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Abstract: Colorectal cancer (CRC) is the third most common malignant tumor in the world 
and the second leading cause of cancer-related deaths, with the liver as the most common site 
of distant metastasis. The prognosis of CRC with liver metastasis is poor, and most patients 
cannot undergo surgery. In addition, conventional antitumor approaches such as chemother-
apy, radiotherapy, targeted therapy, and surgery result in unsatisfactory outcomes. In recent 
years, immunotherapy has shown good prospects in the treatment of assorted tumors by 
enhancing the host’s antitumor immune function, and it may become a new effective 
treatment for liver metastasis of CRC. However, challenges remain in applying immunother-
apy to CRC with liver metastasis. This review examines how the microenvironment and 
immunosuppressive landscape of the liver favor tumor progression. It also highlights the 
latest research advances in immunotherapy for colorectal liver metastasis and identifies 
immunotherapy as a treatment regimen with a promising future in clinical applications. 
Keywords: immunotherapy, colorectal cancer, liver metastasis, tumor immune 
microenvironment, immune checkpoint inhibitors, deficient DNA mismatch repair

Introduction
Colorectal cancer (CRC) ranked third with 1.8 million new cases (10.2%), 
and second (9.2%) in mortality with an estimated 881,000 deaths recorded world-
wide in 2018.1 Due to its atypical clinical symptoms in the early stages, CRC is 
often ignored, leading to a delay in diagnosis and treatment.2 Considering that the 
liver is the main filter for intestinal venous drainage, CRC patients often develop 
colorectal liver metastases (CLM).3 Synchronous CLM occurs in approximately 
15% of patients at the initiation of therapy, and approximately 50% of patients 
during follow-up.4 Surgical resection is the standard treatment for patients with 
limited disease CLM, but most patients are not suitable for surgery because of 
extensive disease, tumor multiplicities, concomitant major systemic diseases, or 
poor hepatic functional reserve.5 Only 20–30% of patients have operable tumors 
with a chance of cure.6,7 In untreated CLM, the median survival duration is 7.5 
months, and the 5-year survival rate is <1%. Even after surgery, the 5-year survival 
rate is between 20 and 45%, with a recurrence rate of 60%.8

Patients with CLM who are not eligible for resection have a poor clinical 
outcome, highlighting the need for novel therapeutic strategies. The combination 
of radiotherapy, chemotherapy, and traditional Chinese medicine has improved the 
prognosis and prolonged the median survival rate in these patients.9 Although the 
introduction of cytotoxic agents have improved the survival in CRC patients and 
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provided good symptomatic relief, the prognosis in the 
setting of metastatic CRC (mCRC) remains poor.10 

A systematic review of combination treatment (5-fluorour-
acil, oxaliplatin, and irinotecan) for mCRC led to 
a conclusion that conventional chemotherapeutic agents 
had limited utility.11 Patients with mCRC who were admi-
nistered this triple chemotherapy regimen in conjunction 
with bevacizumab had a 3-year overall survival of 
approximately 40%.12 Therefore, there is a dilemma on 
choosing the best treatment regimen among the currently 
available conventional therapeutic strategies that can 
improve the unfavorable long-term outcomes in patients 
with mCRC.

In recent years, immunotherapy has achieved a certain 
degree of success in the treatment of advanced solid 
tumors.13 The purpose of immunotherapy is to enhance the 
anti-tumor effect of patient’s own immune system by aug-
menting the innate immunity and antitumor function of 
T cells, and by targeting immunosuppressive tumor- 
associated macrophages.14 Immunotherapies include 
immune checkpoint inhibitors (ICIs); cancer vaccines; and 
other biotherapeutics such as chimeric antigen receptor 
(CAR) T cells. These therapies are effective in treating 
a variety of cancers,15 and mCRC, especially mCRC with 
deficient DNA mismatch repair (dMMR) genes.16 DNA 
mismatch repair (MMR) is an evolutionarily conserved 
DNA excision-resynthesis that preserves genomic integrity 
by correcting mismatched bases that have evaded the proof-
reading activity of DNA polymerase during DNA 
replication.17 Therefore, when this system is deficient, repli-
cation errors, including frameshift mutations and single- 
nucleotide variants accumulate,18 resulting in the production 
of microsatellite instability (MSI).19 Mechanistically, dMMR 
contributes to an accumulation of numerous genomic muta-
tions, which generates multiple neoantigens and obvious 
response to immune therapy.18,20 It has been reported that 
reported that patients with dMMR colon cancer showed 
a stronger response to immunotherapy, including regimes 
containing programmed cell death 1 (PD-1) plus cytotoxic 
T-lymphocyte-associated antigen 4 (CTLA-4) inhibitors, 
than those with MMR-proficient (pMMR) tumors.21 The 
US Food and Drug Administration (FDA) approved PD-1 
antibodies for CRC with high MSI or dMMR levels, includ-
ing pembrolizumab and nivolumab.22 In May 2017, the FDA 
further approved pembrolizumab for patients with microsa-
tellite instability-high (MSI-H) or those with dMMR meta-
static solid tumors after the failure of the initial treatment.23

However, immunotherapy provides limited or no clin-
ical benefits to most patients owing to the inhibitory 
impact of tumor immune microenvironment (TME).24 

Some patients fail to develop an initial response to treat-
ment with ICIs. Although the mechanism of drug resis-
tance has been proposed to be due to functional changes in 
many signaling pathways, this process is still not fully 
understood. Currently known mechanisms of tumor cells 
evading immune surveillance include the destruction of 
the original processing mechanism of the antigen presen-
tation machinery (APM) or the expression of HLA com-
plexes (HLA class I heavy chains or 2-microglobulin 
[B2M]), resulting in defects in antigen processing. 
Studies have shown that MSI tumors with B2M mutations 
in CRC patients were resistant to anti-PD-1 monoclonal 
antibodies. Mutations in the JAK1 and JAK2 genes are 
another mechanism that leads to immune evasion. These 
genes encode kinases downstream of the IFN-γ receptor 
and are necessary to mediate the IFN-γ signaling pathway. 
Mutations in these genes were found in CRC patients 
resistant to PD-1 inhibitors.25,26 There is also a view that 
resistance to immunotherapy is a special form of Darwin’s 
natural selection, which originated from the selection of 
genetic or epigenetic features in tumor masses before 
therapeutic intervention. The main driver of tumor cell 
immune resistance mutations generated by this mechanism 
appears to be the genomic instability in transformed 
cells.27 Here, we will discuss the emerging role and poten-
tial challenges of immunotherapies in patients with CLM.

Biology of the Metastatic Colorectal 
Cancer
Colorectal carcinogenesis is a process that is accompanied 
by high heterogeneity and accumulation of somatic mole-
cular mutations, which is impacted by several factors, 
including exposures to intestinal pathogens and host 
immunity.28 As previously noted, a major determinant of 
CRC-related morbidity and mortality is distant 
metastasis,29 with liver metastasis being the most common 
metastatic event and a dominant factor influencing survi-
val. Immune escape is responsible for impairment of anti-
tumor immunity during the initiation and metastasis in 
CRC.30 The tumor immune microenvironment (TME) con-
sists of the neighboring tissues that surround the tumor, 
which include blood vessels, immune cells, fibroblasts, the 
extracellular matrix, and signaling molecules. The syner-
gistic effect of malignant cells, immune and non-immune 
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stromal cells together with soluble and insoluble factors in 
TME is the basis for the progression of CRC. The TME 
can trigger CRC progression by either recruiting immuno-
suppressive immune cells, inducing other immunosuppres-
sive mechanisms, or inducing chronic inflammation.30,31 It 
has been proposed that metastatic spread of CRC can be 
mediated by multiple interactive mechanisms in the TME, 
which includes acquisition of aberrant immune phenotypes 
(NT5E/CD73, CD68, and CD163) via generation of 
immunosuppressive mediators.30

Desmoplastic, pushing, replacement, and two rarer 
patterns (sinusoidal and portal) are the histologic growth 
patterns (HGPs) in liver metastases. The different inter-
faces between tumor cells and adjacent normal liver par-
enchyma define the HGPs.32 A recent study showed high 
HGP concordance within metastasis (95%) when classi-
fying HGPs as desmoplastic (dHGP) or non-desmoplastic 
(non-dHGP).33 The dHGP is characterized by angiogen-
esis and a peripheral fibrotic rim, whereas non-angiogenic 
HGP is characterized by the co-option of endogenous 
sinusoidal hepatic vasculature. The main characteristics 
of tumors with dHGP include angiogenesis and the fibro-
tic reaction (desmoplasia) that surround the metastases.34 

Another critical step in tumor metastasis and invasion is 
thought to be through epithelial-mesenchymal transition 
(EMT).35 EMT is a developmental program in cancer 
cells that can activate cancer cells for invasion and metas-
tasis. During the EMT process, epithelial cells undergo 
morphological changes, leading to an aggressive migra-
tion phenotype that is characteristic of mesenchymal 
cells.36 CRC characterized by EMT is known to have an 
increased vascular invasion and metastasis and a poor 
prognosis.35

Additionally, the expression level of PD-1 in CD8+ 
T cells in CRC specimens TME is higher than that in 
CD8+ T cells in tumor-free lymph nodes.37 Therefore, 
the PD-1/programmed death-ligand 1 (PD-L1) inhibitors 
have become a treatment option for CRC.37 Furthermore, 
an increasing number of clinical data have demonstrated 
that immune cell populations can influence the immune 
response and clinical outcomes in CLM patients.38 For 
example, the progression of CRC is closely related to 
tumor-infiltrating lymphocytes (TILs). Compared with 
the widely used tumor staging and lymph node metastasis, 
TILs can provide more accurate clinical predictions.39 

A greater density of TILs in the primary tumor was corre-
lated with better survival40 in CRC patients, particularly in 
those with dMMR tumors.41

Additionally, the formation of a pre-metastasis niche 
provides a supporting microenvironment for tumor cells to 
spread from the outside. The Features of the pre-metastasis 
niche include inflammation, immunosuppression, angio-
genesis, etc.42 Tumor-derived secreted factors, extracellular 
vesicles, bone marrow-derived cells, immunosuppressive 
cells, and host stromal cells constitute the pre-metastasis 
niche. Tumor exosomes can inhibit the recruitment of 
immune cells, increase angiogenesis in the pre-metastatic 
niche, and increase vascular permeability. Exosomes 
secreted by CRC cells promote angiogenesis and destroy 
vascular endothelial cell connections.43 Recent evidence 
confirmed that miR-19a can inhibit CRC angiogenesis by 
targeting KRAS and VEGFA; exosomes secreted by CRC 
cells can trigger the downstream regulator PEAK1 of the 
EGFR/KRAS pathway to reduce cell proliferation, migra-
tion, and invasion.44 In CRC, tumor-derived exosomes 
facilitate the creation of pre-metastatic niche by modulating 
immune surveillance. Moreover, the liver inflammation 
microenvironment can be induced by CRC exosomes. 
Exosomes activate a pro-inflammatory phenotype in macro-
phages, which form an inflammatory pre-metastatic niche 
and promote liver metastasis.45 Although the important role 
of pre-metastasis niche formation in CRC metastasis has 
been confirmed by many studies, the mechanism of CRC 
cells, inducing pre-metastasis niche formation, still needs 
further research.42

The immune system plays an essential role in the occur-
rence of tumors, suggesting a promising healing strategy for 
treating cancers, including CRC.46 The clinical outcomes in all 
solid tumors, including CRC, are mainly impacted by the 
host’s immune system.47 A complicated interaction exists 
between immune cells and malignant cells within the TME 
of mCRC. The immune infiltrating cells in mCRC constitute 
both immune-supportive and immunosuppressive cells, and 
their relative ratio impacts the overall immune state of the 
tumor.48 Increased level of immunosuppressive cells, such as 
myeloid derived suppressive cells (MDSCs), T-regulating 
cells (Tregs), type 2 (M2) macrophages, N2 neutrophils, and 
alternative cancer-related cell brands, including reduced anti-
gen presentation, contribute to immunosuppression and even-
tual immune evasion in CRC.49 For example, tumor- 
infiltrating neutrophils suppressed in vitro activated T cell 
proliferation via activation of the TGFβ signaling pathway in 
CRC.50 Notably, neutrophil subsets can have either a protumor 
(N2) or antitumor (N1) phenotype by mediating TGFβ 
signaling.30 Additionally, enhanced tumor invasion and 
growth is induced via MDSCs, extracellular matrix 
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remodeling, and angiogenesis mediated by M2 tumor- 
associated macrophages (M2-TAMs) in CRC.30 Collectively, 
all of these cells are linked to cancer progression and unfavor-
able prognosis.51

Based on the genetic alterations, CRC can be divided 
into two clinically relevant subgroups: pMMR/microsatel-
lite-stable (MSS) and dMMR/MSI.52 In CRC, MMR defi-
ciency leads to the accumulation of numerous insertions/ 
deletions at DNA microsatellites, the repetitive DNA 
sequences with repeated units of 1–6 base pairs. This defect 
and the resulting MSI lead to genomic mutations that exhibit 
high levels of immunogenic tumor neoantigens targeted by 
the immune system.53 This is linked to a high mutational 
burden in MSI cancers, the mutation rate of MSI is usually 
10–50 times higher than that of MSS cancer.54 

Approximately 15% of CRC cases display MSI.55 DMMR 
or MSI-H CRC are more responsive to ICIs because there 
are more somatic mutations; therefore, these patients experi-
ence more clinical benefit.22,56,57 MSI-H tumors also possess 
a high level of TILs.58 This is likely because MMR defects 
produce frame shift mutations, which result in the synthesis 
of truncated proteins contributing to antitumor adaptive 
immunity mediated by T cells, and this leads to a better 
response to immunotherapies and better prognosis.59 

Therefore, the altered mutation spectrum and molecular 

heterogeneity can be considered for therapy modification 
and patient stratification to avoid treatment-related toxicities.

However, the biological properties of liver metastases 
are reported to be distinct from those of the primary color-
ectal tumor.60 CLM, a selective, non-random process, con-
stitutes multiple steps, including local remodeling of the 
liver microenvironment.44 MCRC cells enter the circula-
tion by undergoing EMT to evade the host’s defense 
system, survive in the blood circulation, and then dissemi-
nate and grow in the liver.61 Immune dysfunction and 
immune evasion are the key mechanisms of CRC tumor-
igenesis and response to therapy.62

Therefore, from the available evidence, it can be con-
cluded that the recruitment of immunosuppressive cells 
and other mechanisms of CRC tumorigenesis are pivotal 
to remodeling the TME and programming malignant cells 
toward a metastatic phenotype (Figure 1). This emphasizes 
the importance of the host CRC microenvironment in liver 
metastasis and highlights the potential of immunotherapy, 
including ICIs, in CRC, especially in dMMR CRC.

Immunotherapy as an Emerging 
Treatment for Cancer
Tumor cells have the capacity of growing exponentially 
and spreading rapidly, partly through inhibiting, evading, 

Figure 1 The immunosuppressive microenvironment of the liver and colorectal cancer contributes to liver metastasis and poor survival in colorectal cancer, which can be 
treated using immunotherapy. 
Abbreviations: CAFs, cancer-associated fibroblasts; CAR-T, chimeric antigen receptor T cell; CRC, colorectal cancer; EMT, epithelial-to-mesenchymal transition; M2- 
TAMs, M2-type tumor-associated macrophages; TANs, tumor-associated neutrophils; TME, tumor immune microenvironment.
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and exploiting the host immunity.63 In the recent few 
years, immunotherapy has shown impressive efficacy and 
has revolutionized the therapeutic landscape of multiple 
malignancies by strengthening immune responses.64 

Unlike conventional cancer therapies, immunotherapy 
potentiates the patient’s immune system or modulates the 
TME instead of directly targeting tumor cells.13 Malignant 
cells can escape the antitumor immunity; therefore, the 
major aim of immunotherapy, such as ICIs, is to block 
the immune evasion mechanisms of tumor cells,65 thereby 
suppressing tumor progression, relapse, and metastasis.

PD-1 and CTLA-4 are receptors that inhibit T cell 
responses to maintain peripheral tolerance, thereby permit-
ting the tumor cells to grow rather than being eliminated 
by the immune system. ICIs can potentiate anticancer 
immune responses via suppression of the inhibitory recep-
tors expressed on T lymphocytes and on the surface of 
malignant cells (PD-L1), including CRC cells.66 PD-L1 
interacts with PD-1 to induce rapid phosphorylation of 
SHP-1 and SHP-2 to exert an inhibitory effect.15 ICIs are 
the antibodies against CTLA-4, PD-1, or PD-L1 that can 
restore antitumor immune responses, leading to impressive 
clinical responses in various cancers.67,68 The most suc-
cessful immunotherapeutic strategy is blocking the pD-1/ 
PD-L1,69 and this is linked to strong clinical responses in 
many cancers, such as skin carcinomas, head and neck 
carcinoma, advanced non-small cell lung cancer, and 
renal cell carcinoma.70 CTLA-4 modulates T cell function 
by competing for shared ligands with CD28 receptors 
expressed by both CD4+ and CD8+ T cells. Accordingly, 
CTLA-4 blockade by anti-CTLA-4 antibodies can render 
CD28 ligands more available, permitting the activation of 
effector T cells and suppression the Tregs that modulate 
homeostasis,71 thereby inhibiting tumor progression.72

It has been confirmed that higher levels of lymphocyte 
activation gene-3 (LAG-3), T cell immunoglobulin mucin- 
3 (TIM-3), and T cell immunoreceptors with Ig and ITIM 
domains (TIGIT) were expressed in colorectal tumor 
tissues.73 Therefore, they are potential therapeutic targets 
for immune-mediated therapy because of their important 
role in tumor immune evasion.73 They are highly 
expressed in T cells that are stimulated by persistent 
antigens.74 TIM-3 is considered to be a key immune 
checkpoint for regulating T cell responses. The expression 
of TIM-3 on Tregs can form an immunosuppressive tumor 
microenvironment and promote immune evasion and 
tumor progression. TIM-3 in colorectal cancer tissues is 
significantly related to tumor lymph node/distant 

metastasis. The expression of TIM-3 in CRC TME pre-
dicts T cell failure and promotes tumor metastasis. 
Accurate characterization of TIM-3+ T cells should con-
tribute to specific targeted therapy, enhance anti-tumor 
immunity, and improve clinical response.75 The prolifera-
tion and invasion of CRC cells are directly related to 
TIM-3.76

LAG-3 is another important immune checkpoint of the 
immunoglobulin superfamily. It is expressed in a variety 
of immune cells and inhibits the proliferation and activa-
tion of T cells. It encodes a surface molecule that is 
selectively upregulated in Treg and is a key regulator 
that controls the maximum Treg activity.77 LAG-3 binds 
to a major histocompatibility complex II (MHC class II) 
and causes a decrease in CD4+ T cell activity.78 Many 
preclinical studies have confirmed that LAG-3-mediated 
signaling led to cytotoxic CD8+ T cells exhaustion. PD-1/ 
PD-L1 treatment can activate LAG3 block and restore 
anti-tumor immunity.79 In the colorectal adenocarcinoma 
model, the combination of anti-PD-L1 and anti-TIM-3 can 
enhance the anti-tumor activity of T cells. Similarly, in the 
MC38 colorectal adenocarcinoma model, the combination 
of anti-PD-1 and anti-LAG3 antibodies inhibited tumor 
advancement. Therefore, treatment regimens targeting 
LAG-3 may benefit patients with CRC.80

The inhibitory receptor TIGIT is a new target for 
immunotherapy. It is expressed in immune cells in color-
ectal cancer, including natural killer (NK) cells and CD8+ 
TILs.81 TIGHT can inhibit NK cells and effector T cells, 
and also inhibit the immune response by promoting 
Treg.82 The combined effect of anti-TIGIT antibodies 
and ICIs can enhance the function of T cells in tumors, 
thereby promoting tumor clearance. Many clinical studies 
are currently investigating the therapeutic effects of TIGIT 
block alone or in combination with PD-1 on various 
cancers.83 Blocking TIGIT in NK cells can restore the 
NK cells’ powerful effect in vivo and reverse their func-
tional failure.84

The response rates to anti-PD-1/PD-L1 antibodies and 
anti-CTLA-4 antibodies in CRC patients were far from 
satisfactory. However, these new-generation immune 
checkpoints are promising therapeutic targets for clinical 
application.85

Adoptive T cell therapy (ACT) is applied to anti-tumor 
therapy through the treatment of transferred T cells.86 This 
process includes isolation of TILs with antitumor activity, 
followed with in vitro extensive expansion, activation, and 
subsequent administration to the patients.87 In an 
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adaptation of this method, T cells with genetically engi-
neered neoantigen-reactive T cell receptors (TCRs) were 
generated to enhance the efficiency of this strategy.88 The 
T cells used for ACT can be endogenous CD8+ T cells 
isolated from TILs or autologous circulating CD8+ T cells 
with genetically engineered antigen receptors.89 TILs, 
a crucial component of the TME, have been reported to 
be related to therapeutic responses and clinical 
outcomes.90 TILs capable of recognizing tumor antigens 
are responsible for the highly specific antitumor immune 
response. TILs are also less toxic than TCR-modified 
T cells or CAR-T cells. Moreover, TILs have heteroge-
neous specificity, indicating a pivotal advantage for coun-
teracting immune escape.63 Therefore, TILs can function 
as an ideal source of tumor-reactive TCRs for personalized 
cancer immunotherapy and can also act as vehicles for 
ACT therapies and TCR gene therapies.91 Using TILs in 
ACT correlated with favorable overall response rates and 
sustained remission.92 In addition, immune therapies tar-
geting toll-like receptors exhibited antitumor activity in 
CRC via activation of anticancer immunity or suppression 
of oncogenic signaling pathways.93

The use of CAR-T cells as an ACT method, or obtain-
ing antigen-specific T cells through genetic engineering,94 

holds an edge over the previous approaches using these 
modifications.87 CAR-T cells have shown promising cura-
tive effect, especially in hematological malignancies.95 

CAR-T therapy has been approved in patients harboring 
B cell malignancies,96 and the FDA recently approved 
anti-CD19 targeting CAR-T cell therapy for both acute 
lymphoblastic leukemia and diffuse large B cell 
lymphoma.97 The capacity of CAR-T cells, including 
their improved expansion to tumor loci, long-lasting 
in vivo persistence, and synergy with the endogenous 
immune response, may permit this living, replicating ther-
apy to trigger prolonged antitumor control in patients.98 

Outside of the hematological malignancies, the therapeutic 
potential of CAR-T cells in solid cancers has recently been 
confirmed. However, further research is required to thor-
oughly utilize CAR-T cells in the management of solid 
cancers. Solid cancers are more complicated than hemato-
logical malignancies, which makes it difficult for T cells to 
eradicate tumor masses and maintain lasting regression.99

Recently, CAR-T cell therapy has produced great suc-
cess in the treatment of CLM in preclinical models.100 In 
a carcinoembryonic (CEA) positive mouse model of colon 
cancer, recombinant lentivirus-modified peripheral lym-
phocytes with a chimeric T cell receptor demonstrated 

antitumor efficacy.101 In another CRC mouse model, intra-
peritoneal administration of CAR-T cells in conjunction 
with reduction of MDSCs and Tregs also showed antitu-
mor potential.100 CAR-T cells against other targets, 
CD133, CYAD-101, EGFR, and IL-12, have also demon-
strated potential antitumor activity in preclinical and clin-
ical environments.100 In a Phase I clinical study, CART72 
cells, the first-generation CAR-T cells, showed a good 
safety profile by intravenous injection or direct hepatic 
artery administration in patients with CLM.102 Another 
Phase I study reported that CEA CAR-T cell therapy was 
tolerable and had efficacy in 8 of 10 refractory and 
relapsed CEA-positive patients with CLM.103 However, 
a durable response to CAR-T cell therapy is only observed 
in a small number of CRC cases harboring CLM due to 
limitations such as augmented toxicities, recurrence, lim-
ited trafficking, and an unfavorable TME.

After the first successful attempt at cancer immu-
notherapy by Dr. William Coley, bacillus Calmette- 
Guérin, a live attenuated vaccine against Mycobacterium 
tuberculosis, was evaluated for treatment of bladder 
cancer.104 This encouraged the investigation and approval 
of cancer vaccines as a type of cancer immunotherapy by 
the FDA.105 Cancer vaccines are designed to induce an 
intense immune response to one or more tumor-specific 
antigens, thereby driving antitumor cytotoxicity.106 This is 
achieved by injecting cancer-specific elements into 
patients to stimulate an immune attack that is highly spe-
cific to the patient’s tumor cells.107 Notably, vaccines can 
influence the TME by modifying antigen-specific B and 
T cell responses.65,108 The different impacts of varied 
levels of neoantigen clonality on TME might offer oppor-
tunities to refine the targets used in the vaccines, indicating 
the valuable role of adjuncts in the treatment of CRC.109 

Other potential therapeutic strategies, such as hepatic 
macrophages and Tregs, were also found to be rational 
targets for antitumor intervention.30,110

Despite the establishment of multiple emerging therapeu-
tic strategies in CLM, the lack of consistently successful 
clinical outcomes highlights the necessity of further research 
to develop novel treatment approaches or enhance the effi-
cacy of existing strategies to improve clinical benefits.

The Hepatic Tumor 
Microenvironment
A tumor is a complex tissue constituting tumor cells and 
non-malignant components such as stromal fibroblasts, 
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inflammatory cells, vasculature, normal epithelia, extracel-
lular matrices and secreted factors; all of these are 
considered to be the TME.111 In the TME of the liver, non- 
malignant cells can promote immunosuppression and favor 
tumor growth by contributing to proliferation, invasion, 
migration, and metastasis of malignant cells;112 that is, 
the liver is a unique organ in which a characteristic TME 
facilitates the capability of cancer cells to evade natural 
host defenses and augments their ability to grow and 
migrate, contributing to a skew toward tolerance.113 The 
quantity and differentiation of infiltrated immune cells in 
the TME, especially immunosuppressive cells,114 is clo-
sely associated with tumorigenesis and metastasis, as well 
as the cellular response to therapy.115 Eynde and his col-
leagues noted that the densities of T/B cell infiltration 
differed in 603 distinct CLMs from the same case,116 

suggesting diverse patterns of genetic variations within 
these metastatic sites. With the increasingly wide utiliza-
tion of immunotherapy, including ICIs, assessing the het-
erogeneity of the TME landscape and remodeling the TME 
have emerged as promising avenues to improve treatment 
efficiency and patient prognosis.117 Furthermore, lympho-
cyte infiltration and plasma cell infiltration are linked to 
prolonged patient survival in CLM.118,119

Several key factors contribute to the extravasation of 
CRC cells into the liver.120 First, the blood circulation 
system in the liver is complicated and enriched. For exam-
ple, CRC cells metastasize to the liver through the portal 
circulation, which accounts for 75% of the blood flow in 
the liver.121 Simultaneously, the slow microcirculation in 
the hepatic sinusoidal vessels permits retention of malig-
nant cells in the liver. Second, the lack of a basement 
membrane in the liver endothelium allows cancer cells to 
efficiently attach to microvascular endothelium for devel-
oping micrometastases. Finally, high levels of some sur-
face molecules expressed on liver-resident cells contribute 
to malignant cell migration from the vascular lumen into 
the space of Disse.

The cell types in tumors mainly include cancer cells, 
endothelial cells, hepatic stellate cells, mesenchymal stem 
cells, cancer-related stromal fibroblasts, and immune 
cells.122,123 Infiltration of immune cells, including macro-
phages, monocytes, lymphocytes, NK cells, and dendritic 
cells (DCs), into the tumor tissue at early stages of tumor 
progression is essential for targeting cancer. However, the 
antitumoral immune effects could be counteracted by the 
action of immunosuppressive cells within the developing 

TME, including MDSCs, Tregs, tumor-associated neutro-
phils, cancer-associated fibroblasts, and M2-TAMs.112,122

The hepatic microenvironment also constitutes various 
other cell types like liver sinusoidal endothelial cells 
(LSECs), hepatocytes, Kupffer cells (KCs), liver- 
associated lymphocytes, and hepatic stellate cells.124 

Because 75% of the blood supply of the liver comes 
from the intestine via the portal vein,125 the liver is 
enriched with antigens and microbial products from the 
digestive tract. Moreover, due to its anatomical site, the 
liver is frequently exposed to pathogens as well as non- 
pathogenic stimuli.126 The TME of the liver exerts a key 
effect in antitumor response by activating naïve T cells via 
presenting antigens by LSECs, KCs, DCs, and hepato-
cytes. However, the liver’s immunosuppressive microen-
vironment promotes tolerance to numerous endogenous 
and exogenous intestinal bacteria and antigens and other 
endogenous and exogenous stimuli.127 As a result, the 
liver cannot attack cancer cells.

LSECs, the initial cells encountered by metastatic 
cancer cells, can function with KCs as a physical plat-
form for recruiting and anchoring immunological cells 
and are the gatekeepers for liver immunomodulation.128 

Hepatocytes can activate naïve CD8 T cells and promote 
the apoptosis and elimination of T cells in a Bim- 
dependent way, thereby triggering antigen-specific 
immunological tolerance.129 Other mechanisms include 
defects in antigen presentation, recruitment of immuno-
suppressive cells, inhibition of NK cells, compromised 
function of CD4+ T cells, and upregulation of immune 
checkpoint signaling.130 In CLM patients, the tumor- 
specific T cell response constitutes an expanded 
population of activated Tregs and MDSCs.37 MDSCs 
are considered as the most important cell types for the 
organization and maintenance of local immune suppres-
sion in mCRC.131

Hepatic macrophages are a heterogenic population 
including both resident KCs and recruited monocyte- 
derived macrophages.110 KCs, a subpopulation of macro-
phages with an immunosuppressive phenotype, control 
liver metastasis via regulating Dectin-2, a C-type lectin 
innate receptor.132 Another critical determinant of CLM, 
TAMs, nurture malignant cell growth and metastasis by 
mediating immunosuppression and secreting pro- 
inflammatory factors, including IL-10 and TGFβ, even-
tually leading to poor prognosis.38 TAMs can also express 
inhibitory receptors including PD-L1/2, B7-1/2, and the 
non-typical MHC-I proteins.133 Therefore, TAMs may be 
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able to synergize with chemotherapy, radiotherapy, and 
unconventional targeted therapies.38

Secretory proteins can exert both antitumor and protu-
mor effects during CLM.61 For example, the tumoricidal 
activity of LSECs is partly determined by cytokines. 
Additionally, activated LSECs and KCs can also promote 
metastasis by triggering the expression of cytokines 
(namely, TNF-α and IL-1) and adhesion molecules 
(CD44, CD15s, and mucin among many others).60 In 
addition, activated NK cells can stimulate KCs to release 
granulocyte macrophage colony stimulating factor and 
IFN-γ.134 Multiple chemokine signaling pathways have 
been reported to be linked to liver metastasis, including 
those that involve CXCL1–CXCR2, CXCL12–CXCR, 
CCL2–CCR2, CCL15–CCR1, and CX3CL1–CX3CR1 
chemokines.135 Therefore, secreted factors, such as che-
mokines and cytokines, can remodel the TME of CLM by 
recruiting host-derived myeloid cells to promote metasta-
sis and immune escape.

In conclusion, the immunosuppressive nature of the 
intrahepatic milieu might be responsible for the establish-
ment of CLM and the aggressive pathology of the 
disease.136 Therefore, targeting TME components, includ-
ing immune checkpoints, immunoregulatory cells and their 
secretory factors, and the tumor structure,122 may be an 
option to prevent and treat CLM.

Immunotherapy Solutions for Liver 
Metastases
Metastases have been and remain the main obstacle to 
a successful management of malignancies. Even among 
cancers that are sensitive to radiotherapy or chemotherapy, 
one of the principal pathways of treatment failure is metas-
tasis. The previous treatments for CRC showed minimal 
improvement in the 5-year survival rate, even with 
relapses that followed a complete surgical resection,137 

especially among the patients with liver metastasis. 
Therefore, new treatment strategies are desperately 
needed. One such approach is immunotherapy.106 

Previous findings have confirmed that blocking protumori-
genic interactions and cancer-stromal interplay via the 
accumulation of myeloid cells and T cells and blocking 
protumorigenic cytokine signaling by targeting CCR5, 
achieved clinical benefits among patients with advanced/ 
metastatic CRC.64

Liver metastasis occurs in multiple cancers and is 
related to an unfavorable prognosis.132 Among the main 

metastatic sites of CRC are also the liver and lungs. The 
liver’s immunosuppressive microenvironment supports the 
generation of both pre- and pro-metastatic niches to 
develop hepatic metastases.138 For instance, the treatment 
efficacy of CAR-T cells engineered against hepatic metas-
tases can be undermined by the accumulation of MDSCs. 
Hepatic MDSCs can express PD-L1, and PD-L1 can inhi-
bit the activation and proliferation of T cells by interacting 
with PD-1 on T cells. Reduced MDSC accumulation 
within the liver via PD-L1 blockade synergizes with 
CAR-T cell therapy to achieve antitumor responses. 
Moreover, blockade of molecules involved in MDSC biol-
ogy and function augmented the efficiency of ACT against 
CRC metastases.139

Many ICIs are being evaluated in prospective trials of 
various cancer types, including CLM.140 Clinical trials 
with pembrolizumab have confirmed that patients with 
dMMR mCRC pretreatment benefited from ICIs.141 The 
immune-related objective response rates (ORRs) and pro-
gression-free survival rates in patients with MSI-H CRCs 
were 40% and 78%, respectively, and 0% and 11%, 
respectively, in those with MSS/pMMR CRCs.142 

Compared to MSI cancers, MSS cancers are less sensitive 
to immunotherapy alone, and novel combination 
approaches are being investigated to enhance therapeutic 
efficiency in patients who might be sensitive to combina-
tion treatments.143 DMMR CRCs are prone to be heavily 
infiltrated by CD8+ T cells and highly expressed immune 
checkpoint molecules, including PD-L1.144 Response 
Evaluation Criteria In Solid Tumors (RECIST) assessment 
was performed in 10 patients with dMMR CRC, with an 
objective response rate (ORR) of 40% and an objective 
remission rate of 0% in MMR-proficient (MMR-p) CRC. 
In dMMR CRC and pMMR CRC, the disease control rate 
at 12 weeks was 90% and 11%, respectively.145 This might 
partly explain why anti-PD-1/PD-L1 therapies are corre-
lated to antitumor responses in MSI-H or dMMR mCRC. 
The FDA has approved pembrolizumab and nivolumab for 
cases with dMMR or MSI-H mCRC.146 Indeed, pembro-
lizumab is now approved by the FDA for the treatment of 
all dMMR-MSI-H metastatic solid tumors.144

The Phase II CheckMate 142 clinical trial evaluated the 
nivolumab in conjunction with or without ipilimumab in 
dMMR or MSI-H mCRC. Preliminary data revealed an 
ORR and disease control rate of 31% and 69%, respec-
tively. When ipilimumab was added to nivolumab, the 
ORR and disease control rates of 41% and 78%, respec-
tively, were noted.141 Nivolumab has been approved for 
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patients harboring dMMR/MSI-H mCRC who experience 
disease progression following treatment of fluoropyrimi-
dine, oxaliplatin, and irinotecan.147 Targeting immune 
checkpoints has achieved good response in multiple 
tumor types, but response rates varied in CRC with distinct 
genomic alterations.148 Among mCRC patients with MSI- 
H tumors, ICIs resulted in good responses to some extent. 
The ORR of pembrolizumab or nivolumab varies between 
30% and 40%, and 50% of cases are controlled. These 
drugs have been approved for the second-line treatment of 
mCRC patients with dMMR/MSI-H tumors.149 

Additionally, ipilimumab plus nivolumab improved the 
ORR to 55% among these patients. Based on this data, 
ICIs have even been investigated as monotherapy in MSI- 
H mCRC.149 Even in MSS CRCs, mutational/neoantigen 
load has demonstrated some association with immune 
infiltration and survival, showing promise for successful 
exploration of immunotherapies.150

The median PFS in patients with advanced CRC trea-
ted with pembrolizumab combined with chemotherapy 
was 16.9 months, and the median OS was 18.8 months 
(median follow-up 7.9 months).151 In phase Ib/II trials of 
RAS wild-type mCRC patients treated with pembrolizu-
mab plus cetuximab, seven of nine patients were stable 
and had good tolerance.151

Adoptive cell therapy (ACT) using TILs has shown 
significant efficacy in patients with metastatic melanoma. 
Striking responses have been observed in individual 
patients with CRC after ACT.152 In order to improve NK 
cell tumor response, CAR was designed to fuse the extra-
cellular domain of NK cell receptor NKG2D with DAP12. 
NKG2D ED and DAP12 make up the CAR. A study 
confirmed that NKG2Dp CAR-NK cells could indeed 
recognize tumor cells and exhibit anti-tumor effects in 
CLM patients.153 This is an achievable way to combat 
liver metastasis by using new techniques developed in 
recent years. Because it can be harvested aseptically and 
does not contaminate the intestinal flora, liver metastasis 
may be an ideal source of TILs for the treatment of ACT in 
CRC patients.154 TILs have been isolated from CRC 
patients in several studies and their potential as an immu-
notherapy modality has been evaluated. TILs expanded 
in vitro mainly contain effector memory T cells, and 
have been found to trigger antitumor responses.155

Cancer vaccines have been used to prevent relapse in 
patients suffering from CRC.156 Approximately 61.3% of 
patients with advanced CRC who received vaccination 
developed cell-mediated immunity. However, whether 

vaccinated or not, the same overall survival rate of 48% 
in CRC patients was observed in all groups.41

Overall, immunotherapy might be a feasible option for 
most CRC patients with liver metastases. Standard treat-
ment of CRC also includes antiangiogenic drugs. When 
combined with immunotherapy, anti-angiogenic drugs may 
also show synergistic effects.157 As monotherapy and in 
combination therapy, the role of immunotherapy will 
undoubtedly evolve.

A variety of current immunotherapies for CLM are 
shown in (Table 1).

Conclusions
Treatment of mCRC, especially CLM, is challenging 
because of its anatomical location and the immunosup-
pressive microenvironment. Immunotherapy is a novel 
effective therapeutic strategy. Despite increasing clinical 
data regarding the therapeutic role of ICIs among dMMR 
or MSI-H mCRC, most patients harboring pMMR or 
MSS tumors still do not benefit from immunotherapeutic 
agents.158 This may partly be explained by the inhibitory 
impact of multiple suppressive networks on effector 
immune cells to enable CRC to develop and form metas-
tases within the TME.122 This necessitates further 
research to develop novel therapeutic approaches or 
identify biomarkers for personalized modulation of the 
TME to reverse immunosuppression, thus improving 
clinical outcomes.106 Specifically, the immune cells in 
the TME, together with the soluble factors, might also be 
potential targets to treat CLM. Still, immunotherapy 
holds promise as a rational treatment option, either as 

Table 1 Summary of Immunotherapy Approaches for Colorectal 
Cancer with Liver Metastasis

Type Immunotherapy Specific 
Drug

Reference

Checkpoint 

inhibitors

Anti-PD-1 or PD- 

L1 antibodies

Pembrolizumab 

nivolumab

140

Anti-CTLA-4 

antibodies

Ipilimumab 140

ACT CAR T cells NKG2D 153

TILs 152,154

Vaccines 41,156

Abbreviations: PD-1, programmed cell death 1; PD-L1, programmed cell death-ligand 1; 
CTLA-4, cytotoxic T-lymphocyte-associated protein 4; ACT, adoptive T cell therapy; 
CAR, chimeric antigen receptor; TILs, tumor-infiltrating lymphocytes.
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a monotherapy or as combinational therapy.159 This is 
especially true when immunotherapy is combined with 
other therapies to address the problem of low mutational 
load by increasing tumor immunogenicity, thus overcom-
ing the immunosuppressive microenvironment. This is 
also the case for the treatment of CLM. Outside of the 
discovery of new immunotherapy targets, further direc-
tions should be focused on relieving CLM from the 
inhibitory networks and activation hurdles constituting 
the TME by combining immunotherapies with other 
therapies.

Abbreviations
ACT, adoptive T cell therapy; APM, antigen processing 
machinery; BMDCs, bone marrow-derived cells; CAR, 
chimeric antigen receptor; CAR-T, chimeric antigen recep-
tor T cell; CLM, colorectal liver metastasis; CRC, color-
ectal cancer; CTLA-4, cytotoxic T-lymphocyte-associated 
antigen 4; DCs, dendritic cells; dMMR, deficient DNA 
mismatch repair; EMT, epithelial-mesenchymal transition; 
EVs, extracellular vesicles; FDA, Food and Drug 
Administration; ICIs, immune checkpoint inhibitors; IFN, 
interferon; HGPs, histological growth patterns; KCs, 
Kupffer cells; LAG-3, Lymphocyte activation gene-3; 
LSECs, liver sinusoidal endothelial cells; mCRC, meta-
static colorectal cancer; MDSCs, myeloid-derived suppres-
sor cells; MMR, DNA mismatch repair; MSI, 
microsatellite instability; MSI-H, microsatellite instability- 
high; MSS, microsatellite-stable; M2-TAMs, M2 tumor- 
associated macrophages; NK, natural killer; ORRs, 
objective response rates; PD-1, programmed cell death 1; 
PD-L1, programmed death-ligand 1; pMMR, mismatch 
repair-proficient; TDSFs, tumor-derived secreted factors; 
TIGIT, T cell immunoreceptors with Ig and ITIM domains; 
TILs, tumor-infiltrating lymphocytes; TIM-3, T cell immu-
noglobulin mucin-3; TME, tumor immune microenviron-
ment; TNF, tumor necrosis factor; Tregs, T regulatory 
cells; TCRs, T cell receptors.
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