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Macrophages are increasingly recognized as essential players in the maintenance

of intestinal homeostasis and as key sentinels of the intestinal immune system.

However, somewhat paradoxically, they are also implicated in chronic pathologies of

the gastrointestinal tract, such as inflammatory bowel disease (IBD) and are therefore

considered potential targets for novel therapies. In this review, we will discuss recent

advances in our understanding of intestinal macrophage heterogeneity, their ontogeny

and the potential factors that regulate their origin. We will describe how the local

environment of the intestine imprints the phenotypic and functional identity of the

macrophage compartment, and how this changes during intestinal inflammation and

infection. Finally, we highlight key outstanding questions that should be the focus of future

research.
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INTRODUCTION

The gastrointestinal tract faces an unrivaled exposure to foreign antigens and, as a result,
is home to the largest compartment of the immune system. This includes a network of
mononuclear phagocytes (MPs), including macrophages and conventional dendritic cells (cDCs),
that play distinct yet complementary roles in discriminating between innocuous antigens and
potential pathogens, ensuring that the appropriate response is mounted to each. While this is
a highly efficient process, it can break down in some individuals, leading to the development
of chronic inflammation, such as inflammatory bowel disease (IBD) in which inappropriate
immune responses are mounted against the commensal microbiota. Thus, there is great interest
in understanding the biology of intestinal MPs. The role of macrophages in health and disease
has attracted particular attention, as their plasticity and wound healing capabilities make them
attractive targets for potential novel therapies to treat IBD. In this article, we will first discuss
the current understanding of macrophage heterogeneity in the gut wall, before describing the
roles macrophages play in intestinal homeostasis and how this may depend on their anatomical
positioning. We will then review the recent developments in intestinal macrophage ontogeny,
discussing how the local environment of the gut imprints the phenotypic and functional identity
of macrophages, before finally describing the changes that occur when homeostasis is perturbed by
inflammation.

IDENTIFYING MACROPHAGES IN THE GUT WALL

One of the major issues that has stifled our progress on understanding the immunobiology
of intestinal macrophages is their inaccurate identification. For instance, although murine
macrophages have traditionally been identified based on their expression of the pan-macrophage
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marker F4/80 (1), it is clear that other cells, such as conventional
dendritic cells (cDCs) and eosinophils can express F4/80 to
some extent (2, 3). Furthermore, many macrophages, including
those in the intestine, express high levels of CD11c and MHCII,
markers that have classically been used to identify cDCs (3).
Thus, the identification of intestinal macrophages requires a
multi-parameter approach. The Mer tyrosine kinase (MerTK)
and the high affinity FcγR1 (CD64), have emerged as superior
markers for the identification of macrophages across different
tissues (4–6), the latter also being useful across species (7–10).
When used in combination with CD11c and MHCII, CD64
expression distinguishes macrophages from bona fide cDC in
the gut wall (5, 10, 11). This is corroborated by the distinct
growth factor dependency and migration patterns of CD64-
defined MPs. Whereas CD64+ MPs are highly dependent on
colony stimulating factor 1 (CSF1; also known as M-CSF) for
their development and/or survival, CD64− CD11c+ MHCII+

MPs, but not CD64+ MPs, are highly dependent on the cDC-
specific growth factor Flt3L (10, 11). Consistently, CD64−

CD11c+MHCII+ MPs have been shown to continually migrate
to the mesenteric lymph nodes in a CCR7-dependent manner
to participate in T cell priming (10, 12–14), defining features
of cDC. In contrast, CD64+ MPs are non-migratory and
display characteristic macrophage morphology, with abundant
cytoplasm and cytoplasmic vacuoles (9, 15, 16). Thus, by multiple
criteria, CD64− CD11c+ MHCII+ MPs and CD64+ MPs fit the
definition of cDC and macrophages, respectively. One additional
feature of murine intestinal macrophages that distinguishes
them from cDC is their high expression of the chemokine
receptor CX3CR1 (9, 15, 17–20). Indeed, by using Cx3cr1+/gfp

knock-in mice (21), mature CX3CR1hi macrophages can be
visualized throughout the lamina propria (LP), the large layer
of connective tissue underlying the epithelium, as well as in
the deeper layers of the gut wall, such as the submucosa and
muscularis (17, 19, 20). Macrophages in these distinct sites are
reported to express differential levels of CD11c, with CD11c+

and CD11c−/lo CX3CR1hi macrophages enriched in the LP and
muscularis, respectively (18, 20, 22). As discussed in more detail
below, additional heterogeneity has been unmasked recently
by transcriptional profiling, with discrete subsets of CX3CR1hi

macrophages identifiable based on their expression of CD4 and
Tim4 (23, 24).

The recent advances in multi-parameter analysis have also
led to the much-needed alignment of analysis of murine and
human tissue macrophages. The use of markers such as CD64
and CD14 has meant that the same cells can be characterized
across species (7, 9, 10, 25). This has highlighted similarities, but
also important differences betweenmouse andman. For instance,
expression of CD4, CD163, CD172a (SIRPα), and CD206 are
conserved features of intestinal macrophages across species (7, 9,
23, 24, 26). However, mature intestinal macrophages in humans
express only low levels of the CX3CR1 and CD11c markers
found on their murine equivalents. Very recent work has also
described potential phenotypic heterogeneity between human LP
and muscularis macrophages, with the latter expressing higher
levels of CD14 and CD11b (7).

FUNCTIONS OF MACROPHAGES IN
INTESTINAL HOMEOSTASIS

Macrophages play a variety of roles to maintain intestinal
homeostasis (Figure 1). Like their counterparts in other tissues,
macrophages in the gut wall are avidly phagocytic. However,
while being highly bactericidal, phagocytosis by intestinal
macrophages does not result in an overt inflammatory response
in both mouse and man (see below)(7, 9, 25, 27, 28). Consistent
with this role, intestinal macrophages display high expression
of genes associated with phagocytosis, such as Mertk, Cd206,
Gas6, Axl, Cd36, Itgav, and Itgb5 (23, 29). Integrins αv and
β5 dimerise to form αvβ5, which is involved in the uptake
of apoptotic cells (29), a process known as efferocytosis (30).
Notably, Lys2-directed deletion of integrin αv results in the
accumulation of apoptotic cells in the intestine (31), and Itgb5
deficiency predisposes to increased susceptibility to DSS-induced
colitis (29), highlighting a particularly important role for this
pathway in this process.

The sub-epithelial positioning of LP macrophages means they
are ideally placed to capture and eliminate any bacteria that
cross the epithelial barrier. In addition, murine studies have
shown that they are able to sample luminal bacteria, involving the
formation of transepithelial dendrites (TEDs), cellular processes
that cross the epithelial barrier without perturbing tight junctions
and epithelial integrity and depend on the CX3CL1-CX3CR1
axis (32–34). A similar process may allow mature CX3CR1hi

macrophages in the upper small bowel to capture dietary
materials and is suggested to be involved in the generation of oral
tolerance to dietary antigens (35). This requires the induction
of antigen specific Tregs in the gut draining mesenteric lymph
nodes with gut homing properties (36, 37). Given that CX3CR1hi

macrophages do not migrate to draining lymph nodes under
normal conditions and naïve T cells are essentially absent in
the LP (13, 15, 38), they are unlikely to play a major role in
this process. However, they may contribute to the induction of
oral tolerance through antigen transfer to migratory CD103+

DC via connexin-43-dependent gap junctions (35). Indeed, mice
that lack connexin-43 in CD11c+ cells fail to develop oral
tolerance (35). Macrophages have also been proposed to regulate
oral tolerance development by supporting Treg maintenance
locally in the mucosa (37, 39, 40). This is thought to involve
macrophage-derived IL10, as Cx3cr1-mediated deletion of IL10
reduces antigen specific Treg frequencies in a model of oral
tolerance (37, 40). Interestingly however, deletion of IL10 in
macrophages appears to have no impact on the overall abundance
of endogenous Treg (40, 41). In addition to Tregs, macrophages
may also support the induction/maintenance of commensal-
specific Th17 cells through IL1β secretion (42, 43). Notably,
whether maintenance of mucosal T cells also involves cognate
interactions remains to be determined with certainty. Although
macrophages are very poor in activating naive T cells compared
to DCs (15), their high expression of MHCII suggests that
they might be involved in antigen presentation to previously
activated T cells locally in the intestine. By doing so, they could
maintain or promote further differentiation of antigen-specific T
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FIGURE 1 | Homeostatic functions of intestinal macrophages. Intestinal lamina propria (LP) macrophages are highly phagocytic and are responsible for clearing

apoptotic and senescent epithelial cells. Through their expression of tissue-remodeling metalloproteinases and secretion of factors that stimulate epithelial stem cell

renewal, such as prostaglandin E2 (PGE2), hepatocyte growth factor (HGF) and Wnt ligands, they promote epithelial integrity. Their position under the epithelial

monolayer and their bactericidal activity, mean LP macrophages are ideally placed to capture and destroy any bacteria that breach the barrier. They may also send

cellular processes across the epithelial barrier to sample luminal contents. Macrophages can transfer acquired antigen to migratory dendritic cells (DCs) for

presentation to T cells in the draining mesenteric lymph nodes. Through their production of immunoregulatory cytokines, such as IL10 and TGFβ, they maintain and

facilitate secondary expansion of regulatory T cells (Tregs) locally in the LP. In a similar manner, they support Th17 cells and ILC3s through their production of IL1β,

which is induced by exposure to the microbiota or its derivatives. Macrophages are also present in deeper layers of the gut wall, including the submucosa and

muscularis externae. Submucosa macrophages are thought to support the integrity of the submucosal vasculature, although the factors involved in this interaction

remain unclear. Muscularis macrophages participate in bidirectional crosstalk with sympathetic neurons of the enteric nervous system and influence gut motility.

cells. Consistent with this, Cx3cr1-mediated deletion of MHCII
retards the generation/maintenance of antigen-specific Treg
after feeding of ovalbumin (OVA) (40). Macrophages may also
influence T cell priming indirectly through their effects on cDC
differentiation. For instance, secretion of IL1β has been shown
to enhance ILC3 production of CSF2 (44), which is known to
control cDC differentiation in the intestinal LP (45). Notably,
most functional analyses have been performed in mice and
whether human intestinal macrophages carry out the same roles
remains unclear.

While it has been known for many years that macrophages
are present in deeper layers of the gut wall (46), only
recently has work begun to interrogate their role in intestinal
homeostasis. Macrophages in the muscularis are intimately

associated with the enteric nervous system and, in mice, appear
morphologically and transcriptionally distinct (47). There is
bidirectional crosstalk between muscularis macrophages and
neurons, where macrophage-derived bone morphogenic protein
2 (BMP2) acts on the BMP receptor (BMPR) expressed by
enteric neurons to induce secretion of CSF1, which maintains
the muscularis macrophage compartment and stimulates further
BMP2 expression (20, 22). These interactions regulate smooth
muscle contractions, thereby controlling peristalsis, and can
be disrupted by broad spectrum antibiotics (22), suggesting
the microbiota may regulate gut motility to some extent (48).
Macrophages are also found in the submucosa and recent
depletion studies have revealed a role for these cells in
maintaining the integrity of the submucosal vasculature (47).
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Thus, macrophages fulfill niche-specific functions to meet the
local demands of their microenvironment.

ORIGIN OF INTESTINAL MACROPHAGES

There have been major developments in our understanding of
macrophage ontogeny in recent years [see (49) for review].
Traditionally, it was proposed that tissue macrophages were
derived from blood monocytes that were replenished in turn
by highly proliferative bone marrow (BM) progenitors as part
of a linear mononuclear phagocyte system (MPS) (50, 51).
Geissmann et al. (52) then refined this model demonstrating that
the murine monocyte compartment, like its human counterpart
(53), is heterogeneous, with subsets defined on the basis of
Ly6C expression. In this scheme, Ly6Chi monocytes were shown
to preferentially enter tissues under inflammatory conditions,
leading to them being described as “inflammatory” monocytes
(52). However, as discussed below, Ly6Chi monocytes can also
be found in healthy tissues and tend to fulfill the functions
classically ascribed to monocytes, therefore these are now
referred to as “classical” monocytes. Because they did not enter
inflamed tissues, it was proposed that Ly6Clo monocytes were
the precursors of tissue resident macrophages (52). However,
adoptively transferred Ly6Clo monocytes rarely enter healthy
tissues, even following diphtheria toxin (DT)-mediated depletion
of resident macrophages (9, 17). Moreover, recent work has
shown that a major function of ‘non-classical’ Ly6Clo monocytes
is to patrol the vasculature and scavenge necrotic endothelial
cells (54) rather than acting as a circulating intermediate. Thus,
in some respects, Ly6Clo monocytes could be thought of as
macrophages of the circulatory system.

Rather than deriving from blood monocytes, recent
elegant fate mapping techniques have shown that many
tissue macrophages exist independently from conventional
haematopoiesis and instead derive from embryonic precursors
arising from the yolk sac and/or fetal liver (55–59). For
instance, microglia of the central nervous system and epidermal
Langerhans cells appear to maintain themselves autonomously
through intrinsic longevity and in situ self-renewal throughout
adult life (60–64). In contrast, we have shown that although the
intestine is initially seeded by embryo-derived macrophages,
these are subsequently displaced with age by cells deriving
from conventional haematopoiesis (16). Consistently, colonic
macrophages, but not microglia or Langerhans cells, are labeled
in genetic fate mapping studies exploiting Flt3 or Kit expression
to fate map cells deriving from haematopoietic stem cells
(HSCs) (16, 55, 59, 65). Moreover, intestinal macrophages
are largely replaced by donor cells in the setting of parabiosis
and in tissue-protected bone marrow chimeric mice, unlike
many other tissue macrophages (16, 56, 66–69). The finding
that macrophage numbers are reduced in the gut wall of
unmanipulated adult Ccr2−/− mice (9), in whom classical
Ly6Chi monocyte egress from BM is defective (70), implies that
Ly6Chi and not Ly6Clo monocytes are the main precursors of
intestinal macrophages in adulthood. In line with this, adoptively
transferred classical Ly6Chi monocytes, but not Ly6Clo

monocytes, give rise to fully mature intestinal macrophages
(9, 17, 19, 71). Furthermore, intestinal macrophages are
eliminated by repetitive administration of DT to CCR2-DTR
transgenic mice (43, 72), again indicating that the macrophage
pool relies on CCR2-dependent replenishment. Notably, as well
as its role in BM egress, homeostatic extravasation of Ly6Chi

monocytes from the bloodstream into the intestinal mucosa
relies on the CCL2-CCR2 axis. This is demonstrated by the
failure of both WT monocytes to enter the colonic mucosa of
Ccl2-deficient mice and Ccr2-deficient monocytes to enter the
mucosa of WT mice in mixed BM chimeras or in the setting of
parabiosis (5, 16, 73).

It is now clear that a monocyte to macrophage differentiation
continuum exists in the intestinal LP, a process that has become
known as the monocyte “waterfall” (5, 9) (Figure 2). At one end
are Ly6Chi CX3CR1int MHCII− (“P1”) monocytes that appear
phenotypically and morphologically similar to their counterparts
in blood. Indeed, monocytes in the mucosa retain expression
of molecules involved in chemotaxis and extravasation from
the circulation, such as CCR2, CD62L, VLA-1, LFA-1, and
of course Ly6C (23). These monocytes first acquire MHCII
expression (‘P2’ monocytes), before downregulating Ly6C, and
the other markers of extravasation (“P3”macrophages), and
finally upregulating CX3CR1 to give rise to fully mature (“P4”)
macrophages; this process takes around 5–6 days and involves
major gene expression changes (5, 9, 23). Importantly, there is
mounting evidence that an analogous “waterfall” is present in the
human intestinal mucosa, with classical CD14hiCCR2+CD11chi

monocytes at one end and mature CD14loCCR2−CD11clo

macrophages at the other (7, 9, 25) (Figure 2). In support of
this, Bujko et al. have recently used HLA-mismatched duodenal
transplants to measure turnover of intestinal macrophages in
man, showing that donor CD14hiCCR2+CD11chi cells in the
graft, which are analogous to P1/P2 cells in mouse, are rapidly
replaced by recipient cells. Mature macrophages are also replaced
by recipient-derived cells, albeit at slower rates (7). This contrasts
markedly with Langerhans cells of the skin epidermis, which have
been shown to remain of graft origin in transplanted skin for at
least up to 10 years (74). Similarly, alveolar macrophages persist
for up to 2 years in transplanted lungs (75). Thus, the limited data
available from human transplant studies support the findings
from fate mapping studies in mice (64, 65, 69, 76).

Despite the evidence that intestinal macrophages are derived
from continuous replenishment by extravasating monocytes,
this idea may need to be refined on the basis of very recent
findings that long-lived macrophages may be present in the
adult intestine (24, 47). Longitudinal fate-mapping using Cx3cr1-
based strategies and tissue-protected BM chimeric mice have
identified macrophages that persist for longer than 8 months
in the gut wall (47). Two independent studies showed that
long-lived macrophages can be identified by Tim4 and CD4
expression (24, 47), which are unaffected by Ccr2 deficiency,
unlike most of their Tim4− counterparts (24). This is consistent
with the long-lived nature of Tim4-expressing macrophages in
other tissues, such as the liver and the peritoneal cavity (69, 77).
Notably, De Schepper and colleagues (47) showed that long-
lived macrophages were predominantly found in the deeper
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FIGURE 2 | Heterogeneity, origin and differentiation of intestinal macrophages. The majority of mucosal macrophages are replenished by classical monocytes that

enter the mucosa in a CCR2-dependent manner and differentiate through a series of intermediaries (mouse-and human-specific markers denoted in blue and green,

respectively) to give rise to mature macrophages, which can be identified in both mouse and man as CD64+MHCIIhi CD206+CD163+ cells (common markers

denoted in red). In addition, high levels of CD11b, CD11c, CD14, and CX3CR1 are characteristic features of murine LP macrophages. In contrast, human LP

macrophages express only low levels of most of these markers but express high levels of CD209. Once in the mucosa and under cues from the local environment,

monocytes first upregulate MHCII and downregulate molecules involved in extravasation, such as CCR2, LFA-1 and CD62L. They then upregulate phagocytic

receptors and increase their production of anti-inflammatory cytokines, as well as becoming hyporesponsive to stimulation through e.g., TLRs. Studies in mice have

identified IL10, TGFβ, and CX3CL1 as key factors in promoting macrophage differentiation in the healthy mucosa. Furthermore, exposure to the microbiota and its

metabolites is known to influence macrophage differentiation and the rate of their turnover in the LP. Mature macrophages may also regulate their own turnover

through secretion of monocyte chemoattractants, such as CCL2, CCL7, CCL8, and CCL12. Longer-lived macrophages may also exist in the murine intestinal mucosa

and submucosa, and can be identified by their expression of the phagocytic receptor Tim4. While sharing certain features with their LP counterparts, such as CD64,

MHCII, CD206, and CD163 expression, muscularis macrophages have a relatively distinct phenotype. In mouse, they express low levels of CD11c but high levels of

the immunoregulatory cytokine RELMα, whereas in man, they have high levels of CD14 and CD11b. Muscularis macrophages are acutely dependent on CSF1 and

norepinephrine signaling by sympathetic neurons via β2 adrenergic receptors (β2AR) shapes their differentiation. Monocytes also replenish macrophages of the

muscularis, although the rate of replenishment is slower than in the mucosa and a larger proportion of these macrophages are long-lived.

layers of the gut wall, such as the muscularis and submucosa,
whereas mucosal macrophages showed high levels of turnover
from BM. Importantly, this group also showed that long-lived
macrophages derived from both embryonic and BM-derived
cells, demonstrating that intrinsic longevity is not an exclusive
property of embryo-derived macrophages (47). Thus, in light of

these findings, it is clear that the origin of intestinal macrophages
is highly dynamic, with embryonic and BM-derivedmacrophages
present alongside one another in each layer of the gut wall, the
proportions of which change markedly with age and microbial
colonization in a niche-specific manner (see below). Indeed, this
brings the gut into line with other tissues, such as the heart
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(58, 78, 79), lung (65, 69, 80), dermis (67), and the peritoneal
cavity (69, 81, 82) where short-lived and long-lived macrophages
co-exist.

Here it should also be noted that it has never been shown
definitely that patrolling Ly6Clo monocytes cannot contribute
to gut macrophage replenishment. One approach has been to
assess macrophage abundance in the gut wall of mice in whom
Ly6Clo blood monocytes are markedly reduced, for instance
those deficient in Cx3cr1 (37, 83). However, different groups have
reached discordant conclusions on the effect of Cx3cr1 deficiency
on intestinal macrophage numbers (37, 83). Furthermore, given
the high expression of CX3CR1 by intestinal macrophages
themselves, effects of Cx3cr1 deficiency may be due to altered
differentiation and/or survival of mature macrophages rather
than indicating derivation from Ly6Clo monocytes (see below).
More recent work has identified Nr4a1 as a master regulator of
Ly6Clo monocyte differentiation and survival (84). New tools that
specifically target Nr4a1 deficiency to monocytes, while sparing
its roles in macrophage function, such as those described recently
by Hedrick and colleagues (85), will be critical to assess the role
of Ly6Clo monocytes in tissue macrophage replenishment under
normal physiological conditions and if this changes in the context
of disease.

What Controls the Origin of Intestinal
Macrophages?
The exact factors that determine why different tissues contain
macrophages of distinct origins remain very poorly understood.
Specifically, it is unknown how and why embryonic-derived
macrophages persist in the CNS and the epidermis, but fail
to persist in significant numbers in the gut mucosa. It has
been proposed that this could simply reflect niche accessibility
and availability (86) and indeed, there is free accessibility to
the mucosa throughout life, whereas the brain and epidermis
are separated from the vasculature during development by
the blood brain barrier and basement membrane, respectively.
However, other tissue macrophages that are not separated
from the vasculature by a physical barrier, such as liver
Kupffer cells, also exist relatively autonomously, suggesting that
tissue accessibility may not be the main factor influencing
replacement by blood monocytes (65). In the intestine, monocyte
recruitment may be driven by the “physiological inflammation”
generated by exposure to antigenic material from the diet or
commensal bacteria (87). Indeed, there are now several lines
of evidence to demonstrate a key role for the microbiota in
influencing macrophage population dynamics in the mucosa.
First, major changes in the colonic macrophage compartment
are seen following microbial colonization, particularly at the
point of weaning where monocyte differentiation through
the monocyte “waterfall” becomes established (16). Secondly,
macrophage turnover can be reduced by administration of
broad spectrum antibiotics, further indicating a role of the
commensal microbiota in controlling macrophage turnover (16).
Moreover, fewer macrophages are found in the gut wall of
germ free mice compared with their SPF counterparts(16, 24,
88). The mucosal microenvironment may actually programme

macrophages to orchestrate their own replacement. This is
supported by the findings that as intestinal macrophages mature,
they progressively upregulate monocyte chemoattractants, such
as CCL7, CCL8, and CCL12 (23). As noted above, the
microbiota may constitute one stimulus for this differentiation
and additional possibilities could include dietary metabolites
or the continual mechanical stress generated by peristalsis.
Mechanical stress has been suggested to explain the replacement
of embryo-derived macrophages in the heart (89) and as well
as generating low grade “inflammation,” it could simply prevent
long term macrophage residence. That differential turnover rates
of macrophages are observed in distinct anatomical locales
of the gut wall could reflect the fact that particular niches
do not support macrophage self-renewal. However, whether
distinct macrophage subpopulations display differential rates of
proliferation has not been tested experimentally. Thus, while
some progress has been made in understanding macrophage
turnover dynamics, more work is needed to identify the factors
that govern this process.

ENVIRONMENTAL PROGRAMMING OF
INTESTINAL MACROPHAGES

While it is clear that monocytes progress through a defined
series of intermediaries to replenish the majority of macrophages
in the gut, the molecular factors in the gut environment
that imprint the unique phenotypic and functional profile of
intestinal macrophages are only starting to be understood. CSF1
is clearly involved in the differentiation and/or survival of
intestinal macrophages, as demonstrated by their reduction in
Csf1op/op mice, which have a naturally occurring inactivating
mutation in the CSF1 gene (90, 91), their inability to arise
from Csf1r−/− precursors in a competitive BM chimeric setting
(11) and their depletion by anti-CSF1R antibody treatment (22,
92, 93). As described above, upregulation of MHCII is one
of the first features of monocyte differentiation in the mucosa
of mouse and man (5, 7, 9). Although it is clear that this
occurs independently of the IFNγ-STAT1 pathway (94), the
exact factors that drive upregulation of MHCII remain unclear.
Given that this appears to be a common feature of monocytes
entering a variety of tissues (16, 59, 67, 68, 95), it is plausible
that MHCII expression may be triggered by extravasation
through the vascular endothelium (68). Indeed monocytes in the
colonic mucosa already display major transcriptional differences
compared with their counterparts in blood (23), despite
appearing phenotypically similar. This is tissue specific, because
recently arrived colonic monocytes are also transcriptionally
distinct from their phenotypic counterparts in the dermis (23).
Once in the mucosa, we have shown that TGFβR signaling
is essential for the terminal differentiation of macrophages. In
particular, upregulation of genes associated with the homeostatic
profile of gut macrophages, such as CX3CR1, IL10, and αvβ5
integrin relies on the TGFβ-TGFβR axis (23). Consistent with
this, expression of the Runt-related transcription factor 3
(RUNX3), which regulates TGFβ signaling, is a unique feature
of intestinal macrophages (96). The TGFβ-TGFβR axis may

Frontiers in Immunology | www.frontiersin.org 6 November 2018 | Volume 9 | Article 2733

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Bain and Schridde Origin, Differentiation, and Function of Intestinal Macrophages

also regulate macrophage turnover by dampening expression of
the monocyte chemoattractant CCL8 by colonic macrophages
(23). Although many sources of TGFβ exist in the mucosa,
macrophages themselves may be important, since efferocytosis
is known to induce TGFβ expression in macrophages (97) and,
at least in man, macrophages may activate TGFβ through their
expression of integrin β8 (98). Indeed, uptake of apoptotic
epithelial cells induces an anti-inflammatory programme in
intestinal macrophages (99). The epithelium may also support
macrophage differentiation through expression of Notch ligands,
such as Delta-like and Jagged family members, as mature
macrophages express high levels of Hes1 (23), a downstream
target of Notch signaling, and their differentiation is disrupted
when Notch signaling is ablated (100).

A characteristic feature of mature intestinal macrophages is
their hyporesponsiveness to exogenous stimulation (9, 27, 101–
105), a functional adaptation that allows these cells to exist in
this microbe-rich environment. Interestingly, TGFβ does not
appear to be responsible for the unresponsiveness of intestinal
macrophages to TLR stimulation in mice (23), whereas this
is proposed to be a key role of TGFβ in the human mucosa
(102, 105). In contrast, the IL10-IL10R axis plays a fundamental
role in the control of macrophage responsiveness in both
species. Colonic macrophages from mice in which this axis
has been disrupted, either globally or specifically in myeloid
cells, have heightened expression of proinflammatory mediators,
such as iNOS, IL23, and IL12. As a result, they display overt
responsiveness to TLR stimulation and an altered metabolic
profile, leading to the development of spontaneous intestinal
inflammation (41, 103, 106–109) that can be rescued by rendering
macrophages unresponsive to TLR stimulation through cell
specific deletion of the TLR adaptormoleculeMyD88 (110). Early
onset IBD occurs in patients with polymorphisms in IL10RA and
IL10RB genes (111), and in vitro generated monocyte-derived
macrophages from these patients respond aggressively to LPS
stimulation (108). The exaggerated pro-inflammatory responses
in the absence of IL10R signaling may result from a failure
to downregulate inflammation potentiating molecules such as
TREM-1 and STAT1 (41, 112) and/or altered accessibility to
pro-inflammatory genes that is normally restricted by IL10-
dependent chromatin remodeling (113, 114). IL10 can also limit
pro-inflammatory responses by inducing expression of negative
regulators of NF-kB, such as IBNS (115).

The high expression of CX3CR1 by murine intestinal
macrophages and their positioning adjacent to CX3CL1-
producing epithelial cells suggests that the CX3CL1-CX3CR1
axis could also control macrophage differentiation. For instance,
CX3CR1 is indispensable for the formation of TEDs that permit
luminal sampling by LP macrophages (32–34). Furthermore,
Cx3cr1-deficient macrophages produce less IL10 (37), suggesting
the CX3CL1-CX3CR1 axis promotes the regulatory features
of gut macrophages. In line with this, Cx3cr1-deficient mice
have been shown to be more susceptible to chemically-
induced colitis (83), although this has been contested by
other reports showing that Cx3cr1 deficiency suppresses DSS-
induced and T cell transfer colitis (32, 34). However, as
noted above, human intestinal macrophages do not express

CX3CR1, raising questions about the general significance of its
role.

In addition to influencing their turnover (16, 24), the
microbiota is required for optimal production of IL1β (42) and
IL10 by intestinal macrophages(40, 71, 103), with the latter
proposed to rely on autocrine type 1 IFNs (116). Microbial
colonization may also contribute to the anergic phenotype of
colonic macrophages, since some studies have shown them
to display TLR hyperresponsiveness when isolated from germ
free mice (103), although this is disputed by others (104).
The microbiota may act directly on macrophages, for example
through the release of as yet unidentified polysaccharides, such
as that recently identified by the Powrie group to be released by
H. hepaticus (117) or via metabolism of dietary fiber to provide
short chain fatty acids (SCFAs), which are known to have wide
ranging effects on immune cell function (118). In particular,
the SCFA butyrate can repress Il6, Il12b, and Nos2 expression
by colonic macrophages (119) and alter their metabolic profile
(120), while propionate can dampen macrophage activation
in vitro (121). Aryl hydrocarbon receptor (Ahr) ligands derived
from the microbiome or the diet may also control macrophage
behavior. Consistent with this idea, CD11cCre-Ahrfl/fl mice
display heightened susceptibility to DSS-induced colitis, which
is attributed to altered Wnt ligand expression by AhR-deficient
macrophages and impaired epithelial barrier integrity (122).
Thus, multiple environmental factors act in concert to control
macrophage differentiation and function in the mucosa.

The equivalent factors controlling macrophage differentiation
in the muscularis remain relatively unexplored, although it is
clear they are acutely dependent on CSF1R signaling (22). In
addition, norepinephrine signaling by sympathetic neurons via
β2 adrenergic receptors on muscularis macrophages has been
reported to shape their tissue protective phenotype (20). Notably,
the abundance and patterning of macrophages in the muscularis
is not dependent on neuronal signals because they are normal in
Ret−/− mice, which lack an enteric nervous system, as well as
in patients with Hirschsprung disease (HSCR), where the enteric
nervous system is absent from the distal bowel (123).

MONOCYTES AND MACROPHAGES IN
INTESTINAL INFLAMMATION

The monocyte/macrophage compartment alters markedly in
both CD and UC, with accumulation of CD14hiCD11chi

monocytes/immature macrophages that come to outnumber
CD64+HLA-DRhiCD14lo resident macrophages (9, 27, 124–
127). In contrast to their homeostatic counterparts, these
CD14hi cells in the gut produce pro-inflammatory cytokines
and chemokines, such as TNFα, IL1β, IL6, IL12, IL23, and
CCL11 (125, 127), display respiratory burst activity (128) and
respond in an aberrant manner to commensal bacteria (125).
In addition, they express high levels of TREM1, which can
potently amplify pro-inflammatory responses (129). Importantly,
mucosal healing in IBD patients receiving anti-TNF has been
shown to be accompanied by loss of these CD14hi cells and
accumulation of CD206+ macrophages, which are thought to
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be pro-reparative (130). Although anti-TNF (adalimumab) has
been shown to bind membrane-bound TNF on CD14+ intestinal
macrophages in CD patients (131, 132), whether this triggers a
phenotypic switch of existing pro-inflammatory macrophages or
if these are replaced by CD206+ macrophages remains unclear.
Thus, much of the recent work in this field has focussed on
understanding the relationship between homeostatic and pro-
inflammatory macrophages and the nature of their precursors,
with the ultimate aim of identifying novel therapeutic targets.

Several models of intestinal inflammation, including T cell
transfer, Helicobacter hepaticus-induced and DSS-induced colitis
have been used to dissect these processes experimentally. As in
humans, all these models show intense accumulation of classical
(Ly6Chi) monocytes, together with their immediate progeny that
express intermediate levels of CX3CR1 (P1, P2, P3 subsets—see
above) (5, 9, 19, 71, 93, 133–135). These cells respond in a highly
pro-inflammatory manner to TLR stimulation, express reactive
oxygen intermediates, produce high levels of IL1β, IL6, IL12,
IL23, and TNFα and express high levels of TREM1 (5, 9, 17, 19,
71, 135), again mirroring the processes seen in human IBD. In
contrast to these effects on monocytes, the CX3CR1hi resident
macrophages that persist in colitis retain their anti-inflammatory
signature (9, 19, 134), suggesting they may continue to play an
immunoregulatory role even during inflammation (136).

Multiple lines of evidence indicate that Ly6Chi monocytes
and their derivatives are of crucial importance in the intestinal
pathology. Firstly, neutralization of IL1β, which is thought
to arise predominantly from elicited monocytes, reduces
susceptibility to chemically-induced colitis (137). Secondly,
colitis development is reduced by selective ablation of Tnfa in
Ly6Chi monocytes (17). Whether this reflects direct effects of
monocyte-derived TNFα in tissue pathology is uncertain, as
monocyte survival appears to require autocrine TNFα (138),
suggesting that reduced monocyte accumulation in the gut may
be the mechanism underlying protection by depletion of TNFα.
Finally, mice in whom monocyte recruitment to the inflamed
mucosa is defective due to deletion or neutralization of CCL2,
CCR2 or β7 integrin are protected from DSS-induced colitis (9,
19, 73, 133, 139, 140). Importantly, the CCL2-CCR2 axis may also
govern monocyte migration in man, where classical monocytes
also express CCR2 (141) and elevated levels of its ligands
CCL2 and CCL4 are found in IBD mucosa (142). Furthermore,
radio-labeled CD14hi classical monocytes have been shown to
migrate to actively inflamed regions of IBD mucosa (124). As
in the healthy gut, resident macrophages may contribute to
this recruitment of monocytes through the release of CCR2
ligands. Nevertheless, it is important to note that CCR2 may
not govern monocyte migration in all contexts, as accumulation
of Ly6Chi monocytes and their progeny is unaffected by CCR2
deficiency in H. hepaticus induced colitis (110) and CCR1 plays
a key role in monocyte migration during acute toxoplasmosis
(143). Moreover, circulating monocytes in mouse and man
express CCR5 (144), which is known to navigate monocytes
in certain contexts of inflammation (145), and CCR5 deficient
mice develop less inflammation when administered DSS (146).
In addition, a unique CD169+ subset of CX3CR1hi macrophages,
located preferentially around intestinal crypts, is expanded

during experimental colitis and is important for pathogenesis
via its ability to recruit monocytes through secretion of the
CCR2/CCR3/CCR5 ligand CCL8 (147, 148).

As well as direct effects of elicited monocytes and their
products, these cells can recruit and support other innate
and adaptive immune effector cells that are important in
pathology. For instance, CD14hi monocytes/macrophages in the
IBD mucosa are thought to support pathogenic T cell function
through IL23 production and their expression of CD40 and
CD80 (125, 149, 150). Consistent with this idea, CX3CR1int

monocyte/macrophage-derived IL23 supports effector T cell
differentiation during H. hepaticus-induced colitis (93, 110, 134),
assisting the generation of highly pathogenic Th17 cells that
co-express IFNγ (93, 151). Elicited monocytes/macrophages
may also recruit eosinophils to the inflamed mucosa through
the production of CCL11, although whether these play a pro-
inflammatory or pro-resolution function remains unclear (127,
152–154).

Macrophages in Intestinal Infection
Despite their pathogenic role in sterile intestinal inflammation,
Ly6Chi monocytes and their progeny are vital for protective
immunity against enteric pathogens. For instance, Ccr2−/− mice
are more susceptible to infection with Citrobacter rodentium,
a model of enteropathogenic and enterohaemorrhagic E. coli
infection in man, and the protozoan parasite Toxoplasma gondii
(155, 156). This can be restored by transfer of wild type Ly6Chi

monocytes. Although depletion of CCR2+ cells in the CCR2-
DTR mouse leads to enhanced susceptibility to C. rodentium
(157), it should be noted that this approach deletes both
elicited and resident macrophages in the intestine (43, 72, 157),
meaning the specific roles of these individual subsets cannot
be distinguished in this model. Nevertheless, macrophages play
an important protective role in C. rodentium infection via the
production of IL1β, IL23, and TNF-like ligand 1A (TL1A),
triggering IL22 production by ILC3s, which in turn augments
local production of the anti-microbial proteins RegIIIβ and
RegIIIγ (157–159), known to be necessary for C. rodentium
clearance (160). Moreover, through their production of IL12 and
IL23, macrophages support the differentiation of IFNγ and IL17-
producing effector T cells (161). Whether this occurs exclusively
in the mucosa or if Ly6Chi monocyte-derived cells leave the
mucosa to contribute to T cell priming in the lymph nodes
remains a matter of debate and may depend on the nature of
the inflammatory insult (162, 163). In addition to their pro-
inflammatory roles, elegant work from the Belkaid lab has
shown that Ly6Chi monocytes can also exert regulatory functions.
During acute toxoplasmosis, elicited Ly6Chi monocytes respond
to the microbiota by producing PGE2 and IL10 that protect
against immunopathology by inhibiting neutrophil function
(164). As a result, Ccr2−/− mice show enhanced susceptibility to
this model of infection (156). Thus, it is clear that monocytes play
a multifaceted role in the inflamed mucosa.

Until now, we have considered macrophage function in Th1
and/or Th17-dominated forms of inflammation, but they also
participate in the Th2-mediated protective immune responses
generated against intestinal helminth parasites. However, the
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exact role macrophages play may depend on the parasite in
question. For instance, while arginase producing, alternatively
activated macrophages are critical for the expulsion of the
gastrointestinal nematode Heligmosomoides polygyrus bakeri
(165–167), inhibition of arginase has no effect on expulsion of
Trichuris muris (168). Instead, macrophages are considered to
play a more central role in the tissue repair that occurs after
T. muris has been expelled. The role of alternatively activated
macrophages in expulsion of the nematode Nippostrongylus
brasiliensis also remains contentious (169, 170). Interestingly,
although macrophage accumulation in Th2 type settings in other
tissues is now typically thought to involve in situ proliferation
of resident cells under the control of IL4 (171), accumulation
of ‘alternatively activated’ macrophages in the gut of mice with
T. muris is dependent on monocyte infiltration (172). Thus,
regardless of the nature of the insult, monocyte recruitment
appears to be the principal mechanism of bolstering the
macrophage reservoir in the gut mucosa.

Monocyte Differentiation in the Inflamed
Mucosa
Why monocytes accumulate during colitis and do not
differentiate into anti-inflammatory macrophages as they
do in healthy tissue remains unclear. Based on adoptive transfer
studies in the DSS-induced model of colitis, we proposed that
immature monocytes accumulate due to a breakdown in the
normal differentiation process (9). The exact cause of this
remains elusive, but may reflect both a loss of factors that
normally promote monocyte differentiation, such as IL10 and
TGFβ, together with increased levels of pro-inflammatory
cytokines that block this process or reduce monocyte half-life.
Indeed, high levels of IFNγ are found in the IBD mucosa
and have been shown to promote the pro-inflammatory
features of CD14+ monocyte/macrophages (125). Consistent
with this, deletion of IFNγR1 or its downstream signaling
molecule STAT1 in mice limits the differentiation of pro-
inflammatory Ly6C+MHCII+ monocytes in the colon and
provides relative protection from DSS-induced colitis (94).
IFNγ may also act by upregulating negative regulators of the
TGFβR pathway, such as Smad7 (173), thus disrupting the
pathway by which monocytes normally differentiate into mature,
anti-inflammatory macrophages (see above). Finally, the hypoxic
nature of the inflamed mucosa may support the differentiation of
pro-inflammatory monocytes/macrophages, as myeloid-specific
deletion of the hypoxia inducible factor (HIF)-1α also protects
mice from DSS-induced colitis (174).

As well as local programming by the intestinal
microenvironment, there is increasing evidence that monocytes
arriving in the inflamed mucosa may be inherently different to
those during health. Monocytosis is a feature of human and
experimental IBD (175, 176), and monocytes arriving in the
inflamed mucosa already have higher expression of TNFα, iNOS,
IL6 and STAT1 compared with their homeostatic counterparts
(9, 94). This may involve “priming” of monocytes in the BM
by IFNγ derived from NK cells responding to IL12 released
from the inflamed intestine, as has been shown to occur in acute

toxoplasmosis (177), or through as yet unidentified pathways.
Thus, the inflamed mucosal environment may control monocyte
fate both locally and through long-range conditioning of BM
precursors.

MONOCYTES/MACROPHAGES DURING
RESOLUTION OF INFLAMMATION

Experimental models of colitis have also allowed characterization
of the monocyte/macrophage compartment during the
resolution of pathology. Cessation of DSS administration is
accompanied by major changes in the macrophage pool, with a
massive reduction in CX3CR1int monocytes/macrophages and
restoration of the CX3CR1hi macrophage subset, together with
loss of granulocytes (19). A similar contraction of inflammatory
cells is seen following the infectious phase of H. hepaticus-
induced colitis, although interestingly, eosinophils persist at
elevated levels in this model, suggesting they may play a pro-
resolution role (134). Resident intestinal macrophages promote
mucosal healing, as colitis is worsened by their depletion (136)
or if they are rendered unresponsive to anti-inflammatory
cytokines, such as TGFβ (178). However, whether macrophages
elicited by an inflammatory agent also play a pro-restorative role
following removal its clearance remains unclear. Interestingly,
resolution of inflammation in post-operative ileus is delayed in
Ccr2−/− mice, suggesting that recruited Ly6Chi monocytes and
their derivatives are important for restoration of homeostasis in
the muscularis (179).

The fate of the monocytes elicited during inflammation in
the repairing mucosa is unclear, although it is assumed that
they are cleared by apoptosis, as in other tissues (180). This
would be consistent with the increased numbers of apoptotic
CD68+ cells seen in the healing mucosa of CD and UC patients
treated with infliximab (181). An alternative fate of elicited
monocytes is that they subsequently convert into mature resident
macrophages under the guidance of local cues. While this has
been shown to occur during the resolution of inflammation
in other tissues, such as the peritoneal cavity (57), it is not
known whether it occurs in the repairing mucosa. Moreover,
just like in the setting of infection described above, long-range
conditioning of monocytes may also occur during inflammation
resolution meaning the nature of the monocytes arriving at
the repairing mucosa may be intrinsically-distinct. Consistent
with this idea, Ikeda et al. (182) have recently shown that a
specific subset of Ly6Chi monocytes expressing the regulatory
molecule Ym1 can be found during the resolution phase of DSS-
induced colitis and their depletion hinders effective mucosal
healing.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Several major advances have been made over the last few
years in our understanding of intestinal macrophage ontogeny
and development, including the identification of some of
environmental signals that regulate tissue-specific phenotypes
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and functions. Nevertheless, many aspects of intestinal
macrophage biology remain poorly understood. For instance, our
understanding of heterogeneity within the intestinal macrophage
compartment remains incomplete. The application of single cell
technologies, such as single cell RNA sequencing, will continue
to provide further insights into macrophage heterogeneity
in both mouse and man. This should also allow for further
alignment of the ways in which murine and human MPs are
characterized and lead to better translation between systems.
With the discovery of macrophage subpopulations, it will be
important to determine the environmental signals that shape
the phenotype, function and longevity of these niche-specific
macrophages. Why do some niches promote the longevity
of macrophages (e.g., the muscularis externa) whereas others
(e.g., the LP) mainly rely on the constant replenishment by
BM-derived monocytes? Understanding the cellular interactions
between macrophages and their neighboring cells (e.g., stromal
cells), the environmental challenges (e.g., antigenic exposure)
in particular niches, as well as niche accessibility will be pivotal
in answering this question. Importantly, macrophage longevity
is not an exclusive property of embryo-derived macrophages
and it remains to be determined whether long-lived embryo-
derived and BM-derived macrophages perform analogous
functions or if they have discrete roles in intestinal homeostasis.
Another area warranting further investigation is how differences
along the intestinal tract, for instance antigenic exposure and

commensal microbiota composition, might impact macrophage
development and function. A major effort must be placed on
understanding how the monocyte/macrophage compartment
changes during acute and chronic inflammation, as well as
during inflammation resolution. Do long-lived macrophages
persist during and following an inflammatory insult? If so,
do they perform specific roles? Given that accumulation of
pro-inflammatory monocytes/macrophages is a characteristic
feature of IBD, it is vital to understand the precise nature
of the molecular factors controlling monocyte/macrophage
differentiation under normal physiological conditions, how these
change during disease and the relative contribution of local
conditioning vs. long-range effects on haematopoiesis. Providing
answers to these questions will be vital if macrophages are to be
realized as therapeutic targets in IBD.
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