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Abstract: Micro and small bioreactors are well described for use in bioprocess development in
pre-production manufacture, using ultra-scale down and microfluidic methodology. However, the use
of bioreactors to understand normal and pathophysiology by definition must be very different, and the
constraints of the physiological environment influence such bioreactor design. This review considers
the key elements necessary to enable bioreactors to address three main areas associated with biological
systems. All entail recreation of the in vivo cell niche as faithfully as possible, so that they may
be used to study molecular and cellular changes in normal physiology, with a view to creating
tissue-engineered grafts for clinical use; understanding the pathophysiology of disease at the molecular
level; defining possible therapeutic targets; and enabling appropriate pharmaceutical testing on a truly
representative organoid, thus enabling better drug design, and simultaneously creating the potential
to reduce the numbers of animals in research. The premise explored is that not only cellular signalling
cues, but also mechano-transduction from mechanical cues, play an important role.
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1. Introduction

For tissue engineering purposes, bioreactors are used in three ways: to enable, in vitro, a mimic
of the state in which cells exist in vivo so as to understand normal cell and molecular physiology; to
expand cells for potential clinical use, for example in gene and cell therapies, or to mimic a pathological
state in order to study the pathophysiology; and to establish new therapeutic targets and test potential
new treatments in a more realistic setting than simple in vitro conventional culture. Success in this
area would also reduce the burden of use of animals in pharmacological testing.

There are several other uses of bioreactors, both on a micro- and larger scale; often, small- and
micro-bioreactors are used in manufacturing to design new processes of production prior to full
scale fabrication, and lab-on-a-chip applications. These, however, are not the subject of this review.
Rather, this review will cover, in the most part, design of bioreactors that intend to address the
functional mimics of an in vivo environment.

Requirements for Bioreactor Design

Recreating the natural cellular niche using bioreactors is not trivial, and all impacts on cell
behaviour must be considered. For example, there are complex stimuli in vivo that a cell may be
exposed to, related to biochemical or metabolic cues on the one hand (chemical stimuli) and mechanical
stimuli on the other. There is a likely interaction between these signals that will impact cell performance,
so that for bioreactor design it is key to fully understand normal cell behaviour at the molecular level.
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This is particularly relevant when the intention is to mimic a specific pathophysiology with the
intention of promoting or testing new therapies.

In short, a bioreactor design should consider in vivo tissue structure, cellular organization, and cell
survival, which will in turn influence the ensuing function, so the thought processes must start with
the functional requirements; one size will never fit all. Some examples from biology include the
performance of blood vessels depending on their role; for example, the make-up of a vein usually
delivering low pressure flow at low shear that is responsible not only for flow but for heat dissipation,
compared with an artery responsible for high flows, at much higher pressures, especially close to the
heart, which are designed to have thicker musculature in vessel walls and to be more elastic to deal
with greater pressures and pulsatile flow; these tissue structures are often anisotropic. To model these
in a bioreactor, not only the correct cell type but also the mechanical structures capable of delivering
the function is necessary. Another example would be a bioreactor to mimic solid tissues without,
for xample, liver and kidney, which, in contrast, are not dependent on the alignment of particular
fibers for function; these are more mechanically isotropic.

The success of static culture reactors even with 3D constructs is often limited by mass transfer
issues, with either a lack of nutrients to maintain the constructs or failure from a build-up of
endogenous waste products. This arises because the only movement of solutes within the construct is
concentration gradient-dependent and relies only on a diffusion mechanism, so that larger molecules
move more slowly across a gradient than smaller molecules.

Today’s bioreactors usually contain 3-dimensional constructs of cells formed from a single phenotype;
co-cultures of cells of different phenotypes, e.g., epithelial and endothelial; or epithelial and fibroblastic,
or indeed a mixture of several cell types aimed at recreating the in vivo niche. Mass transfer is improved
by making the bioreactors dynamic, using, simply, convection; this fluid flow facilities mass transfer.
Some simple examples of these mixing bioreactors achieving the dynamic state are spinner flasks or
rocking or wave form bioreactors. However, these are not really mimics of any system in the body.

2. Bioreactor Designs

2.1. Perfusion Bioreactors

Perfusion reactors, in contrast, simulate the in vivo environment more closely. The more
successful microbioreactors are based on perfusion systems [1,2], some with simple downward or cross
flow, and others delivering a microgravity environment. The latter achieves greater mass transfer;
examples include rotating wall cell culture systems and fluidised bed bioreactors. Nonetheless, the flow
must be optimised: optimal perfusion leads to improved, tissue-specific expression, whilst too much
can impact not only on cell proliferation, but survival and function possibly by the removal of some
important paracrine factors important for cell survival [3]. Crabbe et al. [4] utilised the rotatory cell
culture system (RCCS), to improve reseeding of decellularised lung tissue with lung cells (C10) and
bone marrow-derived mesenchymal stromal cells (MSCs) and to determine an effect on differentiation
of the recellularised construct. They demonstrated improved proliferation and decreased apoptosis
in this dynamic culture, as well as evidence of differentiation of the stromal cell component; authors
speculate this improvement over 2D culture is mediated by the biomechanical force resulting from fluid
shear, and the increased mass transfer of nutrients, oxygen, and waste-product dilution, and suggest an
application in providing engineered lung tissue and understanding the transition of normal-to-fibrotic
lung phenotype, prevalent in chronic obstructive pulmonary disease (COPD) and affecting more than
60 million people.

The choice of scaffold for the tissue construct will also impact on mass transfer. The thickness
of some “artificial” substrates hinders mass transfer, and pore sizes may not reflect in vivo tissue
organisation. Decellularised tissues may offer a better scaffold environment.
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2.2. Oxygenation

Another element that is frequently forgotten in bioreactor design is the delivery of suitable oxygen
tensions, especially in bioreactors utilising culture media as the nutrient supply, since oxygen diffusion
into aqueous solutions is poor, in contrast to the oxygen-carrying capacity of blood normally perfusing
the body. Whilst microbioreactors can overcome this to an extent by having thin layers of liquid in the
fluid path, good control of oxygen provision and consumption is difficult. Improvements in fluorescent
oxygen sensors have led to advances in this area, although when the perfusion fluid has high protein
content, as seen, for example, in plasma, the technology is not sufficiently robust. Oxygen delivery
in whole organ bioreactors has hampered successful use [5]; for example, the metabolic demands of
cardiomyocytes and hepatocytes for oxygen differ (27.6 and 18 nmol oxygen·mg protein−1·min−1,
respectively) and are not met by a diffusional supply of oxygen in thick tissue constructs. Alternative
oxygen delivery systems may require the use of perfluorocarbons [6] or more physiologically red
blood cells but not whole blood, as that may introduce immune components leading to a systemic
inflammatory response.

2.3. Sheer Stress

Whilst the dynamic state is favourable, since it introduces a degree of shear stress by the very
nature of the flow, this also has an impact on performance. In some tissues it is advantageous,
for example, in blood vessels; in others, it may not represent the physiological state, e.g., in the
liver blood flow through the portal vein is 1200 mL/min; however, the metabolic cells of the liver,
the hepatocytes, are protected by the sinusoidal endothelial cell fenestrae that protect the hepatocytes
themselves from shear. None but the most sophisticated of bioreactors can easily mimic that.

2.4. Mechanical Stimuli

The mechanical stimuli that impact cell physiology can be engineered into bioreactors in several
ways. Essentially, these stimuli are achieved by enforcing a mechanical load on a tissue or cell construct.
Such forces include compression, shear stress, stretch and compression, and pressure loads. It is clear
from biology that each of these are reflected in body systems: muscles, blood vessels, ligaments,
and tendons are all exposed to stretch loads in different ways. Bones encounter compression and
torsion in normal physiology. A broken bone has two phases of healing: that which requires no
movement and that which requires a load to encourage bone and muscle growth, i.e., tissues can adapt
performance according to mechanical stimulation. The two laws governing such adaptation in hard
and soft tissues, respectively, were described in the 19th century and still hold true today (Wolff 1892
and Davis 1867) [7,8].

2.5. Mechano-Transduction and Cellular Signalling

At a more cellular level, these loads lead to mechano-transduction of cellular signalling pathways.
Examples include focal adhesions, cell to cell contacts, integrins and cadherins, and nuclear deformation.
Such changes take from seconds to weeks depending on whether they are receiving a stimulus such
as surface rigidity, “sensing” the local environment (milliseconds to seconds), altering gene expression
(minutes to hours), or changing cell behaviour and function (days), or even influencing tissue development
(weeks). Proteins involved in these processes include focal adhesion kinases and YAP (yes-associated
protein), among many others.

An area of burgeoning research is the impact of viscosity and stiffness on cellular signalling;
viscosity and stiffness also impose a mechanical load and affect cell morphology [9]. This too should
be encompassed in microbioreactor design. As well as mechano-transduction impacting on signalling,
downstream gene expression will be altered; the role of the directional loading force can influence
protein binding on extracellular matrices and thus is also critical in bioreactor design. The shear stress
forces should represent the mechanical environment of the original tissue [10].
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Other mechanically induced stimuli can lead to tissue differentiation; an example is the fate of
stem cells subjected to a load, known as mechano-differentiation [11–14].

Stretch has most often been described in the context of vascular tissue engineering, and is
effectively described as the “new” length divided by the initial length. Directional change can be in any
direction, and the cyclic stretch observed in muscles leads to enhancement of protein expression and
ecm protein content [15]. Often, the result of such stretch forces in bioreactor design is cell alignment
that better represents the normal in vivo tissue environment. Cardiac tissues constructed under
mechanical stretch and/or electrical stimuli display propagation speeds similar to those observed
in vivo and respond to electrical stimuli by synchronised contractions [16,17].

2.6. Examples Used in Tissue Engineering and Pathophysiological Studies

Burk et al. [18], using decellularised tendons reseeded with mesenchymal stromal cells,
applied mechanical stimulation with a cyclic-strain bioreactor. Natural horse tendon movement is
best represented at a frequency of 1 Hz, which these authors used, and a strain of 2% was applied
as a close estimate of that seen in the superficial digital flexor tendon in horses, and is comparable
to that of the Achilles tendon in man. Stepwise time increases in strain and rest periods were
implemented. Their data indicated cell anisotropy when comparing cells grown on scaffolds rather
than monolayer, and increased differentiation; however, a negative impact on cell viability possibly
arising from poor cell adaptation to the strain/rest cycles re-iterates the importance of the design
elements of the bioreactor.

Examples of pressure in vivo are well described: atmospheric pressure on skin, i.e., a load
distributed over an area, usually uniformly. Groeber et al. [19] devised a bioreactor to produce a
vascularised skin construct that was comprised of 2 cell types initially in a fluid circuit in a BioVacSc.
The perfusion flow produced 10 mmHg, initially rising to 80 mmHg, prior to the typical physiologic
pulsatile pressure profile with systolic at 120 and diastolic 80 mmHg, respectively. Two fluidic circuits
were added to deliver fluids to both the surface and underside of the construct for 6 days. Thereafter,
the addition of human embryonic kidney (hEK) cells to the surface of the construct completed the
model. Changes to the nutrient media and a switch to air-liquid interface conditions for 27 days
revealed a well-stratified epidermis with appropriate structural layers and a strong epidermal barrier.
The most important parameters were recreated in the bioreactor, and this model should enable studies
on the interaction of cellular and non-cellular blood compartments with the dermal layers, which are
useful for immunological research and with clinical potential for deep wounds.

2.7. Stretch/Compression

Arteries are subjected to blood pressure loads, and heart valves are subjected to alternating
pressures, so that the valves receiving a pressure gradient signal respond by opening and closing.
Clearly, this is a complex pattern of events, and when reproduced in bioreactors it enables tissue
constructs that are closely aligned with tissues in vivo.

Egger et al. [20] demonstrated a parallel perfusion bioreactor, in which 8 conditions could be
compared simultaneously under physiological shear stress and hydrostatic pressures necessary for
differentiating osteogenic tissues from mesenchymal stem cells. The authors noted that when using an
artificial scaffold the mechanical cues of fluid sheer stress led to sheer forces (10–40 mPa), an order
of magnitude lower than observed in vivo, typically 0.3–3 Pa [21]. The porosity and pore sizes of
the scaffold were responsible for the fluid sheer stresses that impacted cell and protein deposition;
under dynamic flow expression of alkaline phosphatase, an estimate of osteogenic differentiation was
highest, although hydrostatic pressure was not influential.

Compression is related to stretch in as much as it is directional but the opposite in force outcome:
stretch leads to a greater than initial, and compression a lesser than original, dimension, as evidenced in
nature by, for example, weight-bearing joints and cartilage such as the knee joint. Bioreactors mimicking
compression models result in more ordered structures and increased mucopolysaccharide content of
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the extracellular matrix [22–24]. Even blood vessel lumens experience compression, but in a radial
direction resulting from changes in blood pressure. The cellular reactions follow a force at two levels;
the macroscopic force event leads to changes at the microscopic level due to the shear induced by the
fluid flows from the tissue under compression.

In physiology, all of these forces may be acting together in a particular tissue, in, for example,
arteries, heart muscle, and musculoskeletal tissues. Only bioreactors designed to mimic all of these forces
including bending and torsion will provide a good model for studying normal and pathophysiological
production of tissue constructs for clinical application and testing of potential therapeutic modalities.

2.8. Cell Seeding

The manner in which cells are seeded into bioreactors will also impact considerably their
performance; in many cases, the intention is for cells to be uniformly seeded throughout the scaffold.
Thus, pore size and the model of entry for cells will play an important role, not only during seeding
but also for nutrient/metabolite and gas exchange during subsequent culture. Whilst simply applying
a cell suspension to scaffold enables some cell attachment, and even infiltration deeper into the scaffold
pores, it is an uncontrolled process and thus subject to considerable variability. Approaches that use
different physical processes to drive the processes are better, such as acoustic or electromagnetics
energy or even vacuum application [25–27].

2.9. In Silico Modelling

Since there is considerable complexity required in bioreactor design to mimic in vivo organ
function, utilising computational modelling (in silico) from knowledge of normal physiology prior to
bioreactor construction may improve outcomes. Tresoldi et al. [28] utilised a computational model with
fluid-structure interaction to demonstrate the necessary parameters for vascular tissue engineering.
Using the model in the MiniBreath bioreactor (pulsatile perfusion), it predicted pressures acting on the
tubular scaffolds, circumferential deformation, solid components, and wall shear stresses, with good
comparability with the analytical model. The model could not take account of scaffold thickness along
the length, nor predict any changes associated with cell growth and maturation, thus emphasizing
the importance of defining the key questions prior to modelling and appreciating the limitations
of modelling versus analytical study. Nonetheless, for a complex system, much information can be
gleaned form an in silico approach.

2.10. Scaffolds Used with Bioreactors

The choice of scaffold for tissue constructs, be it synthetic polymer materials (e.g., poly lactic acid,
poly caprolactone, or polyglycolic acid), bioceramic-based or natural polymers (e.g., collagens, dextrans,
gelatins, alginates, hyaluronic acids etc.), has the aim of aiding cell survival, function, and proliferation
whilst concomitantly minimising immune responses, which is especially important for tissues to
be used in clinical applications, such as heart valves. These scaffolds have been widely reviewed
elsewhere [29–41], including their use with bioreactor technology. Typically, they are porous to increase
cell/scaffold area and promote 3-dimensional growth of the seeded cells. A more recently exploited
scaffold principle is that of using decellularised natural organs generated to maintain extracellular
matrix components but be devoid of cellular DNA or protein (see following sections). Since there are
no cellular components left on decellularised scaffolds, there should not be species cross reactivity,
so that, for example, decellularised porcine organs could potentially be used for recellularisation with
human cell material; nonetheless, the extracellular matrices of different species do indeed differ, so they
may introduce incompatibilities, depending on the performance requirements. The choice of scaffold
is likely to be key to producing a bioreactor system that achieves its aim, and several bioreactors
incorporate such scaffolds.

The next sections will consider some case studies of bioreactors incorporating some or all of the
above principles.
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3. Bioreactors Used to Provide Tissue Constructs for Implantation

Ma et al. [42], utilising decellularised aortae derived from foetal pigs and seeded with canine
endothelial cells for three days in a principally static environment to encourage cell attachment,
were subjected to dynamic bioreactor culture for a further 7 days prior to implanting into carotid
arteries. The bioreactor imposed a liquid flow starting at 20 mL/min, which gradually increased daily by
10 mL/min up to 60 mL/min; both static pressures (10 mmHg) and dynamic pressures (60 mmHg) were
imposed as would occur in vivo. Six months after implantation, the grafts had remodelled, appearing as
normal arteries with complete endothelial cell layers arising from those implanted, those native to the
animal, and those from endothelial progenitor cells originating from the blood.

Whilst Ghaedi et al. [43] generated bioengineered lung tissue from induced pluripotent
stem cell (iPSC)-derived epithelial cells on decellularised lung tissues from rat and human lungs,
they emphasized the importance of good gas exchange across the lung, requiring integrity of the
physical barrier expressed in vivo from both epithelial and mature endothelial cells with appropriate
tight junctions and adhesive molecules. This study used only the epithelial cell component.
Nonetheless, this example indicates that both within and across species decellularised scaffolds
support the survival proliferation and function of airway epithelial cells.

The need to provide a shorter and more effective route for patients requiring a coronary artery
bypass has led to tissue engineering efforts to produce small diameter vascular grafts of less than
6 mm diameter. This is a lengthy process; Tondreau et al. [44] designed a simple approach that reduced
the time from more than 4 months to 4 weeks by starting with conventionally cultured fibroblast
sheets that could be produced “offline”, that were subsequently rolled onto mandrels, decellularised,
and recellularised with patients’ own endothelial cells in a perfusion bioreactor. Significant mechanical
testing of the graft for burst pressure compliance, thickness, and suture strength retention (26 +/−
2 gf, compared with 138 +/− 50 gf) established a graft composed only of human dermal fibroblasts,
reseeded with endothelial cells, which could shorten the timeline for patient treatment significantly.

An endothelial layer on biological graft matrices is considered important from the perspective
of antithrombotic activity [45] and preventing graft failure. However, in artificial grafts, the pulsatile
flow of a bioreactor can disrupt the endothelial cell surface under high flow conditions, as may be
experienced by cusps during valve opening in the native valves, so that whilst one may endeavour
to mimic the natural environment, some compromise in bioreactor designs may be required to
enable adaptation of the recellularised grafts [46]. In a different organ system, the liver, again using
decellularised tissue as the bioreactor scaffold, Hussein et al. defined a heparin-gelatin mixture as
an antithrombotic agent prior to cell seeding that positively impacted attachment and migration of
endothelial cells, as well as leading to enhanced function from the parenchymal fraction of subsequently
seeded HepG2 epithelial cells [47].

Due to a shortage of organs for transplant, the research endeavour to “grow” organs for
transplantation, and improvements in the decellularisation/recellularisation strategies, there is potential in
this area. The bioreactors required to implement this approach must be specific for that organ’s physiology
(for example, for the type of flow required, whether continuous perfusion or pulsatile flow [48]).

4. Bioreactors Designed for Disease Modelling

Tumour cell modelling for testing of new drugs in human cells, equivalent to tumour biopsies,
would be a significant advance. Nietzer et al. [49] produced such a bioreactor using a jejunal
decellularised scaffold and colon cancer cells with fibroblasts designed to have tissues at the
interface of two separate fluid circulations meeting apical and basolateral-specific culture conditions:
contemporaneously modelling optimized fluid circulations in terms of ambient pressures, inlet and
outlet velocities, and defining shear stress conditions. The resultant tumour-like tissue expressed beta
catenin at cell borders and had a stroma positive for vimentin and cytokeratins, which is typical of
colon adenocarcinomas. This model was clearly delineated from the same cells as monolayer cultures
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by the 5FU (5-fluorouracil) response and exemplified the treatment response in man. There are several
examples in the literature.

5. Small Bioreactors to Mimic Larger Production Bioreactors as Bioartificial Organs

Bioartificial organs not intended for transplantation but for temporary replacement of function
have been developed [50–53], in particular for the liver system, since the liver, being highly regenerative,
can repair itself given time after an insult of acute liver failure. Whilst organ transplants are curative,
the lack of donor organs results in many dying before they receive a transplant. Several experimental
models exist, and a few are in clinical trials. However, from a bioreactor perspective, culturing on a
human scale does not enable rapid prototyping or optimisation of production conditions. Our own
group has produced a bioartificial liver machine (BAL) on human scale based on a fluidised bed
bioreactor design, which maximises mass transfer (UCLBAL), and tested it in a porcine model of acute
liver failure [50,52,53]. To refine certain aspects, there was a need to develop a small scale mimic on
the small (~30–50 mL) (not micro) scale but to nonetheless enable metabolic, gene expression, and
protein studies, and since this small fluidized bed (sFBB) bioreactor enables flow studies that can
be mathematically modelled, it is more easily scalable to clinical size and enables a comparison of
dynamic versus static conditions [54] suitable for drug biotransformation. Multiple units can be run
simultaneously, which increases research capabilities.

6. Conclusions

Over the past decade, significant improvements in design and construction of bioreactors have
been made. Systems have been developed that allow robust and reproducible culture conditions to be
maintained. Specific bioreactor design is critical to the production of useful systems that can predict
performance if based on a natural cell niche from in vivo physiology. Whilst the more sophisticated
the bioreactor approach, the more likely it is to reflect the natural physiological state, simpler designs
are likely to be more operationally robust, so a compromise based on bioreactor complexity versus the
essential functional parameters of the desired end-product will always be necessary.
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