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ABSTRACT
Introduction: Oncogenic activation of ERG resulting from TMPRSS2-ERG gene 

fusion is a key molecular genetic alteration in prostate cancer (CaP). The frequency of 
ERG fusion is variable by race; however, there are limited data available on germline 
polymorphisms associating with ERG fusion status. The goal of this study is to identify 
the inherited risk variants associating with ERG status of CaP.

Materials and Methods: SNP genotyping was performed on the Illumina platform 
using Infinium Oncoarray SNP chip on blood derived genomic DNA samples from 400 
patients treated by radical prostatectomy at a single military institution. ERG status was 
determined in whole mounted prostate specimens by immuno-histochemistry (IHC) 
for ERG protein expression. Data analysis approaches included association analyses 
based on EMMAX and imputation by IMPUTE2. Imputed SNPs were validated by ddPCR.

Results: SNP genotyping analysis using imputation identified rs34349373 (p 
4.68 × 10-8) and rs2055272 (p 5.62 × 10-8) in TBC1D22B to be significantly associated 
with ERG fusion status in index tumor and non-index tumor foci. Imputed SNP 
rs2055272 was further experimentally validated by ddPCR with 98.04% (100/102) 
concordance. Initial discovery analysis based on SNPs on Oncoarray SNP chip, 
showed significant (p 10-5) association for SNPs (rs6698333, rs1889877, rs3798999, 
rs10215144, rs3818136, rs9380660 and rs1792695) with ERG fusion status. The 
study also replicated two previously known ERG fusion associated SNPs (rs11704416 
in chromsome 22; rs16901979 in chromosome 8).

Conclusions: This study identified SNPs associated with ERG status of CaP.
Impact: The findings may contribute towards defining the underlying genetics 

of ERG positive and ERG negative CaP patients.

INTRODUCTION

Prostate cancer (CaP) is a major cause of morbidity 
and mortality worldwide [1]. It is the second most frequent 
cancer and the fifth leading cause of cancer death in men 
[1–3]. In the United States, CaP is the most prevalent non-

skin male cancer and ranks second in cancer-related deaths 
[3]. Oncogenic activation of ERG resulting from prevalent 
gene fusions (predominantly as TMPRSS2-ERG) is a key 
driver event in CaP pathogenesis [4–6]. Multiple studies 
have reported a significantly lower frequency of ERG 
positivity in CaP tumors of African American (AA; 23%) 
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compared to Caucasian American (CA; 49%) patients [4, 
7–9]. A significant correlation between ERG negativity in 
CaP tumors with development of distant metastasis, as well 
as biochemical recurrence (BCR) was noted in CA men 
by comprehensive analysis on 930 whole mount prostate 
specimens in AA and CA men [7]. Additionally, AA patients 
with high Gleason grade tumors [8–10] exhibited primarily 
ERG negative index tumor type [8, 10]. However, there 
are also controversial reports on the association of ERG 
fusion status in CaP with disease aggressiveness [(BCR, 
pathological Gleason score and Grade Group (GG), prostate 
specific death) [11–16]. These studies differ by study 
design, as well as patient clinicopathological features and 
treatment. Key biological differences are evident across 
ERG fusion status (positive versus negative), including 
distinct methylation patterns, with hypermethylation more 
pronounced in ERG positive versus negative CaP tumors 
[17, 18]. In addition, the processes of tumor evolution are 
also different between fusion positive and negative tumors, 
with TMPRSS2-ERG tumors characterized by chromoplexy, 
while chromothripsis is more common in TMPRSS2-ERG 
negative tumors [19, 20]. Considering the multiclonal and 
heterogenous nature of CaP, it is important to examine all 
tumor foci for ERG fusion status as any of these may lead to 
aggressive CaP [9, 21]. Overall, these findings suggest that 
tumor etiology is variable, depending on fusion status in CaP.

Based on ERG fusion positive and fusion negative 
distinctness of CaP, we hypothesized that there may also be 
differences at the underlying germline level between these 
two molecular subtypes. CaP is one of the most heritable 
solid tumors with up to 15% of cases linked to family history 
[22, 23]. Additionally, inherited germline risk variants have 
been implicated in different stages of CaP management 
including screening, staging and treatment [24–26]. 
Genome wide association studies (GWAS) have identified 
about 167 common, low penetrance CaP susceptibility 
variants [27–42]. However, vast majority of GWAS have 
been performed in populations of European ancestry, only 
a - few studies are published in men of African-American 
origin [43–46]. This may have important implications for 
disease risk prediction across global populations [47], as 
implied by differences in CaP associated SNPs between 
AA and CA patients. A whole genome admixture mapping 
study in AA CaP has identified the 8q24 risk locus to be 
significantly associated with prostate cancer [48]. We also 
showed that the Broad11934905 SNP, which segregates 
with African ancestry, is associated with an increase in non-
organ-confined CaP at time of surgery [49].

Thus, it is hypothesized that ERG gene fusion status 
of AA and CA patients reflects underlying biological 
and/or genetic differences of CaP development. Since 
TMPRSS2-ERG fusion is considered to be an early event 
in CaP [50], it is anticipated that SNPs associated with 
CaP risk may influence ERG fusion status. Therefore, the 
goal of the present study was to identify germline SNPs 
associated with ERG status of CaP.

RESULTS

The frequency of SNPs on oncoarray in 321 CaP 
patients was compared between fusion positive and 
fusion negative CaP subtypes to agnostically examine the 
association of the inherited variants with TMPRSS2-ERG 
status of CaP, A description of the patients in the study 
cohort across ERG + vs. ERG - groups is provided in 
Table 1. Most men had pathological Gleason Grade Group 
1–3 tumors and stage pT2. The frequency of ERG positive 
index tumors was 37.5% (108/288), while the frequency 
of positive ERG staining in any tumor focus was 54.3% 
(158/291). Schematic representation of the study workflow 
is depicted in Figure 1.

Association between the SNPs and ERG status

For genetic association studies in admixture 
population, it is important to consider that ancestry 
differences among the sampled individuals can be a 
confounder. Failure to appropriately account for population 
structure due to ancestry admixture can lead to both 
spurious association (increased type-I error rates—false 
positive) as well as reduced power (inflated type-II error 
rates—false negative) (Supplementary Figure 1). To correct 
for the confounder a variance component approach called 
Efficient Mixed-Model Association eXpedited (EMMAX) 
was used (Supplementary Figure 1). This approach is 
based on pair wise relatedness between individuals, using 
high-density markers to model the phenotype distribution. 
EMMAX implements linear mixed model approach for 
association testing, accounting for global population 
substructures with an empirical covariance matrix.

In the EMMAX corrected dataset rs6698333, an 
intron variant of Kruppel-like factor 17 (KLF17) and two 
SNPs (rs1889877, rs3798999) in the intron of adhesion G 
protein-coupled receptor B3 (ADGRB3) were significantly 
(< 10-5) associated with ERG fusion status of the index 
tumor (Figure 2; Table 2). The Krüppel-like factor (KLF) 
family is highly conserved zinc finger transcription factors 
that regulate cell proliferation, differentiation, apoptosis, 
and migration. Reduced KLF17 in human cancer affects 
TGF-β and p53 pathways. ADGRB3 is a p53-target gene 
that encodes a brain-specific angiogenesis inhibitor, and is 
a member of the secretin receptor family.

Four SNPs (rs10215144, rs3818136, rs9380660 
and rs1792695) were significantly (< 10-5) associated 
with ERG positive phenotype under any tumor focus 
positive for the fusion (Figure 2, Table 2). rs3818136 
is a synonymous variant and rs9380660 is downstream 
variant of TBC1D22B, a GTPase activating protein for 
Rab family. Rab GTPase proteins are aberrantly expressed 
in various tumors and are found to be involved in cancer 
progression. rs10215144 is an intron variant in AGBL3, 
an ATP/GTP binding protein-like 3 and rs1792695 is an 
intron variant in ncRNA LOC100505474.
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Figure 1: Schematic representation of the study.

Table 1: Clinico-pathological characteristics of patients in ERG+ and ERG- prostate cancer
Variable ERG- ERG+ P value

N 182 120
Age at diagnosis (year)

Mean (SD) 57.9 (8.4) 56.1 (8.8) 0.0785
PSA at diagnosis (ng/mL)

Median (range) 5.0 (0.6–129.1) 5.3 (0.5–22.4) 0.6992
FU (year)

Median (range) 7.5 (0.6–17.3) 7.9 (1.2–17.7) 0.5047
Pathological T stage

pT2 136 (74.7) 93 (77.5)
pT3–4 46 (25.3) 27 (22.5) 0.5815

GG
GG1-3 104 (59.4) 82 (68.9)
GG4-5 71 (40.6) 37 (31.1) 0.098
Missing

Surgical margin
Negative 139 (80.8) 83 (70.9)
Positive 33 (19.2) 34 (29.1) 0.0509

Abbreviations: N: total numbers; SD: standard deviation;  FU: follow-up; pT: pathological T stage; GG: Gleason group. Data 
represented here is based on index tumor.
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We also performed the association analysis for the 
six known GWAS risk SNPs at 8q24, 5p15, 8p21, 17q24, 
19q13 and 22q13 that were reported to be associated 
with ERG fusion status [51–53]. The present study 
validates rs11704416 in chromsome 22 and rs16901979 
in chromosome 8q24 to be significantly associated with 
ERG fusion status either by index tumor (rs11704416; 
p = 0.0043; rs16901979; p = 0.012) or by any tumor 
focus positive for ERG fusion (rs11704416; p = 0.033; 
rs16901979; p = 0.034) (Supplementary Table 1).

Genotype imputation analysis

Imputation analysis of genome-wide Oncoarray 
(500,000 SNP) data was performed by the IMPUTE2 
approach using the 1000 Genomes reference dataset. 
Imputed SNPs rs34349373 and rs2055272, two intronic 
variants in TBC1D22B (TBC1 Domain Family Member 
22B), a GTPase activating protein for Rab family, were 
significantly (< 10-6) associated with ERG positive 
phenotype in any tumor foci (Figure 3). The 2 variants are 
found to be in strong linkage disequilibrium in both CA 
and AA populations with r2 of 1.0 and 0.91 respectively. 
Imputed SNP rs2055272 was further validated by TaqMan 
based ddPCR genotyping approach. Concordance between 
Taqman genotypes and imputed genotypes was 98.04% 
(100/102).

Association between the SNPs and 
clinicopathological status

The 9 SNPs (7 SNPs on Oncoarray chip and 2 
imputed SNPs) were assessed for associations with 
clinicopathologic features, including pathological 
stage and grade at prostatectomy and incidence of 
biochemical recurrence. rs34349373 and rs2055272 
were significantly (p < 0.05) associated with CaP ERG 
fusion status in both AA and CA patients, where the 

variant allele is more frequent in ERG negative cases 
(Supplementary Table 2). However, these SNPs were 
not associated with pathological stage (pT stage) or 
Grade Group (GG). Kaplan–Meier analysis indicated 
no association between imputed SNPs and BCR when 
stratified by race or ERG status (Supplementary 
Figure 2). rs3798999 (intron variant in ADGRB3) 
and rs10215144 (intron variant in AGBL3) were 
significantly associated with pT stage (p < 0.05) and 
rs10215144 was also significantly associated (p = 0.048) 
with high grade CaP (GG4-5 vs. GG1-3) on a univariate 
analysis (Supplementary Table 3). Unadjusted univariate 
Kaplan–Meier analysis indicated that rs6698333 (intron 
variant in KLF17) was associated with BCR (p = 0.032) 
in both AA and CA patients, where carriers of the risk 
allele develop BCR significantly earlier during disease 
progression than the carriers of wild type (wt) allele 
(Figure 4A).

ERG status based unadjusted univariate analysis 
revealed that rs3798999 SNP was associated with the 
development of BCR in ERG negative patients (AA and 
CA combined; p = 0.016) and the association is also 
present in ERG negative AA patients (p = 0.032). The 
variant shows “protective effect” towards development of 
BCR (Figure 4B).

DISCUSSION

This is the first genetic epidemiological study on 
the association of genetic variants at a genome-wide 
scale, as opposed to selected SNPs, with TMPRSS2: ERG 
fusion status both by index tumor or by any tumor foci, 
considering the multifocal and multiclonal nature of the 
disease [9, 21]. It integrates data on inherited susceptibility 
and tumor ERG status within a well-defined cohort of 
men with a median longitudinal follow-up of 7.5 years. 
Two SNPs were identified: rs34349373 and rs2055272, in 
TBC1D22B on chromosome 6 to be associated with ERG 

Figure 2: Manhattan plots showing association analysis (EMMAX) of SNPs with (A) ERG positive index tumor (N = 108) vs. ERG 
negative index tumor (N = 180). (B) Any tumor foci positive for ERG (N = 158) vs. ERG negative tumor (N = 133). A total of 478,299 SNPs 
are plotted against their respective positions on the chromosomes.
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status of CaP, a major driver oncogene in CaP. Minor allele 
frequency (MAF) reveals that del variant for rs34349373 
and A allele variant for rs2055272 are significantly lower 
in ERG positive cases compared to wild type (wt) in 
both AA and CA men, thereby implying the association 
of the SNPs with the fusion negative subtype of CaP. 
These two SNPs are also in strong linkage disequilibrium 
(LD; r2 > 0.9). After initial validation, it will be important 
to understand the mechanism by which SNPs influence 
the formation of fusion protein. rs34349373 (-/T) is an 
intronic deletion/insertion variation while rs2055272 
(A/G) is an intronic SNV in TBC1 domain family, member 
22B (TBC1D22B) gene with unknown clinical relevance 
(dbSNP). TBC1D22B is a GTPase activating protein for 
Rab protein family, and is found to be over-expressed in 
many cancers.

Comprehensive genetic and epigenetic analyses 
including our study suggest that tumors with TMPRSS2-
ERG fusion exhibit different genetic etiology compared to 
fusion negatives. Similar associations have been observed 
for GWAS identified genomic loci with the risk of ER-
negative disease in breast cancer subtypes [54]. Further, 
functional analysis based on long range chromatin 
interactomes analysis in CaP cells has shown strong 
enrichment of CaP GWAS SNPs at AR-ERG co-binding 
sites participating in chromatin interactions and gene 
regulation, suggesting potential functional role of these 
SNPs towards specific ERG subtype [55].

We hypothesized that SNPs may influence the 
generation of ERG fusion, which is an early event in CaP 
carcinogenesis. A genome-wide linkage analysis found 
that several loci located on chromosomes 9, 18, and X 
are associated with the development of fusion-positive 
prostate cancer; however, these studies were performed in 
familial prostate cancer [56, 57].

There are two studies which focused on candidate 
SNP approach, covering known GWAS risk variants. The 
first study, Physicians Health Study (PHS) and Health 
Professionals Follow-up Study (HPFS), examined 39 
known risk variants in a patient cohort of 227 ERG 
fusion-positive and 260 ERG negative cases [51, 52]. Six 
SNPs at 8q24, 5p15, 8p21, 17q24, 19q13 and 22q13 were 
found to be significantly associated with ERG fusion 
status. The second study by Luedeke et al. examined 27 
common CaP risk variants using case-case comparison 
approach on 296 TMPRSS2: ERG fusion-positive versus 
256 fusion-negative cases, alongwith an independent 
validation of significant SNPs in a patient cohort of 669 
cases. The study found that variants at 8q24 and 17q24 
were significantly linked with TMPRSS2-ERG fusion 
status. Interestingly, in both studies, rs1859962 at 17q24 
was identified to be significantly associated with fusion 
positive CaP and the variants in the risk loci of 8q24 were 
found to be over-represented in fusion negative CaP, 
implying the role of 8q24 region towards fusion negative 
subtype of CaP. The present study also replicated 2 of the 
known ERG associated SNPs (rs11704416 in chromsome 
22; rs16901979 in chromosome 8) from PHS and HPFS 
study. The SNPs were associated with ERG fusion status 
either by index tumor or by any tumor foci positive for 
ERG. rs16901979 has been associated with increased 
risk for CaP in several studies including AA men [36, 
58, 59]. SNP rs11704416 was found to be associated 
with aggressive CaP in a meta-analysis of four GWAS 
including 5,953 cases of aggressive CaP and 11,463 
controls [60].

An earlier study by FitzGerald [16] et al. based on 
association of 5 candidate SNPs in ERG and TMPRSS2 
in a cohort of 127 patients, showed a positive association 
for rs12329760 in chromosome 21 in TMPRSS2 for fusion 

Table 2: Description of the 9 significant SNPs

Chr SNP Location

Alleles
[minor 
allele/
common 
allele]

Transcript (s) Gene (s) In-exon Mutation (s) P-value MAF

6 rs1889877 69729678 [A/G] NM_001704.2 ADGRB3 (BAI3) Intron 
Variant NA 0.00549042 0.028

1 rs6698333 44554457 [T/C] NM_173484.4 KLF17 Intron 
Variant NA 0.0017769 0.489

6 rs3798999 69714947 [A/G] NM_001704.2 ADGRB3 (BAI3) Silent NA 0.00017719 0.486

7 rs10215144 134765148 [A/G] NM_178563 AGBL3 Silent NA 0.00000952 0.461

6 rs3818136 37252210 [T/C] NM_017772 TBC1D22B EXON Synonymous 
N257N 0.00000067 0.400

6 rs9380660 37305622 [T/G] NA NA NA NA 0.00000282 0.495

18 rs1792695 53782900 [T/G] NR_040026 
NR_040025

LOC100505474 
LOC100505474 Silent, Silent NA 0.00000319 0.273

6 rs34349373 37254109 -/T NM_017772 TBC1D22B intron variant NA 0.00000005 0.419

6 rs2055272 37289781 A/G NM_017772 TBC1D22B intron variant NA 0.00000006 0.396

Abbreviations: Chr: chromosome;  MAF: minor allele frequency; SNP: single nucleotide polymorphism; NA: not applicable. Location Information is based 
on genome assembly- GRCh37 (hg19). P value is based on EMMAX analysis using an additive model.
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subtype resulting from translocation. Another study 
showed that shorter germline CAG repeat length in AR 
[61] and rare variants in DNA repair genes, ESCO1 N191S 
and POLI F532S [51] were associated with higher risk of 
ERG-positive CaP.

However, these studies are mainly based on a 
few candidate SNPs, in a population predominantly 
represented by Caucasians. Therefore, it is important 
to explore the SNP association on a genomewide scale 
in context of race, as ERG is expressed almost 2 times 
more frequent in CA than AA CaP. Additionally, in these 

studies, only one tumor focus was evaluated per specimen 
which does not take into account focal heterogeneity of the 
disease. Limitations of the present study includes: a) lack 
of independent validation b) limited generalizability of the 
CPDR cohort to other US longitudinal cohorts, as well as 
RP patients in other nations [7].

In summary, this study identified the association of 
2 SNPs (rs34349373 and rs2055272) in TBC1D22B with 
ERG fusion status where the minor alleles are associated 
with an ERG negative subtype of CaP. Additionally, 
rs3798999 SNP (ADGRB3) was significantly associated 

Figure 3: Fine-mapping of genetic associations by imputation analysis (A) Imputation analysis (IMPUTE2) of SNPs with any tumor foci 
positive for ERG phenotype in a total of 158 ERG positive and 133 ERG negative cases. A total of 13 million imputed SNPs with MAF > 
1% SNPs are plotted against their respective positions on the chromosomes. (B) Plots show association results of imputed SNPs. -log10 
P values (y axis) of the SNPs are shown according to their chromosomal positions (x axis). The Genome Browser annotation track page 
zoomed in to display the rs34349373 and rs2055272 (intron variants) in TBC1D22B gene on human chromosome 6, Feb 2009 assembly 
(hg19) (C) Genotype and allele frequencies of the rs34349373 and rs2055272 polymorphisms in ERG positive (by any tumor foci) vs. 
ERG negative CaP (D) Representative graph for SNP genotyping for rs2055272 (C/T) using droplet digital PCR (ddPCR) approach. Upper 
panel shows concentration (copies/ul) of FAM allele (T; Channel 1) and VIC allele (C; Channel 2) in set of representative samples with 
3 genotypes (CT, TT, CC). Lower panel is 2-D Amplitude view where each axis represents the amplitude of fluorescence for either FAM 
(vertical axis) or VIC (horizontal axis). The FAM probe can hybridize only to the alternate allele (T allele), while the VIC probe hybridizes 
only to reference allele (C allele).
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with the development of BCR in ERG negative patient 
cohort. Validation study in independent large patient 
cohort with race stratified analysis, and functional 
understanding of the biology of these SNPs in relation to 
ERG phenotype are warranted. Overall, this study may 
contribute toward defining the underlying biology and 
genetics of ERG positive and ERG negative CaP in AA 
and CA patients.

MATERIALS AND METHODS

DNA specimens

In this retrospective cohort-based study, 400 
archived genomic DNA specimens were used from 
blood of CaP patients undergoing radical prostatectomy 
treatment at Walter Reed National Military Medical Center 
(WRNMMC) under an IRB approved protocol. DNA was 
extracted from peripheral blood lymphocytes using Qiagen 
DNeasy Blood kit. Archived clinicopathological data were 
evaluated from the 400 patients who self-identified their 
race as AA or CA.

TMPRSS2-ERG fusion status

ERG status was determined by immuno-
histochemistry (IHC) for ERG protein expression, as 

a surrogate for the TMPRSS2-ERG fusion. For ERG 
IHC analysis, representative whole-mount 4-um cross 
section encompassing tumor foci with highest grade 
and/or stage from each prostatectomy specimen were 
processed and stained with a highly specific anti-ERG 
monoclonal antibody (clone 9FY; Biocare Medical Inc., 
Concord, CA, USA) as previously described [8, 62]. 
The index tumor was identified as the tumor with the 
largest volume if all foci have the same grade, or with 
the highest Grade Group. Multiple tumor foci (average no. 
5) in representative whole-mount prostate sections were 
evaluated, per patient, for the presence or absence of the 
ERG oncoprotein. The patient was called ERG positive 
when any of the tumor foci was positive. Slide selection, 
tumor grading, and staining interpretation were performed 
by a single pathologist.

SNP genotyping (infinium oncoarray, a 500K 
BeadChip)

SNP genotyping was performed on the Illumina 
Golden Gate genotyping platform using Infinium 
Oncoarray, a 500K BeadChip on a genome wide scale in 
400 CaP patients. The oncoarray contains approximately 
500,000 SNPs including 275,000 tagSNPs. It includes 
SNPs covering common ancestry (1,500 SNPs), genetic 
variants associated with 5 common cancers (breast, 

Figure 4: Kaplan-Meier estimation curve of time to BCR as a function of SNPs. (A) rs6698333 SNP [Wt (CC), 0 vs 
Heterozygous (CT), 1 vs Polymorphic homozygous (TT), 2] for CaP patients in AA (n = 198) and CA patients (n = 106). The log-rank p 
value (p = 0.0321) indicates that there is an association between SNP and BCR over time. (B) rs3798999 SNP [Wt (GG), 0 vs Heterozygous 
(GA), 1 vs Polymorphic homozygous (AA), 2] for CaP patients in ERG negative patients (AA and CA combined; n = 181; left panel) and 
for ERG negative AA patients only (n = 137; right panel). The SNP was found to be associated with BCR in ERG negative patient cohort 
(p = 0.016) specifically in AA patients (p = 0.032).
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colorectal, lung, ovarian and prostate) as well as SNPs 
covering quantitative traits, pharmacogenetics, and fine 
mapping of common cancer susceptibility loci. It includes 
80,000 prostate cancer specific genetic variants. A total 
of 496654 SNPs genotype calls were generated from the 
400 specimens. Data quality control (QC) was performed 
by applying sample and SNP QC using PLINK [63]. 
14,729 SNPs were excluded due to SNP call rate < 0.90. 
Additional 1,482 SNPs were excluded due to deviation 
from Hardy–Weinberg Equilibrium (HWE) test (P-value 
< 1 × 10-8). 48 samples were excluded due to sample call 
rate < 0.95, and 33 samples were further excluded based 
on plink proportion identity-by-descent (PI_HAT) > 0.15) 
[64]. The final QCed genotype data included 478,299 
SNPs from a total of 321 patients (AA = 216 and CA = 
105).

Statistical analysis

Association analysis was based on Efficient 
Mixed-Model Association eXpedited (EMMAX) which 
accounts for population structure, including relatedness 
between cases [65]. The analysis was performed based 
on the additive model. Genotype imputation analysis 
was performed on oncoarray SNP array dataset using 
IMPUTE2 based on the 1000 Genomes Project data (phase 
3) [66, 67]. Imputation analysis was based on a total of 13 
million SNPs with MAF > 1%, where we used only well-
imputed variants (IMPUTE2 info score ≥ 0.9; MAF >1%). 
For the initial discovery analysis, we have used lower 
significant threshold (1 × 10-5) to identify possible genetic 
loci associated ERG fusion. However, for the imputation 
approach, we have used a higher significant threshold (1 
× 10-8) to discover probable causal variants associated 
with ERG fusion. Chi-square testing or Fisher exact 
test were used to evaluate the associations of genotypes 
with clinical-pathological variables. Unadjusted Kaplan-
Meier survival analysis and log-rank testing were used 
to show the probability of BCR-free survival stratified 
by genotypes. All statistical analysis was performed 
using SAS version 9.4 (North Carolina) and statistical 
significance was set at p < 0.05.

TaqMan SNP genotyping

Imputation results for rs2055272 were further 
validated by TaqMan genotyping (assay C_3025729_20, 
ThermoFisher Scientific) in 102 patients (98.03% 
concordance). Validation was performed by droplet digital 
PCR (ddPCR) approach using a QX200 Droplet Generator 
(BioRad) and the data was analyzed by QuantaSoft 
software (BioRad). Briefly, a ddPCR mastermix was 
prepared containing 11 μl 2× ddPCR Supermix (Bio-
Rad), 1.1 μl 20× Taqman SNP Genotyping Assay (Applied 
Biosystems), and 7.9 μl nuclease-free water (Qiagen) per 
sample. The mastermix was prepared at room temperature 

and 20 μl was added to 2 μl (5 ng) of each DNA sample. 
Samples were loaded into individual wells of DG8TM 
cartridges (BioRad), and droplets were generated using a 
QX200 Droplet Generator (BioRad). For each sample, 40 
μl of droplet mix was then transferred to a 96-well plate, 
and PCR was performed in a thermal cycler using the 
following cycling conditions: 95°C × 10 min; 40 cycles of 
[94°C × 30s, 60°C × 60s]; 98°C × 10s; 40°C × 10 min. The 
Bio-Rad QX200 Droplet Reader was then used to assess 
droplets as positive or negative based on fluorescence 
amplitude. The QuantaSoft software (BioRad) was used 
to analyze droplet data.
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