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Abstract

The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in
genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian
genomes, recombination events cluster into short genomic regions called “recombination hotspots”. Recently, a 13-
mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination
hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of
recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination
hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of
recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional
trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying
this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-
regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO
analysis we observed that the top genes are enriched with function of histone modification, highlighting the
epigenetic regulatory mechanisms of recombination hotspots.

Introduction
Recombination is one of the most fundamental pro-
cesses in molecular biology, and is under intense
research in genomics. In many species, recombination
events are clustered into narrow genomic regions
(usually a few kb long) called “recombination hotspots”.
During meiosis, recombination events are required to
ensure correct segregation of homologous chromo-
somes, and thus abnormality or absence of meiotic
recombination can lead to aneuploidy disorders such as
Down syndrome. In addition to mutations, recombina-
tion is an important evolutionary force that shapes the
linkage disequilibrium (LD) patterns in human genetic
variation; as a result, hotspots tend to overlap with
boundaries of haplotype blocks, which is a key observa-
tion underlying genome-wide association studies
(GWAS) and the HapMap project [1]. Therefore, an

increased understanding of the mechanism of recombi-
nation hotspots would shed light on various important
aspects in molecular biology and medicine, such as gen-
ome instability, disease gene mapping, molecular evolu-
tion, etc. Despite the importance of recombination
hotspots, many questions remain open, such as the reg-
ulatory mechanisms of the locations and activities of
hotspots.
Recently, breakthroughs have been made to discover

the regulatory mechanisms of meiotic recombination
hotspots in mammalian gnomes. In 2010, three Science
papers [2-4] reported the identification of PRDM9 gene
as a trans-regulator of recombination hotspots in
human and mouse genomes. PRDM9 is a zinc finger
protein that binds to DNA, and its binding site contains
a 13-mer motif previously found to be enriched in
human hotspots [5]. Using an LD-based approach
named LDsplit, Zheng et al. [6] identified HapMap
SNPs (single nucleotide polymorphisms) in human chro-
mosome 6 that are associated with recombination hot-
spots, and confirmed the sperm typing experimental
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result on DNA2 hotspot [7]. Importantly, proximal to
the SNPs identified by LDsplit, Zheng et al. found an
enriched 11-mer motif which partially matches the
aforementioned 13-mer motif in the binding site of
PRDM9 [6]. Using Chip-Seq data, Smagulova et al. [8]
analyzed the molecular features of mouse recombination
hotspots, and observed that a consensus motif enriched
in mouse hotspots aligns with the predicted binding site
of mouse PRDM9 significantly. These exciting discov-
eries are promising to integrate previously separate
observations into one picture.
It has been observed that, despite over 99% sequence

identity between the human and chimpanzee genomes,
the positions of recombination hotspots are rarely con-
served between the two species [9]. This puzzle has
been partially answered by Myers et al. [2], who found
that, as PRDM9 evolves rapidly, its binding sites are
very different between human and chimpanzee. The
“hotspot paradox” states that due to biased gene conver-
sion a hotspot tends to kill itself, nevertheless, there
remain many hotspots in extant genomes [10]. This
paradox may be explained by the rapid evolution of
PRDM9 as well, i.e. many new hotspots can be gener-
ated in a short time by a few mutations in the zinc fin-
ger binding array of PRDM9. It is believed that
epigenetic mechanisms play key roles in the regulation
of meiotic recombination. PRDM9 is a transcription fac-
tor with epigenetic functions (e.g. histone H3K4 tri-
methyltransferase activity). Importantly, PRDM9 is
uniquely expressed in early meiosis and its deficiency is
associated with sterility, which coincides with the asso-
ciation of meiotic recombination hotspots with birth-
defect diseases. However, it is estimated that PRDM9
can explain only 18% of variations in human recombina-
tion phenotype [3], and the 13-mer motif covers only
41% of human hotspots [5]. Therefore, PRDM9 is unli-
kely to be the only trans-regulator of recombination
hotspots. To carry out recombination accurately, it must
function in concert with other proteins to form a regu-
latory pathway. Hence, it is highly motivated to discover
other genes and regulatory pathways regulating recom-
bination hotspots.
The approaches to the discovery of PRDM9 and

recent related works on recombination hotspots [11]
typically search for motifs enriched in hotspots, and
then search for proteins that may bind to the motifs.
Although successful in the discovery of PRDM9, this
approach has a few limitations. First, unsupervised
motif-finding is a notoriously difficult problem, and
motifs found in this way tend to be short due to the
limited power of motif-finding algorithms and large
amounts of sequence data. Second, it may be difficult to
infer the protein that binds to a short enriched motif,
either because the enrichment of the motif is not due to

the binding of a trans-regulator of hotspots, or because
multiple proteins bind to the same motif. Last but not
least, the procedure of identifying PRDM9 is a manual
process that requires biochemical and genetic knowledge
rather than an automatic discovery in large scale. The
emergence of high-throughput genomic data of more
human populations and other species calls for an effi-
cient automatic procedure for discovering trans-regula-
tors like PRDM9. It is our goal to develop such a
method of genome-wide discovery of trans-regulators of
recombination hotspots.
In this paper, we propose an approach to discovering

trans-regulatory proteins similar to PRDM9 of recombi-
nation hotspots in mouse genome. Instead of starting
from short sequence motifs enriched in hotspots, we
scan the binding sites of DNA-binding proteins (e.g.
transcription factors) across DNA sequences of hotspots
and coldspots. As shown in Figure 1, the statistical
score based on the enrichment of target binding sites is
designed to predict the likelihood of each protein to
initiate recombination. Moreover, a novel method is
designed to identify the Gene Ontology (GO) terms that
are shared by candidate trans-regulators. Applying this
pipeline of knowledge discovery on a genome-wide map
of mouse hotspots recently published [8], we first con-
firmed that PRDM9 is a major trans-regulator of mouse
hotspots. Second, we identified a list of top candidate
trans-regulators of mouse hotspots. Interestingly, our
GO analysis shows that the candidate regulators pre-
dicted as such are enriched with the function of histone
modification, high-lighting the epigenetic regulatory
mechanisms known to be key in recombination hot-
spots. Our method can be used for the automatic dis-
covery of trans-regulators in addition to PRDM9 on
new genetic data and other species. The results in this
paper not only confirm the discovery of PRDM9 gene,
but also provide new candidate proteins to guide further
experimental studies of recombination hotspots.

Methods
In this section, we introduce our method for predicting
tran-regulators as shown in Figure 1. Firstly, we collect
mouse TFs and their binding motifs. Secondly, we
define odds ratio for these TFs showing their preference
to bind to hotspots by analyzing FIMO search results.
This odds ratio is then utilized to show the significance
of each TF’s regulatory function for recombination.
Lastly, we perform GO term validation and analysis of
hotspot coverage for our candidate trans-regulators.

Deriving consensus motifs
Persikov et al. [12] proposed a method to predict the
binding between a DNA motif and a given protein using
support vector machines (SVM). Myers et al. [2] first
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applied this method to generate some approximate
motifs as candidates. Each candidate motif will be
assigned a score showing its propensity to bind with the
given protein. Since the potential interactions between

zinc fingers were not taken into consideration in [12],
Myers et al. then continued to maximize the score of a
candidate binding motif by successively changing single
bases within it. Final binding motifs were then obtained

Figure 1 The flowchart of our method for predicting tran-regulators of recombination hotspots. Figure 1 shows the framework for
predicting tran-regulators of recombination hotspots.
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when no score increases for them. The predicted mouse
PRDM9 binding sequence and degeneracy are shown in
Figure S5 in the supporting online material of [2]. We
thus take this predicted PRDM9 binding sequence as
our first consensus motif.
Transcription factor (TF) binding affinities are typi-

cally modeled as position frequency matrices and JAS-
PAR database (http://jaspar.genereg.net) [13] provides
open-access for matrix profiles describing the DNA-
binding patterns of TFs. The current release of JASPAR
database holds 457 non-redundant, curated matrix pro-
files. For example, there are 53 for mouse, 75 for human
and 117 for yeast. These 53 matrix profiles for mouse
TFs are used in this paper to predict trans-regulators of
mouse hotspots. In addition, we also extracted the
matrix profiles for 118 TFs from TRANSFAC database
[14] for our experiments and analysis.

Protein binding preference in hotspots
For the above binding motifs, we employ the software
tool FIMO [15] to scan for their occurrences in both
hotspots and coldspots. FIMO takes two files as inputs,
namely, a file containing one or more query motifs and
another file as the sequence database. Particularly, each
query motif is represented as a position-specific fre-
quency matrix and the sequence database consists of
known hotspots and our generated coldspots (see the
Results section for more details about coldspot genera-
tion). FIMO computes a log-likelihood ratio score for
each position of the given sequence database and con-
verts this score to p-value and q-value to show the sta-
tistical significance of this position. Finally, FIMO
outputs a ranked list of motif occurrences, each of them
associated with a log-likelihood ratio score, p-value and
q-value.
Using the numbers of motif occurrences in hotspots

and coldspots, as output by FIMO search, we measure
the preference of a protein to bind in hotspots with the
odds ratio Ohc = (HM/HN) /(CM/CN). Here, HM is the
number of hotspots with at least one motif occurrence
(i.e. a hit of FIMO search), HN is number of hotspots
without any hit (i.e. HN = NH - HM, NH is the number
of hotspots as shown in Figure 1), CM is the number of
coldspots with at least one hit, and CN is the number of
coldspots without any hit (i.e. CN = NC - CM, NC is the
number of coldspots). This odds ratio measures the rela-
tive risk associated with the presence of a binding motif
in hotspots compared to coldspots. Hereafter, we will
use the odds ratio Ohc to measure the likelihood that a
protein is a trans-regulator of recombination hotspots.

Finding associated GO terms
Given a gene g, T (g) is the set of GO terms annotating
this gene. We define the similarity between a term t and

a gene g, S(t, g), in equation 1 and subsequently define
the similarity between t and a set of genes G, S(t, G), in
equation 2.

S(t, g) =
1

|T(g)|
∑

t′∈T(g)

sim(t, t′) (1)

S(t, G) =
1

|G|
∑

g∈G

S(t, g) (2)

Here, sim(t, t’) in equation 1 is the semantic similarity
between GO terms t and t’ and we applied the method
in [16] to calculate sim(t, t’).
Let HG denote the sets of genes with high odds ratio

scores (candidate trans-regulators) and G be the whole
set of genes we considered. The scores S(t, HG) and S(t,
G) can be finally utilized to show t’s enrichment in HG.
More specifically, their gap with respect to the term t,
gap(t) in equation 3, can be used to discriminate t’s
enrichment in HG. For example, a large gap indicates
that t is enriched in the genes with high odds ratio
while not enriched in the whole set of genes.

gap(t) =
S(t, HG) − S(t, G)

S(t, G)
(3)

Results
Experimental data
We downloaded the mouse recombination hotspots
from [8]. There are 9874 hotspots in all and the average
hotspot width is 3414.08b. Figure 2 shows the distribu-
tion of hotspots in each chromosome. For example,
chromosome 1 has the largest number of hotspots (753
hotspots). According to the hotspot boundaries, we
extracted their DNA sequences from mouse genome
and mouse DNA sequences (version: MGSCv37) were
downloaded from NCBI.
Then, as statistical control we selected coldspots that

have the following properties. First, coldspots have the
same size and distribution as hotspots. Second, each
coldspot is at least 50kb far away from other hotspots.
Third, any two coldspots do not have common
sequences–they are non-overlapping.
In addition, the GO data for GO term analysis were

downloaded from [17].

Enrichment of PRDM9 binding in mouse genome
First, we applied our method on the PRDM9 protein,
which has been recently discovered as a trans-acting
regulator of meiotic recombination hotspots, and is
under intense research. The binding sequence of mouse
PRDM9 was a 33-mer obtained from [2]. A matrix
representing the degeneracy of mouse PRDM9 binding
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motif was fed into FIMO to search in the DNA
sequences of hotspots and coldspots. To get more reli-
able estimation on coldspots, we randomly selected and
searched by FIMO on coldspots for 20 times and then
counted the average numbers of motif occurrences over
the 20 runs.
Besides the query motif and the sequence database,

FIMO will have an additional input, i.e., the p-value
threshold for the output motif occurrences (a motif
occurrence here refers to the binding between the
query motif and background sequence). All the motif
occurrences with p-values lower than the threshold
will be considered to be reliable. Figure 3 shows the
odds ratio scores of PRDM9 using different p-value
thresholds for FIMO search. We can find that the
odds ratio scores of PRDM9 are quite stable (around
1.3) when the threshold is in the range [3.0 × 10-7, 1.0
× 10-4]. This indicates that a medium setting of the p-
value threshold will provide us a stable and reliable
estimation of odds ratio score. Finally, we set the p-
value threshold as 3.73×10-6 which is in the above
range (We also use this threshold for FIMO search on
the following JASPAR database and TRANSFAC data-
base) so that all the output motif occurrences are sta-
tistically meaningful with q-values less than 0.05. In
this case, the numbers of occurrences of mouse
PRDM9 motif are shown in Table 1. It is obvious that

the binding sites of PRDM9 are more enriched in hot-
spots than coldspots, as demonstrated by the odds
ratio Ohc = 1.30 with p-value less than 10-4 using c2

test with Yates’ correction. These results are supportive
to the discovery of PRDM9 as a trans-regulator for
recombination hotspots [2-4].

Other TFs with binding sites enriched in hotspots
Encouraged by the positive results on PRDM9 obtained
using our approach, we analyzed other mouse transcrip-
tion factors (TFs) from JASPAR database [13], in hope
of identifying proteins with enriched binding sites in
hotspots vs. coldspots. From JASPAR database, we
downloaded the degeneracy matrices of 53 TFs, which
are input to FIMO to search hits in mouse hotspots and
coldspots.
Table 2 shows the numbers of FIMO hits for all the

12 mouse TFs whose odds ratio scores Ohc are larger
than 1.20. The last column shows the p-values of the
odds ratios using c2 test with Yates’ correction. All the
odds ratios in this table have p-values less than 0.05,
indicating that they all are statistically significant. In
addition, out of all 21 TFs with odds ratios larger than
1, 17 TFs have statistically significant odds ratios with
p-values less than 0.05. All these 12 genes in this table
will be considered as candidate trans-regulators and uti-
lized for the further GO term analysis.

Figure 2 The distribution of hotspots in each chromosome. Figure 2 shows the number of hotspots for each chromosome.
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We also downloaded binding motifs for 118 TFs from
TRANSFAC database [14]. There are 30 genes with
odds ratio scores above 1.20 and they will also be used
for the GO term analysis in the next subsection. Table 3
shows 10 genes with the highest odds ratio scores.

GO term analysis
Before analyzing the GO enrichment in HG genes, we
first compute their semantic similarity to two manually-
collected terms, namely “DNA recombination”
(GO:0006310) and “Meiosis” (GO:0007127), which are
highly related to recombination hotspots. Table 4 shows
the semantic similarity between JASPAR HG genes and
these two recombination related terms. PRDM9 has
higher similarity score than all the genes in JASPAR,
which confirms the recent discovery that it is a major
trans-regulator of recombination hotspots [2-4]. Mean-
while, 13 genes in Table 4 have an average similarity

score 0.192, which is higher than that of all the JASPAR
genes together with PRDM9 (0.173). Thus, genes with
higher odds ratio scores have higher semantic similarity
to recombination-related terms, demonstrating that
those odds ratio scores are indeed of help for selecting
trans-regulator candidates.

Figure 3 The odds ratio scores of mouse PRDM9 with different p-value thresholds for FIMO search. When we used different p-value
thresholds for FIMO search, we will get different odds ratio scores. Figure 3 shows the impact of the p-value threshold on the odds ratio scores
of mouse PRDM9.

Table 1 Number of occurrences of mouse PRDM9 motif
(FIMO, q-value <0.05) on hotspots and coldspots

# hits # regions with hit(s) # regions without hit

Hotspots 4954 1405 8469

Coldspots 4598.8 1120.35 8753.65

Table 2 The numbers of FIMO hits of mouse TFs from
JASPAR database with top 12 Ohc, ranked by the p-
values of the odds ratios (PRDM9’s results are also
shown in this table)

HG Genes HM HN CM CN Ohc p-value

KLF4 886 8988 643.15 9230.85 1.415 <0.0001

ZFX 437 9437 329 9545 1.343 <0.0001

CTCF 1002 8872 769.9 9104.1 1.336 <0.0001

PRDM9 1405 8469 1120.35 8753.65 1.30 <0.0001

RXRA 1015 8859 819.55 9054.45 1.266 <0.0001

ESRRB 792 9082 663.4 9210.6 1.211 0.0002

GABPA 110 9764 67.05 9806.95 1.648 0.0006

MYCN 197 9677 137.45 9736.55 1.440 0.0006

SPZ1 322 9552 249.55 9624.45 1.300 0.0013

MYC 129 9745 91 9783 1.423 0.0061

PAX5 194 9680 151.35 9722.65 1.287 0.0113

EGR1 85 9789 61.55 9812.45 1.384 0.0343

T 189 9685 155.95 9718.05 1.216 0.0411
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Next, we apply the gap score in Equation 3 for GO
term enrichment analysis. Our GO analysis shows that
genes with high preference of binding to hotspots are
enriched with epigenetic functions. As shown in Table
5, all the top 10 GO terms are directly related with epi-
genetic regulation (e.g. histone modification, DNA
methylation, chromatin modification). More interest-
ingly, the top 17th term (GO:0007283, not shown in this
table) is spermatogenesis, which suggests that predicted
candidate genes are related with the generation of male
gamete, confirming the key role of meiotic recombina-
tion hotspots in sexual reproduction. Another GO term
of interest (GO: 0032204, not shown in Table 5) is
ranked 19, namely regulation of telomere maintenance,
which suggests a link with chromosome organization.
Similarly, epigenetic terms are also enriched in trans-
regulators predicted from TRANSFAC database as
shown in Table 6. We also find that as the gap score

becomes smaller down the list, the proportion of epige-
netic terms becomes lower, and none of the 10 GO
terms with the lowest gap scores is related with epige-
netics. Therefore, the gap scores of epigenetic GO terms
are associated with the odds ratios of candidate genes
indicating preference of binding to hotspots. The func-
tional connection with epigenetics observed here is con-
sistent with the discovery of PRDM9, which is itself a
histone methyltransferase. Indeed, much attention has
been paid to epigenetic regulatory mechanisms of
recombination hotspots (see the review [18] and refer-
ences therein). Our approach and results in this paper
would bring additional insights into the epigenetic con-
trol of recombination hotspots.

Case studies
We next introduce in details three genes with high pre-
ference of binding to hotspots which are also annotated
with some of these top-ranked GO terms. First, ZFX is
a zinc finger X-chromosomal protein and it is annotated
with the term GO:0007283 (spermatogenesis). It is
reported that ZFX mutation results in small animal size
and reduced germ cell number in male and female mice.
Second, MYC with the term GO:0032204 (regulation of
telomere maintenance) is a transcription factor that is
believed to regulate expression of 15% of all genes
through binding to Enhancer Box sequences (E-boxes)
and recruiting histone acetyltransferases (HATs). In
addition to its role as a classical transcription factor,
MYC also functions to regulate global chromatin struc-
ture by regulating histone acetylation. Third, CTCF with
both the terms GO:0010216 and GO:0006306 is a

Table 3 The numbers of FIMO hits of mouse TFs from
TRANSFAC database with top 10 Ohc, ranked by the p-
values of the odds ratios (PRDM9’s results are also
shown in this table)

HG Genes HM HN CM CN Ohc p-value

MYOD1 483 9391 341.05 9532.95 1.434 <0.0001

PRDM9 1405 8469 1120.35 8753.65 1.30 <0.0001

MYC/MAX 98 9776 58.25 9815.75 1.689 0.0009

USF2 111 9763 70.05 9803.95 1.591 0.0014

ATF4 79 9795 44.55 9829.45 1.780 0.0015

USF1 101 9773 63.45 9810.55 1.598 0.0019

AHR 97 9777 62.3 9811.7 1.563 0.0034

ARNT 91 9783 60.2 9813.8 1.516 0.0071

ETS1 64 9810 40.95 9833.05 1.567 0.0157

ATF4 67 9807 44.35 9829.65 1.514 0.0181

CNTN2 43 9831 27.6 9846.4 1.56 0.0480

Table 4 Semantic similarity between JASPAR HG genes
and two recombination related terms

Genes Similarity scores

PRDM9 0.327

SPZ1 0.319

CTCF 0.249

PAX5 0.182

GABPA 0.180

EGR1 0.175

ESRRB 0.166

MYC 0.166

KLF4 0.163

RXRA 0.157

ZFX 0.145

T 0.141

MYCN 0.126

Table 5 GO terms enriched in JASPAR TFs with high odd
ratio scores (with top 15 gap scores)

Rank GO terms GO term descriptions gap

1 GO:0016571 histone methylation 0.282

2 GO:0018022 peptidyl-lysine methylation 0.203

3 GO:0051573 negative regulation of histone H3-K9
methylation

0.201

4 GO:0031060 regulation of histone methylation 0.184

5 GO:0051574 positive regulation of histone H3-K9
methylation

0.168

6 GO:0016568 chromatin modification 0.165

7 GO:0051571 positive regulation of histone H3-K4
methylation

0.165

8 GO:0006338 chromatin remodeling 0.157

9 GO:0035065 regulation of histone acetylation 0.148

10 GO:0006306 DNA methylation 0.146

11 GO:0010216 maintenance of DNA methylation 0.143

12 GO:0016584 nucleosome positioning 0.135

13 GO:0016485 protein processing 0.121

14 GO:0031065 positive regulation of histone deacetylation 0.119

15 GO:0018108 peptidyl-tyrosine phosphorylation 0.117
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sequence-specific DNA-binding transcriptional regula-
tor, insulator, and organizer of higher-order chromatin
structure. It contains 11 C2H2-type zinc fingers. It is
involved in promoter activation or repression, hormone-
responsive gene silencing, methylation-dependent chro-
matin insulation, and genomic imprinting and mediates
pairing between × chromosomes and interactions
between distant regulatory elements. Interestingly, the
KFL4 gene, which has top odds ratio score and p-value
in Table 2, does not show epigenetic functions. It is
annotated with two GO terms, namely GO:0006355
(regulation of transcription, DNA-dependent) and
GO:0045892 (negative regulation of transcription, DNA-
dependent) which also have high gap scores. It might
imply that recombination hotspots are regulated in con-
cert by both epigenetic and DNA-dependent
mechanisms.

Analysis of hotspot coverage
In this subsection, we aim to analyze how well those
top-ranked genes cover current known hotspots. Given
a gene g, HS(g) is the set of hotspots covered by g. As
shown in Table 1, PRDM9 covers 1405 hotspots, i.e. its
HM number = |HS(PRDM9)| = 1405. Table 7 shows the
number of hotspots covered by JASPAR HG genes and
the number of common hotspots covered by PRDM9
and those HG genes. For example, the gene T covers
189 distinct hotspots and 24 of them are also covered
by PRDM9.
For further analysis, we built a hotspot coverage graph

HC = (V, E, w) where nodes are PRDM9 and all the
JASPAR HG genes and edges show the hotspot coverage
similarity between nodes. In particular, V = {PRDM9} ∪
HG and each pair of nodes has a weight, indicating their
hotspot coverage similarity, based on the meet/min

coefficient [19] in equation 4.

w(gi, gj) =
|HS(gi) ∩ HS(gj)|

min{|HS(gi)|, |HS(gj)|} , ∀gi, gj ∈ V. (4)

In this hotspot coverage graph, we divide genes into
several clusters and genes in the same cluster will have
higher hotspot coverage similarities. A simple solution
for clustering [20] is as follows. We first set a threshold
wt and filter all the edges with weights lower than wt.
The remaining connected components are considered as
gene clusters. In our experiments, we gradually
increased the threshold wt and obtained a hotspot cov-
erage graph with 4 clusters as shown in Figure 4 when
wt = 0.16. Another solution is to apply hierarchical

Table 6 GO terms enriched in TRANSFAC TFs with high odd ratio scores (with top 15 gap scores)

Rank GO terms GO term descriptions gap

1 GO:0016571 histone methylation 0.105

2 GO:0051574 positive regulation of histone H3-K9 methylation 0.0927

3 GO:0031060 regulation of histone methylation 0.0925

4 GO:0051571 positive regulation of histone H3-K4 methylation 0.0916

5 GO:0051573 negative regulation of histone H3-K9 methylation 0.0865

6 GO:0000432 positive regulation of transcription from RNA polymerase II promoter by glucose 0.0839

7 GO:0043619 regulation of transcription from RNA polymerase II promoter in response to oxidative stress 0.0826

8 GO:0006357 regulation of transcription from RNA polymerase II promoter 0.0791

9 GO:0035065 regulation of histone acetylation 0.0786

10 GO:0031065 positive regulation of histone deacetylation 0.0766

11 GO:0018022 peptidyl-lysine methylation 0.0764

12 GO:0006355 regulation of transcription, DNA-dependent 0.0763

13 GO:0000122 negative regulation of transcription from RNA polymerase II promoter 0.0746

14 GO:0046016 positive regulation of transcription by glucose 0.0738

15 GO:0045944 positive regulation of transcription from RNA polymerase II promoter 0.0732

Table 7 Hotspot coverage of JASPAR TFs with high odd
ratio scores (JASPAR HG genes). The second column (HM)
shows the number of hotspots covered by the JASPAR
HG gene in the first column. The third column (| ∩ HS
(PRDM9) |) shows the number of common hotspots
covered by PRDM9 and the JASPAR HG gene

Genes in HG HM | ∩ HS(PRDM9) |

T 189 24

PAX5 194 47

KLF4 886 177

GABPA 110 23

RXRA 1015 157

MYCN 197 44

SPZ1 322 63

CTCF 1002 163

ESRRB 792 110

ZFX 437 112

MYC 129 29

EGR1 85 21
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clustering algorithm. When we set the number of clus-
ters we want to obtain as 4, the 4 clusters of hierarchical
clustering are exactly the same as those in Figure 4. In
the cluster with 10 red TFs including PRDM9 in Figure
4, all the other TFs have edges to PRDM9 with weights
larger than or equal to 0.16, indicating that they all
share similar hotspot coverage patterns with PRDM9.
Meanwhile, three singleton clusters consist of TFs with
the lowest odds ratios as shown in Table 2 and they
have no edges to PRDM9. These two observations con-
firm once again that PRDM9 is a major trans-regulator
for mouse hotspots.
We also show the hotspot coverage of the above 4

clusters in Figure 5. Compared with other clusters, the
cluster with only the gene T covers a much smaller
number of hotspots and it is thus not shown in Figure
5. In this figure, the red cluster with 10 TFs covers 3549
hotspots and shares common 39 hotspots with other
two clusters. In addition, the number of hotspots cov-
ered by at least one of the 4 clusters in Figure 4 is 4679.
The fact that many hotspots (i.e., 5195 out of 9874
known hotspots) are still not covered by PRDM9 or
motifs in our study suggests that we need to search for

additional proteins and motifs in the future for a higher
coverage for hotspots.

Conclusions
In this paper, we proposed a new approach to discover-
ing trans-regulators of recombination hotspots in mouse
genome. Starting from experimentally identified or pre-
dicted binding sites of DNA binding proteins, we scan
the DNA sequences of hotspots and coldspots for target
binding occurrences of each protein. The relative
enrichment of binding targets in hotspots is used to
estimate the likelihood that a protein has regulatory
effect on recombination hotspots. We increased the
rigor by designing a GO analysis method to identify
shared functions of candidate genes. Applying our
method to newly mapped genome-wide mouse recombi-
nation hotspots, we confirmed the recent discovery that
PRDM9 is a major trans-regulator of recombination
hotspots. Further, we identified a list of additional pro-
teins as candidate trans-regulators. GO analysis shows
that the most prominent functions shared by these can-
didate genes are histone modifications, which confirms
and provide new insights into the epigenetic mechanism

Figure 4 Hotspot coverage graph. Figure 4 shows the hotspot coverage graph where each node is a gene with high odds ratio score and
edges between nodes represent their hotspot coverage similarities. Here each color stands for a gene cluster.
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of recombination hotspots. Thus the approach devel-
oped in this paper can be used to identify additional
trans-regualtors of hotspots. The predicted proteins and
their functional analysis can shed light on the pathways
(rather than the single gene of PRDM9) regulating
recombination, and be used to guide further experimen-
tal studies of recombination hotspots.
Currently, the number of proteins examined in this

paper is small (i.e. only 53 transcription factors in
mouse genome from JASPAR database and 118 from
TRANSFAC database). In the future, we will try to col-
lect more DNA-binding proteins from more sources for
more comprehensive results. Meanwhile, we searched
for target binding sites of proteins using FIMO, which
does not allow for insertion and deletions in motif
matching. However, it is known that the DNA target
sites of some proteins contain indels [21]. Therefore,
more flexible motif finding algorithms that take into
account special sequence patterns (e.g. nucleotide adja-
cent dependency [22]) may be used to address this pro-
blem. Although the recombination hotspots analyzed in
this paper was obtained experimentally, our approach is
not limited to this type of data and we can computa-
tionally estimate recombination rates from sequence
polymorphism data in large scale, either based on LD

structure [23,24] or pedigree structure [25]. In addition,
as our results of GO analysis suggested that epigenetic
mechanism is shared by top candidate genes, we will
follow up with studies of epigenetic interaction between
histone and DNA as mediated by PRDM9 and other
predicted proteins.
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