transfer rates, often differ significantly from their rated values. Secondly, during 
model identification and training, nonlinear factors are often simplified or neglected, leading to inaccuracies due 
to production tolerances of other components and measurement errors. These critical factors cannot be ignored.

Additionally, not all parameters within the entire system model hold equal importance. It is necessary to 
compare experimental data from multiple sets of different operating conditions to identify "critical parameters" 
and establish their relative importance. This ranking of parameters serves as the foundation for subsequent 
global optimization of the model.

Critical factor test
The experimental protocol is illustrated in Fig. 8, where the inlet air temperature and inlet water temperature were 
maintained as stable as possible throughout the entire test. The dashed boxes on the left side of Fig. 8 represent 
water heating positions, ranging from 0 to 1000 for the water valve and 70 to 100 for the water valve opening. The 
dashed box on the right side represents electric heating positions, ranging from 0 to 1000. The red coil indicates 
the heating test, while the blue coil indicates the cooling test. The purple circle marks the beginning of a group 
test, with the number within the circle indicating the experimental sequence. The symbol "x" denotes that a test 
is not set for that condition point.
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Figure 6.   First-principle modelling based on energy balance of the AAH.
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Analysis of critical factors
Experimental datasets obtained at different operating points are utilized for parameter estimation of the white-
box models at each operating point using a Genetic Algorithm (GA), as shown in Fig. 9. The GA is an appropriate 
method for multi-modal, multi-dimensional problems where optimization objectives are known but detailed 
knowledge is lacking102. Figure 9 illustrates that the parameters of the white-box models vary within the operat-
ing envelope. Additionally, due to the different scales or large difference in the mean value, it is not feasible to 
compare multiple datasets by standard deviation directly. Therefore, the coefficient of variation (CV) method is 
employed, which is a standardized measure of data dispersion relative to its mean value. The CV is defined as the 
ratio of the standard deviation to the mean: cv = σ/µ . The estimated results are presented in Table 2.

The results reveal parameter inconsistencies across various operating conditions. Specifically, the thermal 
conductivity Cam shows higher sensitivity in the HEC system, while KA exhibits greater sensitivity in the first 
AAH1. Similarly, CAAH demonstrates increased sensitivity in the sceond AAH2, and CAWH exhibits enhanced 

Figure 8.   Critical-factor test program.
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sensitivity in AWH. Accurately determining these coefficients is crucial for maximizing the precision of the 
model’s output response.

Grey‑box modelling
The proposed grey-box model integrates a global physical structure with a local black-box, enabling the model-
ling of sensitivity coefficients associated with operating points that the white-box cannot accurately captured due 
to neglected nonlinearities. These sensitivity coefficients vary for each operating point and are distributed in a 
nonlinear manner. A black-box model for the parameters can be constructed using current operating conditions 
as inputs and the sensitivity parameters as outputs.

The sensitive coefficients of the white-box model are represented by a black-box component and can be mod-
eled using power series polynomials, rational functions, fuzzy logic, neural networks, or other types of general 
function approximators based on basis functions.

Given the precise parameter data points obtained under known operating conditions and the strong continu-
ity between them, this study adopts the cubic spline interpolation method for modelling (alternative methods 
can be considered for different operating conditions). Cubic spline interpolation is preferred for its smoothness 
and accurate approximation capabilities. The method involves dividing the data interval into sub-intervals and 
constructing continuous cubic polynomial functions within each sub-interval, ensuring the continuity of both 
function values and their derivative. This approach provides seamless interpolation curve between data points, 
effectively avoiding abrupt fluctuations.

 Data set description and pre‑processing
Description of the dataset
The experimental data were collected from a test center laboratory of a domestic listed company, following the 
open-loop test program presented in Fig. 8. To achieve decoupling of each part of the system, the openness of 
each actuating device was reasonably controlled. The specific parameters are described in Table 3.

Handling of data anomalies
Using the test data from the first-stage adjustable air heater (AAH) as an example, the data interval depicted in 
Fig. 10a corresponds to the AAH opening range of 1000 → 500 → 0 . The air temperature increment is calculated 
as the difference between the outgoing air temperature and the incoming air temperature. Figure 10a reveals 
abnormal fluctuations in the temperature increment curve, even when the actuator opening remains unchanged, 
and the system reaches a steady state. Sensor failure can be excluded as the cause, indicating the presence of other 
uncontrollable variables responsible for the anomalies in the experimental results. Upon observing the dataset 
(Fig. 10b), it is evident that the time and magnitude of the water discharge temperature change coincide with the 
performance of the abnormal data (Fig. 10a), excluding normal changes caused by measurable actuator opening 
regulation. Principle analysis further reveals that the system’s heat exchange link encompasses the exchange of 
heat between air and water in the heat exchange coil and the water temperature from the external chiller, which 
falls outside the experimental control range. Consequently, this portion of the heat exchange is disregarded 
during data processing, confirming that the abnormal data stem from the water discharge temperature. The 
processed results are presented in Fig. 10c.

Table 2.   Results of the CV assessment.

CAAH1 KA1 CAAH2 KA2 Cwm Cam CAWH Kw

CV 0.1069 0.2529 0.2603 0.1434 0.1361 0.6685 − 0.4451 0.3792

Table 3.   Experimental data situation.

Parameter Measurement Details

Wind temperature Sensor accuracy: 0.0001 ℃

Water temperature Sensor accuracy: 0.1 ℃ Significant noise in data, filtered before analysis

Inlet air temperature Single sensor measurement Laboratory’s inlet air temperature: 23℃ with a fluctuation 
range of 0.1

Outlet air temperature Average of two sensors’ values

Sampling 1 s/2 s non-equal intervals Total sampling time: approximately 25 h

Resampling Sampling time: 1 s

Samples obtained Total: about 32,900

Selected samples for parameter estimation Total: about 28,000 Considered sufficient for capturing system’s process dynam-
ics under different operating conditions

Inlet water temperature Stable around 20 °C
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Parameter estimation and results
The parameters of the white-box model were optimized using a GA, and the results are presented in Table 4. All 
model development and validation procedures were conducted using MATLAB (R2019b). To assess and compare 
the performance of the white-box model and the grey-box model, the following evaluation metrics were selected. 
The estimated results are provided in Fig. 11 for reference.

Mean squared error (MSE):

Coefficient of determination (R2):

Goodness of fit (G):

Figure 12 illustrates a visual comparison of the outlet air temperature curves for the subsystems and the overall 
system using both the white-box and grey-box models.

The performance metrics results for the white-box and grey-box models of the subsystem and the overall 
system are presented in Table 5. The overall model was further validated using an independent dataset of irregular 
working conditions beyond the scope of the training dataset. This additional dataset assessed the generalization 
capability of the model as shown in the last column of Table 4. The models generally performed better under 
the grey-box framework than the pure white-box framework, exhibiting a lower mean square error and higher 
coefficient of determination. It is worth nothing that validation performance is typically lower than fitting per-
formance, which is expected in any real-world modelling scenario.
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Figure 10.   (a) First-stage AAH opening curve and air temperature increment curve; (b) temperature curve of 
water discharge; (c) revised incremental air temperature curve.

Table 4.   White-box parameter estimation results.

Subsystem White-box parameters estimation results

HEC Cwm = 4.1251,Cpa = 3.1175,Cpw = 11.1099,

c1 = 13.4870, c2 = 4.4172

AAH1 Ka = 0.0988,Cpa = 19.2102

AAH2 Ka = 0.0271,Cpa = 19.2476

AWH v = 1.0007,Cpw = 71.4786,Kw = 0.1721



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:18219  | https://doi.org/10.1038/s41598-024-67259-4

www.nature.com/scientificreports/

Model development and simulation
The model was developed and integrated in Simulink (R2019b), with individual subsystems constructed and 
interconnected according to the actual unit’s configuration as illustrated in Fig. 13. Real experimental input data 
from the actual unit were passed into the Simulink model through MATLAB’s (R2019b) workspace, enabling 
simulations and analyses that closely resemble real-world conditions. The subsystems were interconnected in 
series, requiring only the input of the unit’s inlet water temperature, inlet air temperature, and the opening of 
each actuator to obtain the outlet air temperature response. Additionally, temperature data for intermediate stages 
that are not directly measurable in the experiment, such as the temperature after the coil and the temperature 
after the first-stage air heating, can also be obtained. To facilitate model parameter optimization by the GA, it is 
necessary to import the Simulink model’s simulation data into Matlab’s workspace and obtain the response data 
by calling the Simulink model within the code space for population iteration of the GA.
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Figure 11.   Parameter identification with operating conditions.
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The model is constructed in a cascading manner, providing strong scalability that allows for simulation and 
research of more complex systems by adding components. By incorporating feedback modules, the development 
and design of a high-precision control system can be undertaken.

Conclusions
This paper develops an explainable and generalizable AI-driven grey-box modelling method that utilizes the 
first-principle knowledge and global structure of the real-world system. It integrates accurate black-box models 
to locally capture nonlinear information of unmeasurable parameters, seamlessly combining it with the white-box 
model to form an explainable multiscale ‘world model’. Through two levels of regularisation, this model trans-
forms a general nonlinear-structure model into a modular one that is generalizable with ease of computational 
implementations such as when using a GPU.

Figure 12.   Temperature curves of actual outlet temperature, white-box model outlet temperature, and grey-box 
model outlet temperature under the same input.

Table 5.   Model performance metrics.

AAH1 AAH2 AWH HEC HAAC-Water HAAC-Air

White Grey White Grey White Grey White Grey White Grey White Grey

MSE 0.0181 7.0131e−4 4.8759e−4 6.0046e−5 0.1196 0.0259 0.0223 6.0959e-4 0.5715 0.1646 0.3067 0.1640

R2 0.9774 0.9991 0.9839 0.9980 0.9893 0.9977 0.9919 0.9998 0.9161 0.9755 0.9350 0.9652

G 84.9632 97.0436 87.3081 95.5461 89.6476 95.1834 90.9824 98.5083 71.0278 84.3559 74.5033 81.3546

p 0.0389 0.0374 0.0461 0.0439 0.0473 0.0396

Validation set White: MSE = 0.33; R2 = 0.90; G = 76.8 Grey: MSE = 0.0161; R2 = 0.856; G = 80.33
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Then, the approach is applied to and tested on a high-precision thermoregulation system. Its white-box 
component is effective for modelling relatively known principles, and the comparison in Table 4 reveals that 
the grey-box model more closely approximates the actual system while retaining explainability with varying 
operating conditions. A substantial improvement in the MSE metrics is observed in the overall model, where 
the subsystems are connected in series, causing errors to propagate. The results indicate that the grey-box model 
enhances accuracy, robustness, and generalization capability. This approach can not only adapt to the changing 
conditions of the actual engineering system to achieve better modelling accuracy and precise control, but can 
also provide an effective method for establishing mathematical models of thermophysical systems for ultra-
high precision environmental control cabinets in different scenarios. When conditions exceed the training data 
range, the grey-box model still maintains a certain degree of trustworthy extrapolation owing to its white-box 
structure, though its accuracy may be compromised. However, the black-box component can be extended easily 
to other conditions as needed.

This modelling method is suitable for systems with a certain level of physical understanding and cannot be 
applied to systems whose internal operations are not understood, such as lottery systems, stock trading systems, 
and pedestrian flow systems. For a larger system, it can be decomposed into subsystems for grey-box modelling. 
For multi-condition modelling in a complex environment, the black-box component can be modelled using a 
multi-input multi-output model to enhance the model scalability. Note that, however, a grey-box model may 
not necessarily outperform a black-box model in terms of local accuracy due to the generalizability of the grey-
box model.

The findings offer guidance for modelling similar systems in advancing engineering informatics in the AI age. 
In the future, robustness and reliability will be studied for enhancing the extrapolation performance of the model. 
Future research will also further explore the impact of additional factors on the model and will hence consider 
feasibility of online learning for automatic fine tuning, as well as applying this technique to develop more explain-
able and generalizable AI-driven control systems for various real-world problems (Supplementary Information).

Data availability
To facilitate the replication of the methods detailed in this paper, we provide the essential modelling code. 
Regrettably, the raw data utilized in our experiments cannot be publicly disclosed due to confidentiality agree-
ments and were used under a license exclusively for this study. However, the data are available with permission 
of Shenzhen Envicool Information Technology Co., Ltd, the manufacturer of the equipment used in this study.
Appendix
See Table 6.

Figure 13.   Simulink model.
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