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One‑pot green synthesis of iron 
oxide nanoparticles from Bauhinia 
tomentosa: Characterization 
and application towards synthesis 
of 1, 3 diolein
Sushmitha Lakshminarayanan2, M. Furhana Shereen1, K. L. Niraimathi2, P. Brindha2 & 
A. Arumugam1*

The green synthesis of NPs through plant extracts can be a modest, one‑pot alternative synthesis to 
the conventional physical or chemical method. The prime focus of this study is to produce MNPs by 
the reducing effect of Bauhinia tomentosa leaf extract, and it was immobilized in porcine pancreatic 
lipase (PPL). Synthesized NPs were characterized by field emission scanning electron microscopy 
(FESEM), X‑ray diffraction (XRD) and Raman spectroscopy, UV–Vis Spectrometry, Thermogravimetry, 
and Differential Scanning Calorimeter (DSC), Zeta potential test, VSM, BET and Fourier Transform 
Infrared Spectroscopy (FTIR). The effect of process parameters was studied, about the efficiency of 
immobilization are enzyme stability, the extent of enzyme reusability, its separation from products, 
the activity of immobilized enzyme, recovery, and its loss. Finally, the immobilized lipase was used 
for the synthesis of 1,3‑diolein using enzyme‑mediated esterification of oleic acid and glycerol. Under 
optimized condition (reaction temp‑55 ◦ C; molar ratio‑2.5:1; pH‑7) diolein yield was achieved to be 
94%. Therefore, this work was further used for the industrial production of 1,3‑diacylglycerol since a 
perfect enzyme‑catalyzed process was observed.

With integrated technology and science, the orientation of research from the subsisting microscopic theme 
towards the nanoscopic system is materializing with scientific  relevance1. The large surface-to-volume ratio and 
high adsorption capacity have put nanoparticles under the good adsorbents  category2. They are synthesized in 
the nanometer scale with a range of 1–100  nm3 and shape, size, porosity, chemical composition,  etc4 are vari-
ous factors they depend on. Medicine, electrical instrumentation, engineering, environment, buildings, bio-
medical and biological purposes, etc. are heterogeneous domain platforms where nanostructures have extensive 
applications. To date, innumerable metal and metal oxide nanoparticles are being chemically synthesized by 
various  methods5,6. However, toxicity may be entangled in such methods paving the way for unsafe byproducts 
 formation7,8. Therefore, for nanoparticle synthesis, a simple, environmentally friendly, and cost-effective tactic 
is being explored. Chief aspects that put green synthesis of NPs over chemical synthesis under the profitable 
category are being more economical, less labor-intensive, less toxicity, and greater stability  nature9.

Magnetic nanoparticles that transpire to be promising practical support can trammel challenges faced by 
conventional  NPs10. We can separate the magnetic NPs using a magnetic field, thereby improving their recovery, 
increasing the activity and stability, and also reducing steric  hindrance11. An increase in particle stability reflects 
the correlation of green synthesized magnetic nanoparticles by availing the organic matter from various plant 
part  extracts12,13. Also, it is a swift and reasonable method as the plant extracts containing secondary metabolites 
can act as both reducing and fixing agents.

Iron oxide is a transition metal oxide existing in about 16 forms, which include oxides, hydroxides, and 
oxide-hydroxide polymorphs, track recording unique physical and chemical  properties14,15. This reveals the far-
flung applications of iron oxide particles. Therefore, attempts for the synthesis of Iron oxide nanoparticles are 
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in the forerun. Arularasu et al. 2018 studied the production of  Fe3O4 NPs using aqueous Kappaphycus alvarezii 
(red seaweed). The degradation of textile waste by catalytic activity was effective using NPs formed by a reduc-
tion reaction and also exhibited antibacterial  activity16. Lakshmi Pravallika et al., 2019 synthesized iron oxide 
nanoparticles using ethanolic extract of Centella asiatica (CAIONPs) by reducing ferrous and ferric chlorides 
which were administered to Swiss albino mice with a dosage of 2000 mg/kg body weight. Nil effects of the NPs 
on various tissues were revealed by histopathological studies, indicating that green synthesized NPs were safe for 
use in biomedical and drug delivery  systems17. In a similar study by Izadiyan et al., 2018, iron oxide nanoparticles 
were synthesized using Juglans regia green husk extract by co-precipitation method of  FeCl3 and  FeCl2 and the 
cytotoxicity tests were performed on mouse embryonic fibroblast cell lines and human colorectal adenocarcinoma 
cell lines by MTT assay which had no toxic effect on both normal and cancerous cell  lines12. Khatami et al., 2019 
synthesized super-paramagnetic iron oxide nanoparticles (SPIONs) produced using a zero-calorie stevia extract 
which acts as both reducing and stabilizing agents. The antioxidant effect studied by DPPH assay indicated the 
activity of produced NPs in the acceptable  range18. Table 1 reports the comparative studies of the synthesis of iron 
oxide nanoparticles from various sources reported in the literature with the present work. Bauhinia tomentosa 
is a legume species in the Fabaceae family, rich in phytochemicals such as flavonoids, quinones, tannins, etc. act 
as stabilizing and reducing agents in NPs production. It plays a significant role in the formation, capping, and 
stabilization of Iron (II) oxide nanoparticles due to the presence of phytochemical and bioactive compounds. 
The process was demanding due to the presence of polyphenols and antioxidants which shield the NPs from 
oxidation and  aggregation19.

In the case of 1,3 diolein, the enzymatic approach was employed due to environmental pleasantness, safety, 
and mild reaction condition with improved yield. Conventionally, diacylglycerol was used to reduce the accumu-
lation of body fat. The green synthesis of nanoparticles for enzyme immobilization has benefits to instigate the 
enhancement of the greater surface area, lower diffusion limitation, particle mobility, thermal stability, storage 
capacity, modulation of catalytic activity, cost-effective, low toxicity, effective preparation, and availability, and 
high productivity in terms of binding efficiency with enzymes. In the present work, to maximize the diolein yield 
and to improve the operational stability of the enzyme, a new synthesis was  employed20,21. This work emphasizes 
on green route for the synthesis of  Fe2O3 (Iron (III) oxide) nanoparticles produced from Bauhinia tomentosa leaf 
extract and to synthesize 1,3 diolein using immobilized PPL.

Materials and methods
Materials. The porcine pancreatic lipase (PPL) 5 (Type II, 100–500 U/mg protein using olive oil) was pur-
chased from Sigma Aldrich Co. India. For enzyme activity analysis via the olive oil emulsion method, chemicals 
were obtained from Hi-Media Laboratories: dipotassium hydrogen Phosphate and Potassium dihydrogen phos-
phate (preparation of pH 7 buffer), gum arabic, pure olive oil, and Sodium hydroxide. Chromatographically 
pure monoolein and oleic acid were purchased from Sigma—Aldrich (Shanghai-china). Bradford reagent was 
prepared using Coomassie brilliant blue, ethanol, phosphoric acid (85% pure), and glycerol. Biosynthetic Iron 
(II) oxide nanoparticles were used as a support for immobilization which was prepared using leaf extract and 

Table 1.  The comparison of iron oxide nanoparticles from various sources using various methodology 
reported in the literature with the present work.

Source Type of nanoparticles Process parameters Enzyme immobilized Application References

Bauhinia tomentosa leaves Iron oxide
0.01 M  FeCl3 and Bauhinia 
tomentosa leaves extract in 
1:1 ratio

Porcine pancreatic lipase Synthesis of 1, 3 diolein Present work

Polymers, inorganic 
materials Silica, Zirconia, MNPs Use of polymers, inorganic 

materials
Lipases, glucosidases, 
cellulase

Biomaterials and biocata-
lysts

Sigyn Bjork Sigurdardóttire-
tal (2018)55

Chemical synthesis using 
 AgNO3

Magnetic gold mesoporous 
silica NPs – Cellulase Biofuels Elaheh Poorakbar et al. 

(2018)56

APTES/glutaraldehyde MNPs – Beta-glucosidase Recoverable biocatalysts Hee Joon Park et al. (2018)57

Nyctanthes arbortristis 
flower extract Iron oxide

1:1 ratio of 0.2–0.5 M  FeSO4 
and Nyctanthes arbortristis 
flower extract

– Anti-microbial Sharma et al.34

J. regia extract Iron oxide 1:1 ratio of J. regia extract 
and  FeCl2 +  FeCl3 solution –

Cytotoxicity studies using 
mouse embryonic cells and 
human adenocarcinoma 
cells

Izadiyan et al.12

Musa ornate sheath extract Iron FeSO4 solution with Musa 
ornate sheath extract – Anti-bacterial Saranya et al. (2017)58

Langenariasicerarialeaf 
extract Iron oxide

0.01 M  FeCl3 and Langena‑
riasiceraria leaf extract in 
1:1 ratio

– Anti-microbial activity Kanagasubbulakshmi et al. 
(2017)59

APTES/glutaraldehyde MNPs – Glucose oxidase Study of the effect of size on 
activity and recovery Hee Joon Park et al. (2011)60

Green tea leaf extract Iron 0.1 M  FeCl3 and green tea 
leaf extract in 2:1 ratio – Degradation of bromothy-

mol blue dye George (2009)61



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8643  | https://doi.org/10.1038/s41598-021-87960-y

www.nature.com/scientificreports/

0.01 M  FeCl3. The leaf from Bauhinia tomentosa plant was used in the present study complies with institutional, 
national, and international guidelines and legislation. Permission to take leaf samples were obtained.

Biosynthesis of  Fe2O3 nanoparticles. The aqueous extract of Bauhinia tomentosa leaves and 0.01  M 
 FeCl3 solution were combined to effectuate the synthesis of iron (II) oxide nanoparticles. The extract was pre-
pared by soaking the leaves in distilled water for 24  h22. The freshly prepared 0.01 M  FeCl3 solution was added 
dropwise to the leaf extract in a 1:1 ratio with continuous stirring. The synthesis of nanoparticles was observed 
with a color change from orangish-brown solution to black precipitate. The solution was centrifuged at 4000 rpm 
for 15 min, followed by washing of pellet with distilled water thrice. The resultant pellet was air-dried in a hot air 
oven at 90ºC for 2 h to obtain black-colored, purified nanoparticles. The powder was then purified by washing 
with  acetone23.

Lipase immobilization. Porcine pancreatic lipase (PPL) was immobilized on the synthesized  Fe2O3 nano-
particles separately by cross-linking. 25 mg of  Fe2O3 was dispersed in 25 mL of potassium phosphate buffer to 
a pH of 7 in two separate flasks. Precisely weighed lipase (25 mg) from both sources was added to the above 
mixture separately (equal concentration of enzyme and nanoparticles: 1 mg/mL). The reaction was set at 35ºC at 
150 rpm for 24 h. Filtration was employed to separate the immobilized lipase. The percentage of immobilization 
and specific enzyme activity was also determined. The enzyme concentration was measured by Bradford  assay24.

Diolein synthesis. The enzymatic esterification of oleic acid and glycerol was done with the support of 
immobilized PPL. The reaction was carried out in a 50 mL flask on a rotary shaker at 200  rpm25. To make up the 
reaction mixture, 1.5 mmol of oleic acid, 0.5 mmol glycerol, 10 mL of t-butanol, and an appropriate amount of 
immobilized lipase was added (15% (wt%) of the substrate). 4 Å molecular sieves were added into the reaction 
mixture to remove the water content. 50 µL of the sample was taken out from the reaction mixture and centri-
fuged to obtain the supernatant and analyzed by  HPLC26. All the experiments were done in triplicates. Overall 
process layout for synthesis of iron oxide nanoparticles from Bauhinia tomentosa and 1, 3 diolein production 
was presented in the Fig. 1.

Analysis of the samples. According  to20,27, external standards of 1-monoolein, 2-monoolein, 1,2-diolein, 
1,3-diolein, and triolein were used to prepare 8 different concentrations of calibration solution. The results were 
examined by Shimadzu 20A HPLC along with an evaporative light scattering detector (ELSD). 2µL of sample 
and 1 mL of acetone was entirely mixed, out of which 20µL of the sample was injected in a chromatographic col-
umn—C18 column (5 µm, 250 mm × 4.6 mm) (Dikma technology, PLATISIL ODS, china). To analyze the reac-
tion mixture, gradient elution with acetonitrile and dichloromethane was used under various reaction condi-
tions mentioned (100/0,0–4 min; 90/10,12–25 min; 70/30, 25–30 min; 20/80, 35–45 min; 100/0, 55–60 min). The 

Figure 1.  Schematic diagram of synthesis of iron oxide nanoparticles from Bauhinia tomentosa and 1, 3 diolein 
production.
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flow rate was maintained at 1.5 mL min−1 , Column temperature at −40 °C, drift pipe temperature at −70 °C, and 
nitrogen pressure was set at 320kpa. The reaction times of 2-monoolein, 1-monoolein, 1,3-diolein, 1,2-diolein 
and triolein were 3.753, 4.534, 23.128, 23.883 and 42.925 min respectively.

Results and discussion
Iron (II) oxide nanoparticles were synthesized using Bauhinia tomentosa leaf extract. Transformation in color 
was observed from an orangish-brown solution to a black precipitate. The nanoparticles were washed with water 
and acetone thrice and dried at 90 ºC in a hot air oven to achieve black-colored purified nanoparticles.

Ferric Chloride solution of 0.01 M concentration gets reduced to Ferric oxide and gets precipitated in the leaf 
extract. This reaction materializes in the company of oxidizing agents like Vitamin  E28. Phytochemicals such as 
flavonoids, quinines, tannins, etc. act as stabilizing agents in nanoparticle production in the presence of a polar 
solvent, water. Phenols and terpenoids may play a significant role in the formation, capping, and stabilization 
of Iron (II) oxide  nanoparticles29. Also, due to Surface Plasmon Resonance, a color change was observed. For 
measuring adsorption of material onto planar metal or the surface of metal NPs many standard tools are formed 
based on  SPR30.

Characterization of  Fe2O3 nanoparticles. UV–vis spectrometry. UV–Vis Spectrometry has revealed 
the characteristic formation of nanoparticles during color change based on the absorption spectra. A scan-
ning wavelength measurement from 300 to 900 nm was executed to reveal a peak value at 328 nm which indi-
cated the formation of nanoparticles (Fig. 2). A characteristic peak at 328 nm confirmed the formation of  Fe2O3 
 Nanoparticles31.

Fourier transform infrared spectroscopy. FTIR is ascribed to functional groups (=C–H, C=O, N–O, C–O, C–N) 
present in the compound (Fig. 3). FTIR spectroscopic studies confirm the presence of amides, phenols, nitrogen, 
and aromatic compounds that has a strong binding affinity with Fe and thus play a significant role in reduc-
ing and capping ferrous  ions32. The spectrum reveals characteristic peaks at 3385.9   cm−1 stretching to O–H, 
1624.7   cm−1 stretching to N=O, 1172.4   cm−1and 1055.6   cm−1 stretching to O–C, 810.8   cm−1 and 555.7   cm−1 
stretching to Fe–O stretches of  Fe2O3

7. The synthesis of  Fe2O3 nanoparticles extracted from Bauhinia tomentosa 
aqueous leaf extract has been evinced by these chemical groups.
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Figure 2.  UV-V is Spectroscopy of  Fe2O3 Nanoparticles synthesized from Bauhinia tomentosa leaf extract using 
the  FeCl3 solution. The characteristic peak formed at 328 nm shows the formation of nanoparticles.
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The stretching of carbonyl groups in lipase was observed by a broadening of peaks in the range of 
3345  cm−1–3650  cm−1 for both forms of the immobilized formulation. The amplitude of peaks at 3483, 2922, 
1652, and 650  cm−1 increased dramatically, suggesting that lipase was effectively  immobilized33. The peak strength 
of covalently immobilized lipase, on the other hand, decreased (Figure. 3), indicating that the enzyme-nano 
relationship was stable. Because of the pairing of NH-bending with CN stretching, the band based at 1541  cm−1 
was credited to the amide II of enzymes.

Thermogravimetry and differential scanning calorimeter. Mass changes of a sample as a function of temperature 
in scanning mode are examined by TGA (dynamic TGA) (Fig. 4). The physical and chemical properties of mate-
rials, as a function of increasing temperature, can be determined. This decomposition/degradation temperature 
bear witness to mass changes in the materials. The approximate temperature of  Fe2O3s transition of interest 
was found to be around 930 ◦ C. Characterization of coatings on NPs by evolved gas analysis can be achieved 
using TG-DSC techniques. DSC was grounded on the differences in the amount of heat required to increase the 
temperature of the sample. In combination with TGA, it was applied to study melting point, gas transitions, and 
exothermic decompositions. The graph depicts that the decomposition melting of the sample starts at around 
250 ◦ C and ends at about 700 ◦ C revealing that the sample was Iron (II)  oxide34. At a temperature of around 
180 °C, the TGA curve showed a weight loss of around 3.0446 percent in the study. This weight loss may be 
attributed to the removal of water molecules removed by nanoparticles from the atmosphere, during which the 
sample weight is almost stable, indicating the sample’s thermal stability.

Zeta potential and field emission‑scanning electron microscopy. Size is an important factor to define NPs 
although considerable debate exists on the size threshold to distinguish NPs from bulk materials. The particles 
were dispersed in water with a dielectric constant of 78.5, a refractive index of 1.33, and a viscosity of 0.887  cP35. 
A potential of −16 mV was found which was a good manifestation for nanoparticle formation. The potential 
difference between the EDL (electric double layer) of electrophoretically mobile particles and the layer of disper-
sant around them at the slipping plane is reflected by the zeta potential (Fig. 5A). It is also termed electrokinetic 
potential, the potential at the slipping/shear plane of a colloid particle moving under the electric field. Therefore, 
the particle size distribution and magnitude of electric charge at the particle surface are  determined36. Also, a 
zeta sizer was employed to determine the size of the particles. The size distribution was scanned by intensity 
(Fig. 5B). However, due to differences in dispersion co-efficient and cluster formation, it did not provide accurate 
results. The FE-SEM image revealed the size of the synthesized nanoparticles (Fig. 6). Thus, eminently meticu-
lous results were provided by FE-SEM. The average size was observed to be around 70 nm which is acceptable.

X‑ray diffraction. X-Ray Diffraction (XRD) was performed to understand the crystalline structure of the nano-
particles. The sample consisting of fine grains of crystalline material to be studied was usually in powdered 
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 form37 (Fig. 7). At a theta scale value of 27.4, the peak intensity was found to be the highest. The intensity count 
and percent intensity were found to be 169 and 100%, respectively. The JCPDS file 019–0629 closely matched 
with the XRD pattern observed in this study showing the characteristic peaks at 2θ of 21.6, 25.77, 31.06, 40.68, 
45.45, 53.49, 56.44, and 61.11 corresponding to the face-centered cubic phase of (211), (220), (202), (213), (431), 
(512), (150) and (613) planes, respectively. The presence of strong and sharp peaks of  Fe2O3 crystals is attributed 
to the highly crystalline nature. The characteristic peaks at 2θ of 70.91 correspond to the crystal planes of (620) 
of crystalline  Fe3O4-NPs, respectively. Material match analysis revealed the presence of  Fe2O3 at higher amounts 
in the sample with trace amounts of  Fe3O4. This indicated the formation of Iron (II) oxide.

Brunauer–Emmett–Teller (BET) surface area analysis. N2 adsorption/desorption isotherms at liquid nitrogen 
temperature were used to determine the precise surface area (Brunauer–Emmett–Teller, BET) pore size and pore 
volume of the samples. Figure 8 displays the outcomes of the BET  analysis38. The synthesized iron oxide nan-
oparticles display TYPE IV adsorption–desorption isotherm. The prepared nanoparticles showed Brunauer–
Emmett–Teller (BET) surface area, pore-volume, and diameter were calculated to be 48.8  m2/g with 0.096  cm3/g 
and 7.9 nm respectively. From the adsorption–desorption isotherm, it can be noticed that around 62.04  cm3/g 
of nitrogen was adsorbed at maximum relative pressure (P/P0) of  139. The hysteresis pattern shows that the con-
densation occurred approximately from 0.4 to 0.9 (P/P0) (Fig. 8). These findings suggest that these particles have 
a large surface area and are nanometer in size. In contrast to the other samples, the iron oxide Np sample had 
the highest surface area and had a very small particle size along with a strong adsorption property, according to 
the BET  report40.

Vibrating sample magnetometer (VSM) analysis. A vibrating sample magnetometer was used to test the mag-
netic properties of the iron oxide nanoparticles, at room temperature, the hysteresis loops of the bare  Fe3O4 
and iron coated NPs are shown in Fig. 941. As the magnetic field is withdrawn from both prepared NPs, the 
magnetization decreases from a plateau state to zero. This action clearly shows superparamagnetic  behavior42. 
The bare  Fe3O4 and nanoparticles have a saturation magnetization (Ms) of 87.8 emu/g and coercivity (Ce) of 
4.09 Oe, suggesting that they have strong magnetic properties. Similarly, iron-oxide nanoparticles show (Ms) 
of 55.83 emu/g and (Ce) of 1.02 Oe. It can also be categorized as a soft magnet material category due to its low 
coercivity value. These findings indicate that our synthesized nanoparticles exhibit a suitable behavior and can 
be used for enzyme immobilization and ease of recovery after the completion of the reaction.
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Figure 6.  Scanning electron microscope (SEM) image of synthesized  Fe2O3 nanoparticle.
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Figure 7.  X-ray diffraction (XRD) pattern for synthesized iron oxide  (Fe2O3) nanoparticle. The figure 
illustrated that the peak intensity was found to be highest at a theta scale value of 27.4.

Figure 8.  N2 adsorption–desorption graph with a variation of pore diameter with respect to dV/dlog(D).
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Determination of enzyme activity. The percentage immobilization of PPL on iron-oxide nanoparticles 
was found to be 70.1%. The enzyme activity of PPL covalently immobilized on the  Fe2O3 matrix was calculated 
to be 266 U/mL43. Either by covalent bonding or adsorption, the interaction of enzymes with the NPs surface 
provides the inkling of the operational stability of  enzymes24. However, a conclusion has been derived by the 
higher enzyme activity of PPL immobilized on  Fe2O3 nanoparticles that this matrix could be more competi-
tive compared to other matrices. The catalyst turnover number (TON) and the turnover frequency (TOF) for 
the immobilized enzyme on iron (II) oxide nanoparticles for the synthesis of 1, 3 diolein are 1.17 mol/g and 
0.0039 mol/g.min.

Effect of various reaction parameters. Finding the effect of various parameters that affect the diolein 
yield based on reaction time, temperature, substrate molar ratio, and reusability of the immobilized enzyme has 
been pivoted in this study (Fig. 10). An indispensable role is played by the reaction temperature in biocatalysts. 
Higher temperature results in the deactivation of the enzyme. This work entails five different temperatures (40, 
45, 50, 55, 60, and 65 °C) and was ascertained to observe the diolein yield. At 55 ◦ C, diolein yield reaches the 
highest value of 92.5%. More than that range, the yield and initial reaction rate of diolein get decreased and 
simultaneously acyl migration will take place which results in triolein formation and diolein yield reaches opti-
mum value after 7 h of reaction time.

To investigate the optimum level of the substrate molar ratio based on the yield of 1,3 diolein, different ranges 
were taken to experiment (2:1, 2.5:1, 3:1, 3.5:1, and 4:1). The diolein yield will not be tremendously affected by 
an escalation in the molar ratio of oleic acid to glycerol. But higher concentrations of oleic acid will simultane-
ously diminish the yield of 1,3 diolein formation. Therefore, based on molar ratios, no significant difference was 
observed in the diolein yield. And from this work, it was observed that the substrate molar ratio of oleic acid 
to glycerol (2.5:1) shows the highest yield of diolein as 94%. Cost efficiency is imperatively influenced by the 
reusability of the immobilized  enzyme44. The operational stability of immobilized lipase was carried out under 
optimized conditions. From the results, it was observed that 90% of the original activity was maintained until 
10 cycles and in this case, a maximum yield of 1,3 diolein was  achieved45. Therefore, the catalytic activity of the 
enzyme was not lost, and also it was proved how effectively the enzyme binds to the matrix. From the above 
results, it was clearly shown that  Fe2O3 nanoparticles were an eminent matrix for lipase (PPL) immobilization. 
Therefore, the immobilization of enzymes on a solid support such as nanoparticles is more advantageous due to 
improved stability, enhanced thermal efficiency and pH, increased enzyme loading, and reusability with simple 
handling and separation making the process feasible with maximal yield. Table 2 represents the detailed com-
parison studies reported in the literature for the synthesis of 1,3 diolein using lipase catalysis with the present 
work. It was found that a higher yield of 1,3 diolein was obtained with the lipase immobilization on the iron 
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oxide nanoparticles and also the immobilized enzyme eases the process of recovery and reuse. This reduces the 
overall production cost of the 1,3 diolein synthesis.

Conclusion
This work highlighted the green synthesis of  Fe2O3 nanoparticles from Bauhinia tomentosa leaf extract and it 
was efficaciously implemented for lipase immobilization. Moreover, it was the pragmatic approach for enhancing 
the synthesis of 1,3-diolein by the esterification of oleic acid and glycerol. The phenolic compounds present in 
Bauhinia leaf extract play a vital role in boosting up the stability of  Fe2O3 nanoparticles. The distinct charac-
teristics, size, and shape of  Fe2O3 nanoparticles were identified using FTIR and SEM analysis. XRD, TGA, and 
UV–Vis spectroscopic techniques were used to recognize the crystallographic structure, thermal stability, and 
optical behavior of the green synthesized nanoparticles were studied. Further, due to the high stability, effec-
tiveness, enzyme activity, greater safety, low energy consumption, and high product quality of the immobilized 
lipase, it was employed for 1,3-diolein synthesis which will gain momentum for various applications. Finally, 
this greener optimistic work will aid in the large-scale synthesis of 1,3 diolein using the effective binding of 
immobilized lipase.
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