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Machine learning-based real-time object locator/
evaluator for cryo-EM data collection
Koji Yonekura 1,2,3✉, Saori Maki-Yonekura1, Hisashi Naitow 1, Tasuku Hamaguchi 1 & Kiyofumi Takaba1

In cryo-electron microscopy (cryo-EM) data collection, locating a target object is error-prone.

Here, we present a machine learning-based approach with a real-time object locator named

yoneoLocr using YOLO, a well-known object detection system. Implementation shows its

effectiveness in rapidly and precisely locating carbon holes in single particle cryo-EM and in

locating crystals and evaluating electron diffraction (ED) patterns in automated cryo-electron

crystallography (cryo-EX) data collection. The proposed approach will advance high-

throughput and accurate data collection of images and diffraction patterns with minimal

human operation.
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Cryo-EM work can extend over hours or days during which
thousands of image stacks are collected for high-resolution
single particle reconstructions. Automated data collection

with minimal human-supervision would be advantageous. A
number of computer programs have been developed to fulfill this
(e.g. refs. 1–3), and are widely used in laboratories and shared
facilities. Automation is also becoming increasingly important in
electron 3D crystallography/3D ED/microED, where acquisition
of rotational diffraction data from many small crystals is often
needed (e.g. refs. 4,5).

The operator’s tasks in single particle analysis (SPA) data
collection typically comprise: alignment of the microscope;
selection of grid squares and carbon holes containing sample
molecules from low magnification images; and start data acqui-
sition. Data acquisition requires expediting search, focus, and
record modes. In search mode, a target carbon hole with a dia-
meter of 1–2 μm and filled with amorphous ice is positioned at
intermediate magnification. This maneuver is error-prone due to
discrepancies in stage positions between low and intermediate
magnifications and a poor positional reproducibility or
mechanical instability of the specimen stage. The stage rarely goes
to an exact pre-registered position within an allowable error
range, typically, a few hundred nano-meters. Precise adjustment
of the stage position in search mode is critical and yet often
frustrating. Stage alignment to a hole is done by cross-correlating
a test image at 1,000× to 10,000× magnification and a reference,
an ideal hole image at the same magnification or a corresponding
image at lower magnification, prepared beforehand. However,
this step can be problematic, particularly when poor signals in
thick ice, incorrect or broad correlation peaks of partially recor-
ded multiple holes, and contamination. Accurate positioning is
being more critical, as many image stacks are acquired from
nearby areas without repositioning the stage for high-throughput
data collection6.

The same transposition problem arises in automated cryo-EX
data collection. Since the appearances of crystals differ from
crystal to crystal, it is more challenging than for hole detection.
Here we introduce a new approach based-on machine-learning
for real-time object locator and have applied it to automated
cryo-SPA and EX data collection. The program can also evaluate
the quality of diffraction patterns worthwhile to proceed to data
collection.

Results and discussion
Cryo-SPA data acquisition. Modern schemes take 9–25 or more
image stacks from holes clustered around a central hole (Fig. 1a)

and/or even more stacks for one hole (Fig. 1b) through changing
deflector coils once the stage is moved to a new position6. No
additional image used for alignment is acquired for each sur-
rounding hole. This approach is indeed very effective to speed up
data collection, but, when the alignment fails, it can be disastrous,
yielding much useless data, wasting time and data storage space.
To avoid this, EM operators can try higher defocus values, longer
exposure times, larger frame binning, and, if applicable, filtration
of inelastically scattered electrons7 for gain in image visibility.
However, these interventions require operator input, is time-
consuming, and can be ineffective in difficult cases. Also, during
unsupervised data acquisition multiple trials for positioning one
hole may be repeated, resulting in possible radiation damage.

Instead of relying on cross correlations, we have developed a
new algorithm incorporating machine-learning (Fig. 2) and the
well-known real-time object detection system YOLO (You Only
Look Once)8. Machine-learning has already been introduced in
the cryo-EM field to solve various problems in data analyses such
as particle picking (e.g. refs. 9–11), denoising (e.g. ref. 12), analysis
of structure variations (e.g. ref. 13) and so on. However, it has not,
or has hardly, been used in the control and supervision of data
collection to our knowledge, while YOLO was originally designed
for real-time object detection. Our software named yoneoLocr
(You Only Navigate EM Once to LOCate in Real time) is based
on the latest release of YOLO version 5 (YOLOv5; https://
github.com/ultralytics/yolov5), and can detect objects in less than
0.1 s using trained weights.

Implementation required using cryo-EM images containing
carbon holes recorded at a nominal magnification of 8,000× on a
Gatan K3 direct electron detection (DED) camera with a JEOL
CRYO ARM 300 electron microscope14,15. This magnification is
generally used for stage alignment in search mode of SPA data
collection, but here the in-column type energy slit is retracted due
to a large cut in the view. We then enclosed the carbon holes in
these images with a box and annotated them as “hole”. The
annotated images were trained with a network model of
YOLOv5s on 4× GPU cards installed on a Linux workstation.
Data statistics for training are summarized in Table 1. Hole
detection was excellent (Fig. 3). Unsurprisingly, YOLOv5 out-
performed YOLOv3, and the simplest model YOLOv5s showed a
superb performance for hole detection. The trained weight
succeeded in the detection of holes recorded at different
magnifications (×2.5k) and holes in gold grids (Fig. 4).

We made a python program named yoneoLocrWatch.py
(Fig. 2) to monitor updates in a predefined directory of a K3
control Windows PC equipped with two GPU cards. One GPU

Fig. 1 Schematic diagram of data taking for SPA through image shifts. a Stage shift is only used to locate the central hole in yellow, and image shifts are
applied for data taking from other 24 holes in this example. b Multiple images stacks, 4 in this example, are recorded from different areas shown in small
red circles in one hole. Pre-check of the surrounding holes is unsuitable for fast collection of images stacks from each hole.
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card may be enough as the computation and memory loads are
low during running of the object detection routine and at other
times the program is idle. Once a text file in the directory is
renewed, the program reads an image indicated in the text file
and provides the best directions for stage shifts based on

confidence level, hole size, and distance from the center of the
image. Hole detection typically takes ~0.06 s. We made a
SerialEM script, AlignyoneoHole, for incorporating this hole
detection step into automated data acquisition (Fig. 2). The script
takes a new image, updates the directory, reads a log, and shifts

Fig. 2 Schematic diagram for positioning the target and checking the quality of diffraction patterns by yoneoLocrWatch.py, SerialEM scripts and
associated programs. The main program yoneoLocrWatch.py runs in 4 distinct modes for stage alignment for a carbon hole (hole) and a crystal (xtal), for
evaluation of diffraction patterns (diff) and for detection of crystals on low magnification images and registration of crystal positions (lowmagxtal). The
SerialEM scripts call and control yoneoLocrWatch.py and other associated programs including ParallEM.

Table 1 Data statistics for training of images and diffraction patterns with YOLOv5.

Mode hole xtal diff lowmagxtal

Numbers of original images 300 331 751 33
Resized dimension of images 800 × 800 800 × 800 1024 × 1024 800 × 800
Model YOLOv5s YOLOv5x YOLOv5x YOLOv5x
Training time (h) ~1.9 ~4 ~20 ~1
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the stage if needed. This approach never failed in stage alignment,
even for difficult samples with large contamination and less
visibility of thick ice or carbon film over holes, as long as holes
were recognizable by the human eye (Fig. 3a–d), in notable
contrast to the cross-correlation method (Fig. 3a, b). In one
dataset collected using yoneoLocr from a holey carbon grid
covered with a thin carbon layer, ~91% of images were correctly
aligned within two trials (218 of 240) and the remaining ~9%
were aligned by the third trial (239 of 240). The success rate
within second trials reached ~93% for typical samples (528 of
565) on standard holey carbon grids or gold-sputtered holey
carbon grids14. The final success rate was also increased from ~78
to ~100% with running yoneoLocr for hole detection (Table 2).
Of course, this is a qualitative measure, as the performance of
locating holes varies depending on each sample condition.
Obviously, there are additional advantages - ~5–50-fold less
exposure time (decreased from 0.5–2 s to 0.03–0.2 s for taking one
search image and requiring less repeats till positional error is
small enough), therefore less radiation damage, and no or less
defocusing, therefore minimal objective lens changes and more
stable data collection. A typical job for hole detection and stage
alignment is shown in Supplementary Movie 1.

Cryo-EX data acquisition. There have been several reports and
programs for automated collection of rotational ED data (e.g.
refs. 16,17). Our group also developed and reported a scheme that
combines SerialEM for positioning of sample crystals and Par-
allEM for controlling data acquisition18. This protocol needs
manual positioning of crystals and registration of the coordinates
in defocused diffraction (search) mode before unsupervised data
acquisition is started in focused diffraction (data-taking) mode.
Thus the same transposition problem is seen in SPA data col-
lection arises. Since the appearances of crystals differ from crystal
to crystal, it is more challenging than for hole detection, as
mentioned. The original protocol does not include re-positioning
to target crystals during data collection and is more severely
affected by positional reproducibility.

YOLO was used again for training with various crystal images
of proteins19, polypeptides, organic molecules5, and semiconduc-
tor materials4 recorded in defocused diffraction mode on
different cameras, two scintillator-coupled CMOS cameras, Gatan
OneView19 and TVIPS XF4165,15, and one DED camera Direct
Electron DE644. As samples often contain ice crystals of
characteristic hexagonal shape and yielding strong hexagonal
diffraction patterns, crystal images were annotated as “xtal” or

Fig. 3 Detection of carbon holes. a, b Failures of stage positioning were done by cross-correlation with a reference image using SerialEM due to excessive
contamination in dark blobs and to partially recorded multiple holes. Center small rectangles (white broken lines) indicate a rough position and dimension
of acquired movie stacks on the K3 camera at a nominal magnification of 100,000×. The horizontal size of the rectangles corresponds to ~0.28 μm. Thus,
each of these alignments produced 25 useless image stacks, as image shifts were applied over 5 × 5 neighboring holes for data collection at that time.
YOLOv5 with a weight trained in this study detected all holes (boxes) correctly. c, d Low-contrast images of holes covered with a thin carbon layer and
with thick ice. The trained weight still succeeded in hole detection (boxes). e The first image taken in search mode. f The second image after stage
adjustment by yoneoLocrWatch.py running in hole mode and AlignyoneoHole.
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“ice” according to appearance. We also trained YOLOv5 with ED
patterns of crystals acquired in data-taking mode. Diffraction
patterns were visually assigned as “good”, “soso”, “bad”, “no” and
“ice” depending on the quality of the patterns within a single box
covering most of the whole image. The worst level “no” had
patterns with no diffraction spots. The most accurate model
(YOLOv5x) was adopted for both crystal images and diffraction
patterns.

Runs, incorporating the trained weights, were implemented in
DE64 and XF416 camera control PCs equipped with GPU cards.
Two sessions of yoneoLocrWatch.py were launched simulta-
neously in two different modes, “xtal” for locating a crystal and
“diff” for evaluating the diffraction pattern (Fig. 5). Two SerialEM
scripts, AlignyoneoXtal and ChkDiffyoneo, were made for
incorporation of these operations into script RotParallEMyoneo
that calls up ParallEM for sequential data collection of rotational
diffraction patterns in a queue list in the Navigator window of
SerialEM (Fig. 2). SetDiff in ParallEM switches between defocused
(search) and focused (data-taking) modes by changing only the
intermediate lens 1 (IL1) value. During data collection, it never
goes back to imaging nor low magnification modes. Thus, possible
hysteresis from lens changes is minimal and the beam setting is
stable even over operations taking several days, which could
include overnight breaks with the beam off and multiple flashing
cycles for refreshing the cold-field emission gun in the CRYO
ARM 300 microscope14,15,18. SetDiff also controls insertion and
retraction of the selected aperture and energy slit15,18.

Thus, identifying suitable crystals and positioning one to center
view are possible in defocused diffraction mode, as is done for
carbon holes in the SPA data collection scheme (Fig. 5a, b). This
step mostly performed well, but, different from regular hole
patterns, moving to the best crystal sometimes failed when the
crystals are, for example, crowded or too thick. Thus, a prior
quality check of untilted still diffraction patterns would be
helpful, as acquisition of one rotational data set takes 2–3 min
and rotational frames fill large disk space. This can be done in
data-taking mode with a short exposure of ~0.1 s (Fig. 5c;
Supplementary Fig. 1). It works particularly well for protein and
organic semiconductor crystals, which yield many diffraction
spots. Data taking with other crystals may succeed at the low
assessment levels “soso” or even “bad” (Supplementary Fig. 1).
The worst level “no” assigned for no diffraction spots was always
easily determined for all samples tested in this study (Supple-
mentary Fig. 1c). Once the diffraction pattern is judged to be
above a given level, RotParallEMyoneo calls up Rotations in
ParallEM to start rotational data acquisition (Fig. 2). A typical job
for crystal detection, stage alignment, and diffraction evaluation is
shown in Supplementary Movie 2.

Finally, we annotated crystals in single grid squares in low-
magnification images (250–400×) and trained with YOLOv5x
again. We categorized crystals as “xtal” for candidates for data
collection, “thick” for dense samples, and “edge” for those at the
periphery of the grid square roughly normal to the rotation axis.
Data collection from crystals at the edge may be blocked by the
grid bar at high tilt angles. We also annotated neighboring grid

Fig. 4 Hole detection in different conditions. a Carbon holes taken at
2,500×. The hole size is ~1.5 μm. b Holes on a gold grid (Quantifoil
UltrAuFoil R 1.2/1.3) taken at 8,000×. Histogram equalization was not used
for better detection of the gold holes. The hole size is ~1.2 μm.

Table 2 Typical data statistics for locating carbon holes in SPA data collection with and without running yoneoLocr.

Without yoneoLocr

Date Grid type Total image number* Success Fail Success rate (%)

2020.12.25–2020.12.27 Gold sputtered 16,814 13,214 3600 78.6
2021.1.27–2021.1.29 Covered with thin carbon film 4223 3150 1073 74.6
2021.2.8–2021.2.9 Gold sputtered 3975 3250 725 81.8
Total 25,012 19,614 5398 78.4

Running yoneoLocr in hole mode

Date Grid type Total image number* Success Fail Success rate (%)

2021.2.18–2021.2.19 Covered with thin carbon film 5927 5927 0 100
2021.3.8–2021.3.9 Covered with thin carbon film 6749 6724 25 99.6
2021.3.18–2021.3.23 Gold sputtered 23,663 23,663 0 100
Total 36,339 35,684 36,314 99.9

* Numbers of center holes adjusted by stage shift are ~1/25 of the total image numbers.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02577-1 ARTICLE

COMMUNICATIONS BIOLOGY |          (2021) 4:1044 | https://doi.org/10.1038/s42003-021-02577-1 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


squares as “neighbor” to exclude crystals on other squares. Thus,
the approximate positions of crystals can be obtained by
yoneoLocrWatch.py running in the new mode “lowmagxtal”,
and SerialEM script, FindXtalPosyoneo, which calls up a python
script, cnvxtalpos2Nav.py, to convert crystal coordinates, and adds
the positions to a queue list (Figs. 2, 5f, g). This step can be retried
with a new confidence threshold level for crystal selection by
redoyoneoLocr without retaking images (Supplementary Movie 3).
Users may also edit the queue list. Now, registration of suitable

crystals and unsupervised rotational data collection are almost
fully automated by combining the three implementations in
yoneoLocr and associated programs above. Automatic positioning
to crystals can be implemented in several published programs,
which set certain threshold pixel values to define crystal areas16,20,
but they cannot discriminate ice crystals, nor avoid thicker ones.

The success rate was increased from 52.8% to 100% (Table 3)
when an assessment level of “good”+ “soso” for diffraction
patterns was used. Again this is a qualitative measure.

Fig. 5 Detection of crystals and check of diffraction patterns. a, b Detection of crystals in defocused diffraction mode by yoneoLocrWatch.py in xtal
mode. A hexagonal ice crystal was identified in b. The beam size is ~5 μm in a and b. c, d, e Evaluation of diffraction patterns by the same python program in
diff mode. A diffraction pattern from an ice crystal was identified in e. f Detection of crystals taken in a low-magnification (300×) image in lowmagxtal
mode. Crystals at the square edge were also identified, and crystals were not selected from neighboring squares. g. Registration of crystal positions to a
queue list in SerialEM by FindXtalPosyoneo and cnvxtalpos2Nav.py. The crystals at the edge were automatically excluded in this case. The square size is
85 × 85 μm2.
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Nevertheless, our approach can remarkably reduce the time and
labor, whereas manual selection/registration of good-diffracting
crystals usually takes a long time.

Conclusions
In summary, we have developed a real-time object locator/eva-
luator yoneoLocr for cryo-EM data collection based on machine-
learning, which obviates development of special algorithms for
each target. Application of the software with SerialEM scripts is
effective in efficient unsupervised data collection for SPA and
electron 3D crystallography. Object detection is very fast, and can
be done with small CPU and GPU loads and minimal memory.
There is no delay in running SerialEM and ParallEM, usage is
simple, and the routine can be called from other software.
Locating carbon holes is extremely precise, with short exposure
time, and is even effective in hitherto difficult cases—greatly
benefiting SPA data collection. We could also train the detection
system on various images such as lacey holes, empty ones, and
holes with thick ice and contaminations, as proposed
previously21, but it would be less useful for automated data col-
lection through image shifts, as this scheme always uses a regular
array of holes and skips pre-check of all surrounding holes
around the center one for speeding the whole process up. Image
selection could be done just after image acquisition by using other
software such as Warp11 and cryoSPARC Live22. Implementation
for automated cryo-EX data collection also performs well, but
may need further training with more ED data. The program is
also able to re-tune the weight with new data during data col-
lection, which is a function implemented in YOLOv5. We have
yet to thoroughly test this feature.

Methods
YOLOv5 (https://github.com/ultralytics/yolov5) was installed under python 3.8
environment created by Anaconda in a linux work station equipped with 4×
NVIDIA GeForce Titan X GPU cards. This version of YOLO uses PyTorch for
deep learning together with CUDA, cuDNN, and so on. A real-time object locator
yoneoLocrWatch.py developed in this study was set up under the same environ-
ment created by Miniconda or Anaconda on camera control PCs operated by
Microsoft Windows Server 2012R2 for K3, and Windows 10 for DE64 and XF416
cameras. The program and associated scripts were placed in C:∖ProgramData∖ in
the PCs. The K3 control PC is equipped with two GPU cards, Quadro K2200 and
P6000, the DE64 PC with two Quadro RTX6000s and the XF416 PC with a Quadro
K420 and a P4000. PyTorch in our configuration did not support the old Kepler-
architecture K420 card. ImageMagick was used for pretreatment of images in
yoneoLocrWatch.py. Details of the installation and command line options are
presented in Supplementary method.

Cryo-EM images and ED patterns in jpeg format were annotated with GUI
software labelImg (https://github.com/tzutalin/labelImg), and the format of coor-
dinates and class names for annotated objects were converted to the YOLO format
using convert2Yolo (https://github.com/ssaru/convert2Yolo). All training was done
on the linux workstation using train.py included in YOLOv5. Detection test was
performed with detect.py.

For hole images, several variations of original images were created by applying
binning of images and/or histogram equalization using convert of ImageMagick.
Training for the images took ~1.9 h using a network model YOLOv5s with an
image size of 800 × 800. The most accurate model (YOLOv5x) was used for
training of crystal images taken in search mode and diffraction patterns in data-
taking mode. It took ~4 h with an image size of 800 × 800 and ~20 h with an image
size of 1024 × 1024. Training of crystals taken in low magnification images was
done using the YOLOv5x model. Each image contained many crystal images
(Fig. 5f and g), which reached a good weight from a relatively smaller number of
input images. Training statistics are shown in Table 1 and training metrics in
“confusion_matrix.png” and “results.png” generated by YOLOv5 are given in
Supplementary Fig. 2. The confusion matrixes suggest that misassignment may
occur for some classes such as “ice” in xtal, “soso” in diff and “edge” in lowmagxtal
modes, probably due to small numbers of training objects in the “ice” and “edge”
classes and difficult cases in the “soso” class. Of course, the metrics strongly depend
on training and validation datasets. Detection and classification of these objects
were correct with the trained weights here in usual cases, but further training
should be done with more data and proper labels.

For control and unsupervised data acquisition, yoneoLocrWatch.py keeps watching
updates in a predefined directory, WatchHole\ in hole mode, WatchXtal\ in xtal
mode, WatchDiff\ in diff mode and WatchLowmagXtal\ in lowmagxtal mode. Once a
text file in these directories is renewed, the program reads an image indicated by the
text file. Running in hole mode can enhance the image contrast by applying binning
and histogram equalization. Then, it detects holes and gives the best answer for stage
shifts in a log file based on the confidence level, the hole size, and distance from the
center of the image. Running in other modes also gives the results of detection or
evaluation in a log file.

SerialEM scripts AlignyoneoHole, AlignyoneoXtal, ChkDiffyoneo, and FindX-
talyoneo take images, put a text file containing the location and name of a newly
recorded image in the directories yoneoLocrWatch.py is watching, and obtain
alignment parameters or quality check from a log file of yoneoLocrWatch.py. Then,
AlignyoneoHole and AlignyoneoXtal move the stage if needed. As the pixel size
cannot be defined in diffraction mode, we spread the beam to the detector edge and
supply the beam size (~5 or ~7 μm) to AlignyoneoXtal as a scale for stage shifts.
ChkDiffyoneo determines whether the corresponding crystal is worth rotational
data collection or not. FindXtalPosyoneo finds crystals in low magnification images
and adds the crystal position in a queue list in the Navigation window of SerialEM.
This crystal detection can be retried with a new threshold of the confidence level by
a SerialEM script redoyoneoLocr without taking the same images again. The retry
needs to stop yoneoLocrWatch.py running in lowmagxtal mode before starting the
job. Please also refer to Fig. 2 for the workflows.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All other data in this study are available from the corresponding author upon reasonable
request.

Code availability
The software yoneoLocr including SerialEM scripts and associated programs can be
obtained from a GitHub site (https://github.com/YonekuraLab/yoneoLocr). The
ParallEM suite is also downloadable from https://github.com/YonekuraLab/ParallEM.
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Table 3 Typical data statistics for automated cryo-EX data collection with and without running yoneoLocr.

Without yoneoLocr

Date Manual selection (h) Collected diffraction data sets Data quality Success rate (“good” + “soso”) (%)

bad no

2020.10.14–2020.10.15 > ~8 80 17 18 56.3
2021.2.25–2021.2.26 > ~8 81 27 14 49.4
Total 161 44 32 52.8

Running yoneoLocr in lowmagxtal, xtal, and diff modes

Date Automated selection (min) Collected diffraction data sets Data quality Success rate (“good” + “soso”) (%)

bad no

2021.6.08 ~10 188 0 0 100
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