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Automatic extraction of chemical-induced disease (CID) relation from unstructured text is

of essential importance for disease treatment and drug development. In this task, some

relational facts can only be inferred from the document rather than single sentence.

Recently, researchers investigate graph-based approaches to extract relations across

sentences. It iteratively combines the information from neighbor nodes to model the

interactions in entity mentions that exist in different sentences. Despite their success,

one severe limitation of the graph-based approaches is the over-smoothing problem,

which decreases the model distinguishing ability. In this paper, we propose CID-

GCN, an effective Graph Convolutional Networks (GCNs) with gating mechanism,

for CID relation extraction. Specifically, we construct a heterogeneous graph which

contains mention, sentence and entity nodes. Then, the graph convolution operation

is employed to aggregate interactive information on the constructed graph. Particularly,

we combine gating mechanism with the graph convolution operation to address the

over-smoothing problem. The experimental results demonstrate that our approach

significantly outperforms the baselines.

Keywords: relation extraction, graph convolutional network, chemical-induced disease, inter-sentential relation,

document level

1. INTRODUCTION

Chemical-disease relation (CDR) plays an essential role in various areas of biomedical research
and health care (Dogan et al., 2009). Understanding correlations between chemicals and diseases
is made challenging. At present, it provides manually curated facts about CDR in the commonly
used bioinformatics databases such as the Comparative Toxicogenomics Database (CTD) (Davis
et al., 2017). Nevertheless, with the rapid accumulation of the biomedical literature, the manual
curation not only time consuming, but also requires professional labeling staff and insufficient
to keep up-to-date. Automatic extraction of CDR has attracted plenty of attention and become
increasingly important.

To promote the research,the BioCreative V in 2015 proposed a new challenge for extracting CDR
from the biomedical literature. The challenge included two subtasks (Wei et al., 2015): the disease
named entity recognition (DNER) task and the chemical-induced disease (CID) relation extraction
task. The former one is to identify diseases and chemicals from the given raw PubMed abstracts and
normalize them toMedical Subject Headings (MeSH) concept identifiers. The latter one is to assess
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whether there is association between chemicals and diseases
denoted by MeSH identifier pairs. In this paper, we mainly focus
on the CID relation extraction task.

The CID relation extraction is usually formulated as a binary
classification problem. The difficulty of the task is to get a
good vector representation for a pair of chemical and disease.
Different from previous biomedical relation extraction tasks such
as protein-protein interaction (PPI) detection and drug-drug
interaction(DDI) detection, the CID relations are determined at
document level, i.e., an entity is often represented in multiple
mentions and the relations could be described across sentences.
The main challenge of document level relation extraction is to
deal with multiple entity mention pairs of the same concepts all
over a document and capture inter-sentence relations when two
entities are not in the same sentence.

Traditional methods handle CID relation extraction as two
separated tasks (intra- and inter-sentence relation extraction)
(Zhou et al., 2015; Qian and Zhou, 2016; Gu et al., 2017).
The results of these two subtasks are merged through a post-
processing way to obtain CID relations between entity concepts
at document level. The development of such methods mainly
draws on the traditional sentence level relation extraction.
Feature-based methods (Qian and Zhou, 2016) and kernel-based
methods (Zhou et al., 2015) have appeared one after another.
With the revival of deep learning in recent years, researchers
have used various neural networks, such as convolutional neural
networks (Gu et al., 2017), to automatically learn features.
The separated framework classifies multiple mention-level pairs,
which is simple and easy to implement. However, it ignores
the interactions in multiple mentions of the target entities in
different sentences, which are especially useful to identify the
inter-sentential relations.

In order to take full advantage of correlations among
different mentions in a document, the graph-based approaches
are proposed for CID relation extraction. The graph-based
models interpret words as nodes and edges as intra- and
inter-sentential relations between the words. Quirk and Poon
(2017) build a document graph with different dependency edges.
Following this work, researchers exploit graph LSTM (Peng
et al., 2017), graph state LSTM (Song et al., 2018) or RNNs on
dependency tree structures (Gupta et al., 2019). These methods
can simultaneously capture intra- and inter-sentential features,
but they do not aggregate the features of multiple mentions.
Recently, many approaches are proposed to address this problem.
Christopoulou et al. (2019a) is one of the most powerful systems,
which use an edge-oriented graph (EoG) neural model to learn
the representation of mention pairs.

Although edge-oriented models such as EoG have good
performance, it only focuses on the edge representation of
the graph and ignores the representation of the nodes in the
graph. On the one hand, with the multi-hop reasoning over
the document graph, the meaning of some edges on the path
of multiple entity pairs will become overlapping and vague. On
the other hand, since it only focuses on the representation of
the node pair, it may lose the specific and related information
(e.g., entity or mention type) of the node itself, which is very
important in document-level relation extraction. For learning the

representation of the nodes in the graph, a powerful approach
is Graph Convolutional Networks (GCNs), which have achieved
state-of-the-art results in various application areas on real-world
datasets. The basic idea is to carry out convolution filtering on
the graph and update the node representations by propagating
information between nodes. Besides, by treating objects as
nodes and connecting related nodes, GCNs can be adopted to
various graph-based multi-hop inference tasks. However, most
of the state-of-the-art GCN models are shallow due to the
over-smoothing problem. The over-smoothing means that after
multi-layer graph convolution, the effect of Laplacian smoothing
causes node representation toward a space that contains limited
distinguished information. This issue also drives the GCN
difficult to model the relation between long-distance nodes,
which is critical in CID relation extraction.

In this paper, we propose an effective Graph Convolutional
Networks (GCNs) for CID relation extraction (CID-GCN).
Similar to Christopoulou et al. (2019a), we construct a
heterogeneous graph which contains mention, sentence and
entity nodes. By processing all the entities and mention nodes in
the document in a unified manner, the intra- and inter-sentence
relation facts can be extracted simultaneously in a model. Instead
of using a walk-based method, we subsequently exploit graph
convolution operation to aggregate interactive information on
the constructed graph. Graph convolution operation applies
the same linear transformation to all the neighbors of a node
followed by a non-linear activation function. In order tomake the
graph better adapt to CID relation extraction, we stack multiple
graph convolution operations for multi-hop reasoning over
the heterogeneous graph. To address the smoothing problem,
we propose an enhanced gating mechanism that controls the
connections between convolutional network layers. Finally,
we enumerate possible entity combinations and incorporate
a softmax classifier to get the relation of entity pairs. The
contributions of this paper can be summarized as following:

• We propose a novel heterogeneous graph-based node-
oriented model for CID relation extraction which
simultaneous extract intra- and inter-sentence relation
facts.

• We propose a gating mechanism for GCNs which can
better capture the relation between long-distance nodes by
alleviating the over-smoothing problem.

• We conduct wide experiments on a public document-level
biomedical datasets. Experimental results show that the
proposed method outperforms several strong baselines.

2. RELATED WORK

Relation extraction is the widely studied task of automatically
retrieving structured information (relational facts) from text. It
has received widespread attention as the key component for
building Knowledge Graphs. According to the text of input,
relation extraction falls into sentence-level and document-level
methods. The CID relation extraction is a recently introduced
task. From the task definition (Wei et al., 2015), CID relations
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are typically determined at document level, meaning that this task
should consider both intra- and inter-sentence relations.

Early studies tackle the CID relation extraction based on
traditional sentence-level relation extraction methods. It is worth
noting that for inter-sentence relations, multiple sentences are
generally taken as a whole, and the cross-sentence features
are extracted. The task is usually considered as a classification
problem. Jiang et al. (2015) exploit word embeddings and
linguistic features to represent the relation between chemicals
and diseases. Then, they use a logistic regression model with
a heuristic post-processing method to get the CID relations.
Zhou et al. (2015) apply the shortest dependency path tree
kernel with support vector machine (SVM) for the CID relation
classification. Qian and Zhou (2016) incorporating different
maximum entropy (ME) classifiers with lexical and syntactic
features to extract cross-sentence relations. In addition, methods
using prior knowledge and external resource have been proved
to be effective. Pons et al. (2016) add prior knowledge about
chemicals and diseases from a graph database. Peng et al. (2016)
incorporate weakly labeled data to improve the performance.
With the development of deep learning, (Zhou et al., 2016)
propose a hybrid method which adopts LSTM to generate
semantic representations. Gu et al. (2017) employ CNN to
learn the context and dependency representations. Nguyen and
Verspoor (2018) further use character-based word embeddings
to improve the CNN model.

The above methods, especially the introduction of deep
neural networks, have greatly promoted the development of
this task. However, these methods ignore the interactions in
multiple mentions of the target entities in different sentences.
Recently, the graph-based approaches are proposed for the CID
relation extraction. Quirk and Poon (2017) build a document
graph with different dependency edges. They incorporate both
standard dependencies and discourse relations and provide a
unifying way to model relations intra- and inter-sentences. Peng
et al. (2017) exploit graph LSTM to extract n-ary relations
that span multiple sentences. Following this work, graph state
LSTM (Song et al., 2018) and RNNs on dependency tree
structures (Gupta et al., 2019) are used to model inter-sentence
relations. These methods can simultaneously capture intra-
and inter-sentential features, but they do not aggregate the
features of multiple mentions. To address this shortcoming,
Verga et al. (2018) form pairwise predictions over multiple
sentences using a self-attention encoder, and aggregate the
predictions by multi-instance learning. Christopoulou et al.
(2019a) use an edge-oriented graph neural model to learn
the representation of mention pairs. Nan et al. (2020)
develop a refinement strategy to automatically induce the
latent document-level graph, which helps to reason relations
across sentences.

3. TASK DEFINITION

We follow the definition of CID relation extraction from
BioCreative V community. The input of CID relation extraction
task is a well-annotated biomedical document from PubMed

articles. The output is a ranked list
〈
chemical, disease

〉
pairs

with normalized concept identifiers for which chemical-induced
diseases are associated in the document. We introduce a
document instance from CDR dataset and shown in Figure 1

as an example to help understand the task. As illustrated in
the Figure 1, given a biomedical document composed with
eight sentences and 12 chemical or disease entity mentions
corresponding to six concept ID. In the document, entities
may have multiple mentions scattered in different sentences
with same color. The goal of CID task is to find CID
relations in concept pairs (e.g., D003630 and D009503),
rather than two mentions. In order to identify the relational
fact

〈
D003630; chemical_induced_disease;D009503

〉
, D003630 is

chemical entity concept means daunorubicin and D009503 is
disease entity concept means neutropenia, one has to first
identify the fact that daunorubicin in advanced Kaposi ’s sarcoma
is located in the title, then identify the facts neutropenia
is the symptom of three subjects in the clinical trial from
Sentence 5 in the abstract, and finally infer from these
facts that D003630 can induce D009503. Clearly, the process
requires reading and reasoning over multiple sentences in
the document.

Formally, the document-level chemical-induced disease (CID)
relation extraction task can be formulated as follows. Given
an input document d composed of T sentences s1, s2, · · · , sT ,
with N entity mentions m1,m2, · · · ,mN , and R normalized
entity concept identifiers c1, c2, · · · , cR. The task aims at
extracting the relation r between each pair of chemical
entity ci and disease entity cj, for i, j = 1, 2, · · · ,R.
the relation r = 1 denotes that the chemical entity ci
and the disease entity cj has the Chemical-induced Disease
relation, r = 0 denotes there is no relation between
two entities.

4. THE OVERVIEW OF OUR MODEL

In this paper, we present an effective graph convolutional
neural network for document-level chemical-induced disease
relation extraction: CID-GCN. It consists of three modules,
namely (i) encoding layer, (ii) graph aggregation layer, and
(iii) classifier layer. Figure 2 illustrates the detailed structure of
the model.

The purpose of the encoding layer is to learn the feature
vector representation of the three nodes from the input
document. The backbone of the nodes encoder network is an
RNN. RNN is widely used for learning sequential and time-
dependent structures inherent in the text, and achieved state-
of-the-art results in many Natural language processing (NLP)
tasks of high-value biomedical domain in recent years, including
biomedical Named Entity Recognition (NER), biomedical QA
etc. In order to construct a document-level graph, we encode
three different types of nodes, respectively mention nodes,
entity nodes, and sentence nodes. Specifically, given a document
as the model input, it first generates a deep contextualized
representation for each sentence using RNN with LSTM cell.
Next, it constructs the representation of nodes based on the
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FIGURE 1 | Introduction to document-level chemical-induced disease relation extraction.

FIGURE 2 | The overall architecture of the proposed neural model.

sentence representations. The specific details are explained
in section 5.

The graph aggregation layer is devised to inference
entity nodes interactions in the document. First, we
construct a graph by connecting the graph nodes based
on the natural associations among the three nodes in the
document. After building the heterogeneous document-
level graph, we utilize GCN to encode entity nodes by
exploiting other interactions in the document. Recently,
it has demonstrated that GCNs is powerful in processing
relational reasoning on graphs. We stack multiple graph
convolutional operations over the graph to map the node
vectors into a set of new node representations. We will
provide a brief recap of GCN and introduce its application
in section 6.

Last, the output classifier module gives the relation prediction
from two graph representations of entity nodes. In section 7, the
loss function and the training process will be described further.

5. ENCODING LAYER

As we mentioned in section 4, encoding layer aims to learn the
features related to specific three nodes.

5.1. Word Embeddings
Word embeddings are learned from a large amount of unlabeled
data and have been shown to be able to capture the meaningful
semantic regularities of words (Bengio et al., 2003; Erhan et al.,
2010). The input tokens of the neural network model are
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a sequence of discrete variables. We usually transform these
discrete variables into vector representations in the NLP area.

In this work, given a document d, we use NLTK python
library1 to convert the corresponding multiple sentences
s1, s2, · · · , sT into multiple sequences of token, respectively.
Then, we use the pre-trained word embeddings trained by
two corpora: PubMed Central Open Access subset (PMC) and
PubMed (Chiu et al., 2016). All the input word tokens will be
transformed into low-dimensional vectors by looking up word
embeddings tables, respectively, in sentence units. In this work,
we denote the dimension of word embeddings by dw. These
word embeddings of each sentence are transformed for the
subsequent layers.

5.2. LSTM Encoding Layer
RNN has been widely exploited to deal with variable-length
sequence input and successfully applied in various NLP tasks.
The long-distance history is stored in a recurrent hidden vector
which is dependent on the immediate previous hidden vector.
LSTM (Hochreiter and Schmidhuber, 1997) is one of the popular
variations of RNN to mitigate the gradient vanish problem of
RNN. LSTM has three gates(input i, forget f and output o),
and a cell memory vector c. The input gate can determine how
incoming vectors x(t) alter the state of the memory cell. The
output gate can allow the memory cell to have an effect on
the outputs. Finally, the forget gate allows the cell to remember
or forget its previous state. Given an input sequence x =

{x1, x2, · · · , xn}, where x1 is a dw dimension vector. The hidden
vector ht (the dimension is dh) at the time step t(1 ≤ t ≤ n) is
calculated as follows:

it = σ (Wixt + Uiht−1 + bi)

ft = σ (Wf xt + Uf ht−1 + bf )

ot = σ (Woxt + Uoht−1 + bo)

C̃t = tanh(Wcxt + Ucht−1 + bc)

Ct = it ⊙ C̃t + ft ⊙ Ct−1

ht = ot ⊙ tanh(Ct)

(1)

where Wi,Wf ,Wo,Wc ∈ R
d×h and Ui,Uf ,Uo,Uc ∈ R

h×h are

weight parameters and bi, bf , bo, bc ∈ R
h are bias parameters,

and ⊙ denotes element-wise multiplication. The subscripts i, f , o
represent input gate, forget gate and output gate, respectively.

In this work, given that a document contains T sentences
s1, s2, · · · , sT , we do the following operations for each sentence.
First, we use Bidirectional LSTM (BiLSTM) as the sentence
encoder to read the input sequence in both left-to-right and
reverse order. Second, we combine bidirectional information for
each word by averaging the forward and the backward output.
Thus, given a sentence si = {x1, x2, · · · , xn} as a sequence of
tokens, the LSTM encoding layer is responsible to map each
token to the continuous embedding representations as H =

{h1, h2, · · · , hn}. After encoding contextualized representations
of all the sentences, There are three types of node that need to
be constructed in CID-GCN.

1https://www.nltk.org

5.2.1. Mention Node Representation
The mention node is intended to represent different mentions
of entities that appear in the document. A mention node is
represented by the average of the hidden vectors of all words
contained in the mention after LSTM encoding. Assuming that a
document has N mentions, the representation of mention nodes
is formed as Nmj = [avghi∈mj

(hi); tm]j = 1, 2, · · · ,N. where tm is

a node type embedding for mention.

5.2.2. Entity Node Representation
Similar to the structure of the mention node, the structure of the
entity node is represented by the average of the representations of
all the mentioned nodes corresponding to the entity. Assuming
that a document has R entities, the representation of entity nodes
is formed as Nej = [avgmi∈ej

(mi); te]j = 1, 2, · · · ,R. where te is

an node type embedding for entity.

5.2.3. Sentence Node Representation
A sentence node nsj is represented by the average of output at
all times in Hj: Assuming that a document has T sentences,
the representation of sentence nodes is formed as Nsj =

[avghi∈sj (hi); ts]j = 1, 2, · · · ,T. where te is an node type

embedding for sentence.

6. GRAPH AGGREGATION LAYER

GCN is a powerful approach for mining the structural features
on the graph. We use the GCN to capture the correlations of
multiple entity nodes. In this section, we will introduce the
structure of document graph and describe the preliminary and
detail of the GCN.

6.1. Document Graph Construction
A graph is made up of nodes (also called vertices) which are
connected by edges (also called links). Normally, it is an ordered
pair G = (V , E), where V is a set of nodes and E is a set of edges.
We can mathematically represent a graph with n nodes by an
adjacency matrix A ∈ R

n×n, where Aij = 1 if an edge exists
between node i and j, otherwise 0.

In this paper, we construct a document-level heterogeneous
graph by connecting the three nodes constructed in the section
above. Specifically, we first constructed a total of N + R +

T nodes of mention, entity, and sentence. Next, we connect
the graph nodes based on the natural associations between the
three nodes in the document to obtain the adjacency matrix
A ∈ R

(N+R+T)×(N+R+T) of the document graph. These natural
connections have the following 5 situations:

• Mention-to-Mention. If there are two mentions appear in
the same sentence, there is an implicit meaning that cannot
be ignored. These pair of two mention nodes should be
connected.

• Sentence-to-Sentence. We connect every sentence nodes to
model global information.

• Mention-to-Sentence. Since every mention must appear in a
sentence, we connect all mentions to the sentence node where
they are located.
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• Mention-to-Entity. Similar to Mention-to-Sentence, we
connect all the mentioned nodes to their corresponding entity
node.

• Entity-to-Sentence. To model the diversity of entities in the
document, we connect all entities to the sentence node where
their mentions have appeared.

6.2. Graph Convolutional Networks
GCN is an extension of convolutional neural network and can be
operated to encode graphs. It carry out convolution filtering on
the graph and update the node representations by propagating
information between nodes. We stack all the three types of
constructed nodes into the node set V . The set of nodes V are
represented as d dimensional vectors V ∈ R

(N+R+T)×d, the
GCN layer on a graph can be written as a non-linear function
f (V,A). When considering the stacking of multiple GCN layer
and after exploiting the convolutional operation proposed in Kipf
and Welling (2017), the GCN can be represented as follows:

Vl+1 = f (Vl,A) = δ(AVlWl) (2)

where δ(·) denotes an activation function, which is chosen
as LeakyReLU in our experiments. As a general rule, the
superscript l indicates the layer number. Wl ∈ R

d×d is the
learnable parameters of the convolutional filter. Different graph
convolution layers have different convolutional filters, which
are numbered using superscript l. It is not difficult to see that
multiplying the adjacency matrix is equivalent to adding the
feature of its neighbor node to each node. For instance, if entity
node 5 has two adjacent nodes: sentence node 1 and mention
node 4, the Equation (2) can be represented in another way as:

V l+1
5 = δ(a35v

l
3W

l + a45V
l
4W

l + a55V
l
5W

l) (3)

where aij is the element at row i and column j of the adjacent

matrix A, V l
i denotes the node representation corresponding to

the i-th node of the l-th layer. In this case, the GCN aggregates
all adjacent node information with the same convolution weights,
and after that, the result is passed through one activation function
to yield the updated node feature. In this way, the adjacent nodes
in the graph affect each other, and the relation among entity
nodes is learned after multiple layers of convolution operations.

Facts (Kipf andWelling, 2017; Li et al., 2018) have proved that
the graph convolution is a special form of Laplacian smoothing,
which mixes the features of the nodes and its neighbors.The
smoothing operation makes the features of the nodes in the same
cluster similar, thereby optimizing the classification task, which is
the key reasonwhyGCNsworks so well. However, this also brings
the potential problem of over-smoothing when stacking multiple
GCN layers. The over-smoothing problems can lead to similar
node representations, thus losing the discrimination of the
node in the classification function. Moreover, this problem also
limits the long-distance relation modeling ability of the model.
However, long-distance reasoning paths are very common in
the document graph we construct, because the relation between
entity nodes may need to be inferred from multiple mention
nodes and sentence nodes.

In order to alleviate the above problems, we propose a gating
mechanism for GCNs. This mechanism divides the traditional
graph convolutional layer into two steps. The first step, using the
structure information of the graph to aggregate the information
of adjacent nodes to passing messages on the graph, which
is consistent with the operation of the traditional GCNs. The
second step, using a gating mechanism to control the updating
of node representations. The gating mechanism can be calculated
as follows:

gl = sigmoid(WgVl+1 + UgVl + bg)

Vl+1 = Vl+1 ⊙ gl + Vl ⊙ (1− gl)
(4)

whereWg ∈ R
d×d and Ug ∈ R

d×d are two learnable parameters.
The gate gl controls the new node representation Vl+1 update
of each layer by considering the node representations generated
by the previous layer Vl and the current graph convolutional
layer Vl+1. The gating mechanism aims to save the distinguished
local information belonging to the current node representations
itself after each graph convolution operation. Combined with
effective global information and unique local information, the
model can better understand the document graph and learnmore
distinguishable node representations, thereby alleviating the
over-smoothing problem caused by multi-layer GCNs. Besides,
compared with the edge update mechanism of walk-base method
(Christopoulou et al., 2019b), our proposed gating mechanism
does not require manual tuning of hyperparameters to determine
the contribution of each hop.

7. CLASSIFIER LAYER

After multiple times of aggregation, we obtain a set of new
representations of all the nodes. For each entity chemical-disease
pair (ei,ej), we use a bilinear function to compute the probability
for chemical-induced disease relation as:

P(r|ei, ej) = softmax(ei
TWclsej) (5)

where Wcls ∈ R
d×k×d is a learnable parameter matrix. k is the

number of labels, which is 2 in this work cause CID relation
extraction is a binary classification problem.

In this paper, we use the stochastic gradient descent (SGD)
algorithm to minimize the log likelihood function. The loss
function of our model is:

L = −
∑

d∈T

log p(rei ,ej = r∗ei ,ej |d) (6)

where T represents the training set, r∗ei ,ej is the gold label for the

relation between entity chemical-disease pair (ei,ej) in document
d. During training, we minimize the loss function L of the gold
CID relations.

8. EXPERIMENTS

8.1. Datasets and Setting
We evaluate the performance of our model on CDR dataset
proposed by BioCreative V. This dataset contains a total of 1,500
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TABLE 1 | Main results on CDR datasets.

Model Description Precision Recall F1

Zhou et al.

(2015)

CNN 41.1 55.3 47.2

Zhou et al.

(2016)

LSTM+SVM 64.9 49.3 56.0

Gu et al. (2017) CNN+Inter_ME+PP 55.7 68.1 61.3

Nguyen and

Verspoor (2018)

CNN+Char 57.0 68.6 62.3

Sahu et al.

(2019)

GCNN 52.8 66.0 58.6

Peng et al.

(2017)

Graph LSTM 62.1 64.2 63.1

Verga et al.

(2018)

BRAN 55.6 70.8 62.1

Wang et al.

(2020)

GCN+Multihead Attention 56.3 72.7 63.5

Christopoulou

et al. (2019a)

EoG 62.1 65.2 63.6

Nan et al. (2020) LSR - - 64.8

Our model CID-GCN 64.2 66.4 65.3

Bold marks highest number among all models.

PubMed articles, 500 articles each for the training, development
and test set. Each articles is manually annotated chemical
mentions and disease mentions, theMeSH identifiers of chemical
entity and disease entity, and the CID relation between the
chemical entities and disease entities. Table 1 details the diseases
and related annotations of these three data sets.

In our experiments, all hyper-parameters are tuned through
cross validation on training set and development set.We initialize
network with pre-trained embedding with a dimension of
300.The hidden state of one-side LSTM is 300. The sizes of the
three types of node embedding is 50.The number of layers of the
GCNs is 4. The experiments are trained with an NVIDIA RTX
2080Ti GPU. It took about 10 min per epoch.

8.2. Baselines and Evaluation Metrics
To evaluate the performance of the proposed method, we
compare our model with six competitive baselines, as follows:
(1) CNN (Zhou et al., 2015). (2) LSTM+SVM (Zhou et al.,
2016). (3) CNN+Inter_ME+PP (Gu et al., 2017). (4) CNN+Char
(Nguyen and Verspoor, 2018). (5) GCNN (Sahu et al., 2019). (6)
Graph LSTM (Peng et al., 2017). (7) BRAN (Verga et al., 2018).
(8) GCN+Multihead Attention (Wang et al., 2020). (9) EoG

(Christopoulou et al., 2019a). (10) LSR (Nan et al., 2020). We use
precision, recall, and F1 score to evaluate the performance.

8.3. Main Results
To evaluate the performance of the proposed method, we first
compare our model with the baseline methods. The results are
shown in Table 1, from which we can observe that:

(1) Compared with the current graph-based model, our
model has achieved the best results. In detail, compared with
Graph LSTM and BRAN, the improvements of our model

TABLE 2 | Performance of EoG and CID-GCN with different pre-trained word

embeddings.

Model F1 (%)

EoG (random) 61.41

EoG (GloVe) 63.01

EoG (PubMed) 63.62

CID-GCN (random) 62.55

CID-GCN (GloVe) 64.46

CID-GCN (PubMed) 65.32

Bold marks the highest number among all models.

are 2.2 and 3.2% in F1, respectively. It indicates that our
method can better take advantage of the rich correlations among
entities at document level. Furthermore, compared with GCNN
and GCN+Multihead attention which both use plain-GCN, the
improvements of our model are 6.7 and 1.8% in F1 score,
respectively. This is due to our reasonable method for document
graph construction. Similar to EoG, we construct a heterogeneous
graph which contains mention, sentence and entity nodes.
However, our model outperforms EoGwith F1 score of 1.7%, and
2.1% in precision 1.2% in recall. Themain reason is that the graph
aggregation layer of our model can encode more entity-relation
information for relation classification. The gating mechanism
proposed in our model enables the aggregation layer to encode
the complete graph structure without losing the information
when modeling the information of multi-hop nodes. To further
compare EoG with CID-GCN, we analyzed the performance
of EoG and CID-GCN using different word embeddings. As
shown in Table 2, CID-GCN is superior to EoG in random
initialization (random), general domain (GloVe) (Pennington
et al., 2014), domain-specific (PubMed) (Chiu et al., 2016) word
embeddings. LSR also exploits graph convolution operation on
the document graph but uses the dense connection to address
the over-smoothing problem, our model outperforms it with F1
score of 0.5%. Thus, Our method can make better capture the
correlation between chemical entities and disease entities in the
CDR dataset.

(2) Compared with the current non-graph-based model, our
model also has achieved the best performance in CID relation
extraction task. In fact, these methods do not perform as well as
graph-based methods on the CDR dataset. Specifically, CNN is
characterized by a low precision, which is caused by its deficiency
in cross-sentence relation facts. The other three methods utilize
different inter- and intra-sentence models and merge the final
predictions. In the detailed analysis of the datasets, we find that
30% CID relations in the test set belong to entity pairs that cross
sentences. Compared with LSTM+SVM, the improvements of
ourmodel is 9.3% in F1. In contrast, the performance gap of other
baselines is relatively small, 4.0% and 3.0% in F1, respectively.

(3) In order to verify the superiority of our model in
extracting cross-sentence CID relations, we separately verified
the performance of the model in inter- and intra-sentence. We
selected two comparison models from graph-based and non-
graph-based models, CNN+Inter_ME+PP and EoG, respectively.
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TABLE 3 | Experimental results in intra- and inter-sentence CID relations.

Model
Intra (%) Inter (%)

Precision Recall F1 Precision Recall F1

CNN+Inter_ME+PP 59.7 55.0 57.2 51.9 7.0 11.7

EoG 64.0 73.0 68.2 56.0 46.7 50.9

Our model 68.1 75.9 71.8 62.2 45.2 52.4

Bold marks the highest number among all models.

TABLE 4 | Ablation study for the graph aggregation layer, where “w/o” indicates

without and “w/” indicates with.

Model Precision Recall F1 Intra-F1 Inter-F1

Our model 64.2 66.4 65.3 71.8 52.4

w fully-connected 60.6 58.8 59.7 68.5 43.8

w/o gating mechanism 61.2 52.3 56.4 62.9 44.6

w/o aggregation layer 53.0 51.0 53.1 60.8 30.6

Bold marks the highest number among all models.

Table 3 depicts the results of our proposed model, in comparison
with the two baseline selected above. As it can be observed,
CNN+Inter_ME+PP obtained a very low F1 score when
recognizing the inter-sentence CID relation. The reason is it
cannot well capture the interactions in multiple mentions of the
target entities in different sentences. Compared with EoG and
BRAN, the improvements of our model is also considerable.

Our model not only can simultaneous extract intra- and inter-
sentence relation facts, but also capture better the interactions
between entities regardless of whether they cross sentences. We
further verify the advantages of the graph aggregation layer
with different connect mechanism for GCNs in the following
subsection. Therefore, our model outperforms all the baselines
and more suited to the CID relation extraction task.

8.4. Ablation Experiments
To investigate the effectiveness of the graph aggregation layer
proposed in CID-GCN, we conduct an ablation study using the
test set of CDR dataset. Table 4 shows the results of ablation
study. From the table, we find that:

(1) When we change the document graph to a fully connected
graph, even with the existence of the gating mechanism, the
performance of the model still drops rapidly. This results show
the importance of a reasonable document graph structure.

(2) Both intra-F1 and inter-F1 scores drop when we remove
the gating mechanism. This results confirm the existence of
the over-smoothing problem, and also show that the gating
mechanism does enable the model to better capture the relation
between long-distance nodes.

(3) Finally, when we remove the aggregation layer, inter-F1
scores drops dramatically. According to our statistics on the CDR
dataset, there are more than 54% entities have multiple mentions
in different sentences. This results prove our proposed graph
aggregation layer can effectively extract the inter-sentence CID

FIGURE 3 | Experimental results of different GCN connection mechanisms.

relation facts by reading and reasoning over multiple sentences
in the document graph we construct.

8.5. Analysis Using GCN
Recently, GCNs have shown excellent performance in various
NLP tasks. Though effective, most of the current GCN models
are shallow due to the smoothing problem. As illustrated
in the Figure 3, our model also suffers from over-smoothing
problems when using plain-GCN. The plain-GCN achieve their
best performance with 4-layer models, but the performance is
still poor. In the heterogeneous graphs we construct, we give
various nodes different meanings, which may aggravate the over-
smoothing problem.

To alleviate this problem, we tried three different connection
methods. (1) Similar to ResNet, we add residual connections
between different layers of GCNs. (2) Similar to DenseNet, we
concatenates the outputs of all graph convolution layers to get
the final mention, sentence and entity node representations. (3)
Inspired from the forget gate in LSTM, we propose a gating
mechanism for GCNs.

We conduct experiments to investigate the effectiveness of
the three enhanced connect mechanisms on different layers. As
shown in the Figure 3, the three enhanced connect mechanisms
slows down the over-smoothing problem to varying degrees.
Among them, our proposed gating mechanism achieves the best
performance on 4-layer GCNs. It means the gating mechanism
we proposed is more suited to the CID relation extraction task
and the document graph we construct.

8.6. Case Study
In order to investigate the advantages of our model, we
conduct case study on the test set of CDR. Compared to all
the baselines, our model can extract more inter-sentence CID
relations correctly. For example, in the document number 57355
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entitled “Long-term propranolol therapy in pregnancy : maternal
and fetal outcome.” The main idea of this article is to study
the relationship between 6 diseases and long-term propranolol
treatment during pregnancy through two sets of experiments.
There are 9 sentences in this document, and the first 8 sentences
contain a mention of the same chemical entity “propranolol
(D011433).” The experiment of this document uses exclusion
division to exclude the first 5 diseases. The last sentence “Growth
retardation, however, appears to be significant in both of our
series” finally pointed out the CID relation between chemical
entity “propranolol (D011433)” and disease entity “Growth
retardation (D005317)” and it do not contain “propranolol
(D011433)” entity. As can be seen from this case, our model can
correctly extract the inter-sentence CID relations by reading and
reasoning over multiple sentences in the document.

9. CONCLUSION

In this paper, we propose CID-GCN, an effective Graph
Convolutional Networks with gating mechanism, for CID
relation extraction. First, we construct a heterogeneous graph
which contains mention, sentence and entity nodes and
connect the nodes based on the natural associations among
the three nodes in the document. In particular, in order

to solve the over-smooth problem of graph convolutional
neural networks on heterogeneous graphs, we propose

a gating mechanism to connect different GCN layers.
Experimental results on CDR datasets indicate that our
proposed model is effective and outperforms several strong
baseline methods.
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