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Abstract

Background: Biosynthesis of the dolichol linked oligosaccharide (DLO) required for protein N-glycosylation starts on the
cytoplasmic face of the ER to give Man5GlcNAc2-PP-dolichol, which then flips into the ER for further glycosylation yielding
mature DLO (Glc3Man9GlcNAc2-PP-dolichol). After transfer of Glc3Man9GlcNAc2 onto protein, dolichol-PP is recycled to
dolichol-P and reused for DLO biosynthesis. Because de novo dolichol synthesis is slow, dolichol recycling is rate limiting for
protein glycosylation. Immature DLO intermediates may also be recycled by pyrophosphatase-mediated cleavage to yield
dolichol-P and phosphorylated oligosaccharides (fOSGN2-P). Here, we examine fOSGN2-P generation in cells from patients
with type I Congenital Disorders of Glycosylation (CDG I) in which defects in the dolichol cycle cause accumulation of
immature DLO intermediates and protein hypoglycosylation.

Methods and Principal Findings: In EBV-transformed lymphoblastoid cells from CDG I patients and normal subjects a
correlation exists between the quantities of metabolically radiolabeled fOSGN2-P and truncated DLO intermediates only
when these two classes of compounds possess 7 or less hexose residues. Larger fOSGN2-P were difficult to detect despite an
abundance of more fully mannosylated and glucosylated DLO. When CDG Ig cells, which accumulate Man7GlcNAc2-PP-
dolichol, are permeabilised so that vesicular transport and protein synthesis are abolished, the DLO pool required for
Man7GlcNAc2-P generation could be depleted by adding exogenous glycosylation acceptor peptide. Under conditions
where a glycotripeptide and neutral free oligosaccharides remain predominantly in the lumen of the ER, Man7GlcNAc2-P
appears in the cytosol without detectable generation of ER luminal Man7GlcNAc2-P.

Conclusions and Significance: The DLO pools required for N-glycosylation and fOSGN2-P generation are functionally linked
and this substantiates the hypothesis that pyrophosphatase-mediated cleavage of DLO intermediates yields recyclable
dolichol-P. The kinetics of cytosolic fOSGN2-P generation from a luminally-generated DLO intermediate demonstrate the
presence of a previously undetected ER-to-cytosol translocation process for either fOSGN2-P or DLO.
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Introduction

The majority of secretory and cell surface glycoproteins are N-

glycosylated by the co-, or post-translational addition of the

oligosaccharide, Glc3Man9GlcNAc2, that is transferred from the

mature dolichol-linked oligosaccharide (DLO), Glc3Man9Glc-

NAc2-PP-dolichol, onto nascent polypeptides in the lumen of the

endoplasmic reticulum (ER) by oligosaccharyltransferase (OST,

see Fig. 1). Luminally orientated dolichol-PP, the by product of

OST-mediated protein glycosylation (Fig. 1), is recycled to yield

dolichol-P oriented on the cytoplasmic face of the ER [1].

Dolichol-P is consumed during 3 reactions occurring on the
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cytoplasmic face of the ER membrane (Fig. 1) that lead to the

generation of dolichol-PP-GlcNAc, dolichol-P-Man (DPM) and

dolichol-P-Glc (DPG) [2,3]. The former molecule is now elongated

to yield Man5GlcNAc2-PP-dolichol by cytoplasmically orientated,

UDP-GlcNAc-, and GDP-Man-requiring, glycosyltransferases

[4,5]. After flipping into the lumen of the ER [6,7,8], the growing

DLO is completed by DPM- and DPG-requiring glycosyltrans-

ferases, whose active sites are thought to face the lumen of the ER

[9,10], to yield the mature DLO. The ensemble of these reactions

constitutes the dolichol cycle and its interruption leads to

hypoglycosylation of glycoproteins in yeast [11] and mammalian

cells [12]. In the human population mutations in genes involved in

the dolichol cycle (Fig. 1) lead to rare inherited diseases called type

I congenital disorders of glycosylation (CDG I). Of particular

interest for the study of these diseases is the fate of accumulating

immature DLO intermediates that could potentially tie up

Figure 1. The dolichol cycle and protein N-glycosylation. The dolichol cycle consists of a series of reactions (heavy dashed blue lines) involved
in the construction of the oligosaccharide precursor (Glc3Man9GlcNAc2) on a dolichol carrier. The cycle is completed by reactions (heavy dashed pink
lines) involved in the recycling of dolichol-phosphate (dol-P). Mature lipid linked oligosaccharide (DLO) is generated by the transfer of two residues of
N-acetylglucosamine (blue squares), 9 residues of mannose (green circles) and 3 residues of glucose (blue circles) onto the lipid carrier dolichol-P (zig
zag line). The monosaccharides are added sequentially, in the order indicated by their numbers, by glycosyltransferases whose gene names are
shown in yellow ovals and whose order of action is also indicated. The first seven sugars are added by cytoplasmically orientated UDP-GlcNAc- and
GDP-Man-requiring glycosyltransferases. The growing DLO is then flipped into the lumen of the ER by a process thought to involve the RFT1 gene
product. Subsequently dolichol-P-Man (DPM)- and dolichol-P-Glc (DPG)-requiring glycosyltransferases complete DLO biosynthesis. The addition of
the last glucose residue to the growing DLO allows efficient oligosaccharyltransferase (OST)-mediated transfer of the oligosaccharide from lipid onto
nascent polypeptides (-N-X-T/S-) in the ER. As indicated by the heavy dashed pink lines, a series of reactions carried out by gene products indicated in
the yellow ovals, ensure that the lumenally orientated dol-P and dol-PP molecules that are generated during the construction of mature DLO are
reorientated towards the cytosolic face of the ER. The different type I congenital disorders of glycosylation subtypes (CDG Ia-p, indicated by letters in
red circles on the gene name) are caused by mutations in genes encoding enzymes involved in either the construction of mature DLO or dolichol
recycling.
doi:10.1371/journal.pone.0011675.g001

Phospho-Oligosaccharides

PLoS ONE | www.plosone.org 2 July 2010 | Volume 5 | Issue 7 | e11675



substantial quantities of limiting dolichol-P [2]. In fact, two

processes leading to destruction of DLO, and thereby potentially

promoting dolichol recycling, have been described. The first

process [13,14,15] leads to the release of neutral free oligosaccha-

rides (fOS) bearing two N-acetylyclucosamine (GlcNAc) residues

at their reducing termini (fOSGN2). It is thought that when

acceptor polypeptides are limiting, OST can transfer the

Glc3Man9GlcNAc2 moiety of mature DLO onto water molecules

to generate fOSGN2 [13,14]. OST is preferentially active towards

fully glucosylated and mannosylated DLO, leading to the

production of the fOSGN2 Glc3Man9GlcNAc2 [13,15]. During

the second process [16,17,18] a pyrophosphatase activity [19] is

thought to generate phosphorylated oligosaccharides (fOSGN2-P)

and dolichol-P from non-glucosylated DLO intermediates [20,21].

In the present study we investigated fOSGN2-P generation in

EBV-transformed lymphoblasts derived from several CDG I

patients as well as different murine lymphoblasts. In all cell lines,

the fOSGN2-P pool comprised structures containing mainly 7 or

less hexose residues (Hex1-7GlcNAc2-P) despite the relative

abundance of more fully mannosylated and glucosylated DLO

intermediates. An in vitro assay revealed that DLO pools that give

rise to either fOSGN2-P or N-glycans are functionally linked.

Furthermore, DLO intermediates synthesized in the lumen of the

ER can give rise to cytosolic fOSGN2-P without detectable

generation of ER-situated fOSGN2-P intermediates.

Materials and Methods

Ethics statement
Experiments on human cell lines were conducted in accordance

with local ethics comittees and the Comités de Protection des

Personnes (CPP, http://www.recherche-biomedicale.sante.gouv.

fr/index.htm). After obtention of signed written parental consent

forms, lymphoblasts derived from patients with unknown disease

were immortalised with the Epstein Barr virus (EBV) as previously

described [22].

Reagents
D-mannitol was from Fluka (St Quentin Fallavier, France).

[2-3H (N)]mannose (24.7 Ci/mmol), D-[6-3H (N)]glucosamine

(25.9 Ci/mmol) and En3hance spray were from PerkinElmer Life

Sciences (Zaventem, BE). TLC plates were obtained from

MERCK (Darmstadt, DE). AG 50-X2 (H+ form) and AG 1-X2

(acetate form) came from Biorad SA, (Marnes la Coquette, FR).

Streptolysin O (SLO) was a generous gift from Sucharit Bhakdi

(Institute of Medical Microbiology and Hygiene, Mainz, DE).

Fucose, endo-b-N-acetylglucosaminidase H from Streptomyces

plicatus (endoH), protease and alkaline phophatase were purchased

from SIGMA–Aldrich SARL (St Quentin Fallavier, FR). Casta-

nospermine, kifunensin and swainsonine were from Toronto

Research Chemicals Inc. (Toronto, CA). The tripeptide, Ac-NYT-

NH2, was synthesised and purified [23] by Neosystem, Strasbourg,

FR.

Cell culture and metabolic radiolabelling procedures
The parental BW5147.3 and the Thy-1 negative, DPM1-

deficient, mouse lymphoma cell lines [24,25] (ATCC, Rockville,

MD) and EBV-transformed cell lines were cultivated in RPMI

1640 GlutamaxTM medium containing 10% fetal calf serum and

1% penicillin/streptomycin at 37uC under an atmosphere

containing 5% CO2. The human cells used in this report are

derived from normal subjects or patients diagnosed with CDG Ia

(PMM2 mutations: p.Ile132Thr/p.Arg123Gln [26]), CDG Ie

[27], CDG Ig [28] and CDG Ih [22]. Cells were maintained at

densities of between 26105 and 26106 cells/ml. For metabolic

radiolabelling, 86107 cells were harvested and then rinsed with

glucose-free RPMI 1640 medium containing 0.5 mM glucose,

1.0 mM fucose and 2% dialysed fetal calf serum. Subsequently,

cells were incubated in 1 ml of the same medium containing 20–

100 mCi [2-3H (N)] mannose for 30 min at 37uC under an

atmosphere containing 5% CO2. Where indicated, cells were

preincubated in radiolabelling media containing 2 mM castanos-

permine (CST), 100 mM swainsonine (SW) or 100 mM kifunensin

(KIF) for 45 min prior to addition of the radioactive sugars.

Transduction of lymphoblasts with HIV-1-derived
lentiviral vectors

The transfer vector encoding wild type hALG12 and enhanced

green fluorescent protein (eGFP) has already been described [28].

Briefly, it consists of a bicistronic expression vector (pSIN.PW.

hALG12.IRES2.eGFP) from which the mRNA is driven by the

phosphoglycerate kinase promoter and into which the eGFP

protein is translated via the IRES element from encephalopathy

myocardiditis virus (EMCV). Transfer vector particles were

produced by cotransfection of this transfer vector into human

kidney 293T cells along with the packaging (Gag-Pol and Rev),

and envelope (glycoprotein from the vesicular stomatitis virus

(VSV/G)) constructs. Patient lymphoblast cells were transduced at

different multiplicities of infection (MOIs) and eGFP-positive cells

were sorted by FACS.

Cell permeabilisation
After radiolabelling, cells were permeabilised using a modifica-

tion of a previously described method [29,30]. Briefly, cells were

washed with ice cold phosphate buffered saline (PBS) and then

with permeabilisation buffer (PB): 20 mM HEPES-KOH, pH 7.3,

containing 250 mM mannitol and 1 mM CaCl2. The cells were

then incubated for 1 h at 4uC in PB containing 2 mg/ml

streptolysin O (SLO). Permeabilised cells containing membrane

bound compartments (MBC) were then separated from the SLO

perfusate containing cytoplasmic components (Cyt) by centrifuga-

tion at 130 gAv for 5 min at 4uC.

In vitro assay for fOSGN2-P generation
SLO-permeabilised cells were incubated in an intracellular

buffer (IB) as previously described [22,31]. After washing with ice

cold PBS, radiolabelled cells were washed into IB: 5 mM HEPES-

KOH, pH 7.3, containing 130 mM K+/glutamate, 10 mM NaCl,

2 mM EGTA, 1 mM CaCl2 and 2 mM MgCl2. Subsequently, the

cells were incubated on ice for 30 min in IB, containing 2 mg/ml

SLO, and then washed twice with IB to remove excess SLO.

Finally, the cells were incubated for 5 min in IB prewarmed to

37uC before a final wash into ice cold IB. Aliquots of the

permeabilised cells were incubated with IB containing the various

additions indicated in the figure legends in a reaction volume of

50 mL for different times at 37uC. Reactions were stopped by the

addition of 450 mL ice cold IB. MBC and Cyt fractions were

obtained as described above.

Recovery of fOS, fOSGN2-P, glycoproteins and DLO from
radiolabeled cells

These methods have all been adapted from previously described

techniques [13,29]. Washed radiolabeled cells were suspended in

4 ml of MeOH/100 mM Tris HCl (pH 7.4) containing 4 mM

MgCl2, 2:1. Four mls CHCl3 were added and the mixture shaken.

After centrifugation, the lower CHCl3 and upper methanolic

phases were recovered. Neutral and negatively charged soluble

Phospho-Oligosaccharides

PLoS ONE | www.plosone.org 3 July 2010 | Volume 5 | Issue 7 | e11675



oligosaccharide material was recovered from the latter phase

whereas DLO were recovered from both the former phase and

also from the CHCl3/MeOH/H2O 10:10:3 extracts of the

interphase proteins. Oligosacharides were released from DLO

after mild acid hydrolysis with 0.02N HCl for 30 min at 100uC.

The dried upper methanolic phase was taken up in H2O and

desalted on AG-50 (H+ form) and AG-1 (acetate form) ion-

exchange columns prior to being loaded onto charcoal columns as

previously described. Neutral fOS were eluted from the charcoal

with 30% ethanol. Negatively charged material was eluted from

the AG-1 resin with 3 M formic acid, and after removing the

formic acid under vaccuum, was further treated with either 0.02 N

HCl, as described for DLO, or treated with alkaline phosphatase

overnight in 100 mM TrisHCl, pH 8.0, at 37uC. Neutralised

material was recovered after passage over coupled AG-50/AG-1

resins. Glycoproteins from the 10:10:3-extracted protein pellet and

the TCA-precipitated glycoproteins recovered from cell culture

medium were submitted to protease digestion to yield glycopep-

tides. Oligosaccharides were released from glycopeptides using

endo-b-N-acetylglucosaminidase H from Streptococcus plicatus (en-

doH).

Analytical procedures
The number of charges associated with oligosaccharide

components was evaluated using quaternary aminoethyl (QAE)-

Sephadex beads equilibrated in 2 mM Tris base [32]. Material of

interest was loaded onto columns in 2 mM Tris base before

irrigating the column in the same buffer containing 20, 70, 125,

200, 400 and 1000 mM NaCl. Fractions were collected and

assayed for radioactivity by scintillation counting. Neutral fOS and

oligosaccharides derived from hydrolysed DLO, negatively

charged oligosaccharides and endoH-treated glycopeptides were

resolved by thin-layer chromatography (TLC) on silica-coated

plastic sheets (0.2 mm thickness) in n-propanol/acetic acid/water,

3/3/2 for 16–24h [33]. Radioactive components were detected on

X-OMAT AR film by fluorography after spraying the dried TLC

plates with En3hance and were quantitated by scintillation

counting after their elution with water from the silica. After

derivatisation with 2-aminopyridine (2-AP) as previously described

[29,34], oligosaccharide mixtures were resolved by HPLC using

an amine-bonded silica column (LiChrospher Amino 5 mm,

250 mm 64.6 mm, Sulpelco Inc). Two eluents were used: eluent

A (90% acetonitrile, 10% 30 mM triethylamine, pH 7.3, buffer)

and B (10% acetonitrile, 90% 30 mM triethylamine, pH 7.3,

buffer). The column was equilibrated in 85% A and 15% B, and

after sample injection, was subjected to a linear solvent gradient

developed over 80 min until the final solvent mixture of 68% of A

and 32% of B was obtained. Radiolabeled oligosaccharides were

detected by a Packard 150 TR flow-scintillation analyser.

Oligosaccharide-2AP derivatives were also monitored using online

fluorimetry and the data generated will be the subject of a separate

report.

Results

Isolation of negatively charged oligosaccharide-like
material from EBV transformed human lymphoblastoid
cells and mouse lymphoma cell lines

Neutral free oligosaccharides (fOS) are liberated from either DLO

by OST [13,15] or from glycoproteins by peptide N-glycanase

(Ngly1p, [35]) to generate fOSGN2. Negatively charged phosphor-

ylated oligosaccharides (fOSGN2-P) have been identified and are

generated from DLO by a DLO pyrophosphatase activity [19]. The

release of fOSGN2 [13] and fOSGN2-P [36] from DLO during

glycoprotein biosynthesis is thought to occur as a consequence of

mechanisms that regulate DLO availability for protein glycosylation

[21]. In CDG I, partial blocks in different steps of the DLO

biosynthetic pathway lead to accumulations of truncated DLO

species [11]. Accordingly, using EBV transformed lymphoblasts

derived from either a control subject (EBV ctrl 1 cells) or a patient

(EBV CDG Ig cells) with a deficiency in dolichol-P-mannose:-

Man7GlcNAc2-PP-dolichol mannosyltransferase (CDG Ig: ALG12-

deficiency) we sought evidence for DLO regulation through

pyrophosphatase action and the generation of fOSGN2-P. In a first

set of experiments, EBV ctrl 1 cells and EBV CDG Ig cells, in which

the truncated DLO Man7GlcNAc2-PP-dolichol is known to

accumulate, were pulse radiolabeled with [2-3H]mannose and after

extraction with organic solvents, water soluble components were

submitted to molecular sieve chromatography on Biogel P2.

Radioactive material eluting before the inclusion volume of the

column was pooled and loaded onto coupled cation and anion

exchange chromatography columns as shown in Fig. 2A. Similar

amounts of neutral and positively charged components were

recovered from the two cell lines. By contrast, a substantially

increased amount of negatively charged material was recovered from

the anion exchange column after elution with 3M formic acid (FA).

After quantitation of this material along with [2-3H]DLO,

[2-3H]glycoproteins and [2-3H]fOS, it was noted that when total

cellular [2-3H]mannose incorporation is considered, [2-3H]mannose

labelled material in the FA eluates corresponded to ,4% of total

cellular radioactivity in EBV ctrl 1 cells, and this value increased 3

fold in EBV CDG Ig cells (Fig. 2B, left hand panel). Furthermore,

after complementing the EBV CDG Ig cells with wild type Alg12p,

the quantity of negatively charged [2-3H]mannose labelled material

was normalised with respect to the EBV ctrl 1 cells. The causal

mutations observed in CDG I patients lead to residual activities that

enable cells to make low levels of fully mature DLO. In order to

evaluate fOSGN2-P generation in lymphoblastoid cells incapable of

generating mature DLO, the DPM synthase deficient (null mutation

in mouse DPM1 gene; see Fig. 1) mouse lymphoma cell line Thy-1

[25,37] along with its parental cell line (BW5147.3) were examined

as described above. As can be seen in the left panel of Fig. 2B,

compared to the parental cell line, the mutant cell line generated a 7

fold increase of this negatively charged material. Finally as shown in

Fig. 2B (right hand panel) the fluctuations in amounts of neutral fOS

between the different cell lines is less pronounced than those noted

for the negatively charged components.

Identification of fOSGN2-P in EBV lymphoblasts and
murine lymphoma cells

Next, the nature of the negatively charged radioactive

components was examined. Material from each cell line revealed

the presence of two peaks of radioactivity after QAE-Sephadex

ion-exchange chromatography (Fig. 3A) both of which were

neutralised after alkaline phosphatase treatment (results not

shown). The minor peak of radioactive material that elutes at

20 mM NaCl was not always present and the origin of this

material remains unclear (Durrant-Arico, C. and Moore S.E.H.,

results not shown). Taking into account that the bulk of the

radioactivity was eluted from the column with 70 mM NaCl and

was sensitive to alkaline phosphatase, it is concluded that the

material contains a single phosphate group [32]. Thin layer

chromatography (TLC) of the negatively charged material from

the EBV CDG Ig cells (Fig. 3B, lane 1) reveals a predominant slow

migrating component and a minor faster migrating species. Both

components were neutralised after either alkaline phosphatase or

endoH digestion to yield predominantly species that comigrated

with Man7GlcNAc2 and Man7GlcNAc species, respectively. These
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results indicate that the bulk of the negatively charged material

derived from EBV CDG Ig cells corresponds to phosphorylated

Man7GlcNAc2 and that the phosphate is attached to the GlcNAc

residue at the reducing terminus of the oligosaccharide. Likewise,

the negatively charged material derived from the DPM-deficient

murine Thy-1 lymphoma cells was characterised. This material

behaved similarly to the CDG Ig EBV cell derived material upon

QAE Sephadex chromatography, was neutralised with alkaline

Figure 2. Identification of negatively charged oligosaccharide-like material in EBV-transformed lyphoblasts and murine lymphoma
cells. A. EBV lymphoblastoid cells derived from a normal subject (EBV Ctrl1) and a patient diagnosed with CDG Ig (ALG12 deficiency, see Fig. 1: EBV
CDG Ig) were pulse radiolabeled with [2-3H]mannose and after extraction with organic solvents as described in Materials and Methods, water soluble
components were applied to Biogel P2 columns. Radioactive components, except those eluted in the total inclusion volume (Vi) of the column, were
pooled and subjected to ion-exchange chromatography on AG-1(acetate) and AG-50(H+) resins. Neutral species passed through both columns
(Neutral). Subsequently, the AG-50 column was washed with 2 M pyridine acetate pH, 5.0 (PyrAc) and the AG-1 column was eluted with 3 M formic
acid (FA). Fractions were collected and assayed for radioactivity by scintillation counting. B. In addition to the above described cells, EBV CDG Ig cells
transduced with wild type ALG12 (EBV CDG Ig + wtALG12) and the parental (BW5147.3) and DPM1-deficient (Thy-1) mouse lymphoma cells were
radiolabeled as described above. After extraction with organic solvents radioactivity associated with lipid linked oligosaccharides ([3H]DLO),
glycoproteins ([3H]GP) and the oligosaccharide-like materials described above was quantitated by scintillation counting. Radioactivity associated with
neutral and FA eluted components is expressed as a percentage of total [2-3H]mannose incorporation ([3H]DLO + [3H]GP + [3H]neutral
oligosaccharide-like material + [3H]FA-eluted oligosaccharide-like material) into the different cell lines.
doi:10.1371/journal.pone.0011675.g002
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Figure 3. Characterisation of negatively charged oligosaccharide-like material derived from different cell lines. A. Equal amounts of
radioactivity associated with material that was eluted from AG-1 columns with 3M FA as described for Fig. 2A were subjected to QAE-Sephadex
chromatography as described in Material and Methods. The column was eluted with increasing concentrations of NaCl (indicated on the right hand y axis).
Fractions were collected and assayed for radioactivity by scintillation counting. B. Aliquots of the negatively charged oligosaccharide-like material derived
from EBV CDG Ig cells were analysed by thin layer chromatography (TLC) before and after treatment with either alkaline phosphatase (P’ase) or endo-b-N-
acetylglucosaminidase H (EndoH). Abbreviations: lines to the left of the TLC fluorograms indicate the migration position of the oligosaccharide
(Man7GlcNAc2; M7GN2) that was derived by mild acid hydrolysis of Man7GlcNAc2-PP-dolichol isolated from CDG Ig cells. This oligosaccharide was also
treated with endoH to yield Man7GlcNAc (M7GN). The structure of the oligosaccharide moiety known to occur in the Man7GlcNAc2-PP-dolichol that
accumulates in cells from CDG Ig is shown to the right of the TLC (mannose; green circles, N-acetylglucosamine; blue squares). The di-N-acetylchitobiose
moiety of this oligosaccharide is sensitive to endoH. C. Aliquots of the negatively charged oligosaccharide-like material derived from DPM synthase-
deficient Thy-1 mouse lymphoma cells were analysed by thin layer chromatography (TLC) before and after treatment with either alkaline phosphatase
(P’ase) or 20 mM HCl. The structure of the oligosaccharide moiety known to occur in the Man5GlcNAc2-PP-dolichol that accumulates in these cells is shown
to the right of the TLC (mannose; green circles, N-acetylglucosamine; blue squares). The di-N-acetylchitobiose moiety of this oligosaccharide is not sensitive
to endoH. The line to the left of the fluorograph indicates the migration position of Man5GlcNAc2 (M5GN2) that was released by mild acid acid treatment of
Man5GlcNAc2-PP-dolichol derived from Thy-1 cells. D. [14C]glucose-1-phosphate (Glc1P) and [14C]glucose-6-phosphate (Glc6P) were subjected to ion-
exchange chromatography on AG-1(acetate) before and after either alkaline phosphatase or mild acid treatment as described in Materials and Methods.
Neutralised material was assayed by scintillation counting and expressed as a percentage of input radioactivity.
doi:10.1371/journal.pone.0011675.g003
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phosphatase to yield predominantly Man5GlcNAc2 (Fig. 3C,

lane 2) but, as expected from the specificity of endoH, was

insensitive to this enzyme (results not shown). Furthermore, as the

material could be dephosphorylated with dilute HCl (Fig. 3C,

lane 3) under conditions where glucose-1-phosphate but not

glucose-6-phosphate is dephosphorylated (Fig. 3D), it likely

possesses a hemiacetal phosphate rather than a hydroxyl

phosphate. Later experiments revealed that the negatively

charged material derived from all the cell lines examined was

equally sensitive to the alkaline phosphatase and dilute HCl

treatments. These results indicate that, compared to control cell

lines, the CDG Ig EBV cells and the DPM synthase-deficient

mouse lymphoma cells generate increased quantities of the type

of phosphorylated oligosaccharides (fOSGN2-P) that have been

previously reported to be cleaved from DLO in different cell lines

by other groups [16,17,18].

There is a correlation between the quantity of a
fOSGN2-P and that of its corresponding DLO only
when structures containing 7 or less mannose residues
are considered

In order to examine the origins of fOSGN2-P in more detail,

the dephosphorylated structures were compared to the glycone

structures of DLO in different control and CDG I EBV cell lines

(CDG Ia; PMM2-deficiency, CDG Ig; ALG12-deficiency, CDG

Ih; ALG8-deficiency, and CDG Ie; DPM1-deficiency: see Fig. 1)

and wild-type and DPM synthase-deficient lymphoma cells.

[2-3H]Man-labeled fOSGN2-P and DLO were treated with

20 mM HCl and the resulting oligosaccharides were resolved by

HPLC and quantitated using on-line flow scintillation analysis as

shown in Fig. 4. The two control EBV cell lines and the control

mouse lymphoma BW5147 cell line yielded similar profiles (see

Fig. 4 upper panel for representative HPLC trace of EBV Ctrl1

cells), and elaborated fOSGN2-P-derived oligosaccharides corre-

sponding to structures containing mainly 2–7 mannose residues

(Man2-7GlcNAc2-P). Although the corresponding species were

detected in the DLO pool (Man2-7GlcNAc2-PP-dolichol), the

predominant DLO-deirved species were larger and contained 8–9

residues of mannose and varying numbers of glucose residues

(Glc1-3Man8-9GlcNAc2-PP-dolichol). When the chromatographic

profiles of DLO-, and fOSGN2-P-derived oligosaccharides

obtained from glycosylation deficient cells are inspected (see 4

lower panels in Fig. 4 for representative HPLC traces), similar

observations can be made: whatever the origin of the cells, only

when structures behaving as oligosaccharides bearing 7 or less

residues of mannose are considered is there a correlation between

DLO- and fOSGN2-P-derived structures. In addition, it can be

seen that where there are accumulations of truncated DLO in the

different cell lines (eg. Man2GlcNAc2-PP-dolichol in CDG Ia cells,

Man5GlcNAc2-PP-dolichol in CDG Ie cells and Man7GlcNAc2-

PP-dolichol in CDG Ig cells) there are increases in the

corresponding fOSGN2-P species. In EBV CDG Ie cells,

fOSGN2-P derived structures that co-elute with DLO derived

Glc1-2Man5GlcNAc2-P were identified. However, the mutation in

the DPM1 gene in these cells is leaky, leading to residual synthesis

of fully mannosylated DLO. Accordingly, DLO and fOSGN2-P

derived components that elute as Glc1-2Man5GlcNAc2-P are

potentially mixtures containing also Man6-7GlcNAc2 species. By

contrast to EBV CDG Ie cells, in the Thy-1 cells, DPM synthase is

inactive leading to an absence of DLO structures containing more

than 5 mannose residues. In these cells a fOSGN2-P derived

structure comigrating with DLO-derived Glc1Man5GlcNAc2 was

detected, but although substantial quantities of DLO-derived Glc2-

3Man5GlcNAc2 were noted corresponding structures derived from

fOSGN2-P occured at very low levels (Peric, D. and Moore, S.

unpublished results). Accordingly, despite the abundance of

glucosylated DLO in all cell lines tested, glucosylated fOSGN2-

P, if present, are under represented in the total fOSGN2-P pool.

The ensemble of these data is consolidated as shown in Fig. 5A

where for each oligosaccharide structure the ratio of the quantities

of the corresponding fOSGN2-P and DLO has been computed

and multiplied by 1000. It can be seen that this value is lowest for

Glc1-3Man9GlcNAc2-P/Glc1-3Man9GlcNAc2-PP-dolichol, begins

to rise with Man8-9GlcNAc2-P/Man8-9GlcNAc2-PP-dolichol and

is maximal with Man7GlcNAc2-P/Man7GlcNAc2-PP-dolichol.

Accordingly, the structures and quantities of fOS-P are related

to the structures and quantities of DLO providing that the latter

components possess seven or less mannose residues.

When EBV Ctrl2 cells and EBV CDG Ig cells were metabolically

radiolabeled in the presence of the class I and II mannosidase

inhibitors KIF and SW, respectively, the ratios of the corresponding

DLO and fOSGN2-P species were not strikingly affected, arguing

against the possibility of rapid demannosylation of more fully

mannosylated fOSGN2-P (Fig. 5B and C). Furthermore, neither

inhibitor affected the quantity of either the DLO or fOSGN2-P

species that were generated (Moore, S., results not shown). By

contrast, the ER glucosidase I and II inhibitor, castanospermine

(CST), provoked 3 and 2 fold increases in the proportion of DLO

species that are triglucosylated in EBV Ctrl2 cells and EBV CDG Ig

cells, respectively (Fig. 5D). These changes were accompanied by

42% and 21% inhibitions of Man7GlcNAc2-PP-dolichol and

Man7GlcNAc2-P, respectively in EBV Ctrl2 cells, and 51% and

40% inhibitions of Man7GlcNAc2-PP-dolichol and Man7GlcNAc2-

P, respectively in EBV CDG Ig cells (Fig. 5E). Finally, in EBV

Ctrl2 cells (Fig. 5B), CST did increase the Glc1-2Man9GlcNAc2-P/

Glc1-2Man9GlcNAc2-PP-dolichol ratios, but these elevated ratios

were still between one and two orders of magnitude less than that

observed for Man7GlcNAc2-P/Man7GlcNAc2-PP-dolichol. These

results confirm a previous report demonstrating that glucosidase

inhibition did not lead to the appearance of glucosylated fOSGN2-

P, but did reduce formation of non-glucosylated fOSGN2-P [20].

Man7GlcNAc2-P occurs predominantly in the cytosolic
fraction of EBV-transformed lymphoblast cells derived
from a patient with ALG12 deficiency

In order to address the mechanism underlying fOSGN2-P

generation, the subcellular localisation of Man7GlcNAc2-P was

explored in EBV CDG Ig cells. After metabolic radiolabeling for

Figure 4. Comparison of oligosaccharide structures generated from DLO and fOSGN2-P isolated from cells of different CDG
patients. EBV Ctrl1, EBV CDG Ia, EBV CDG Ie, EBV CDG Ig, and EBV CDG Ih cells were metabolically radiolabelled with [2-3H]mannose for 30 min prior
to being extracted with organic solvents. DLO and fOSGN2-P were isolated and treated with 20 mM HCl as described in Materials and Methods.
Oligosaccharides were subjected to HPLC and resolved components were detected with an on-line flow through scintillation counter. The HPLC
traces for DLO- and fOSGN2-P-derived oligosaccharides are blue and red, respectively. The solid arrow heads indicate the elution times of
oligosaccharides containing 1–9 residues of mannose (MannGN2) and those containing 9 residues of mannose and 1–3 residues of glucose
(GlcnMan9GN2). In EBV CDG Ie and Ig cells, glucosylated oligosaccharides containing 5 (GlcnMan5GN2) and 7 (GlcnMan7GN2) residues of mannose,
respectively, are also known to occur and their migration positions are indicated with open arrow heads.
doi:10.1371/journal.pone.0011675.g004
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30 min cells were permeabilised with streptolysin O (SLO) on ice.

The procedure employed is known to specifically permeabilise the

plasma membrane of cells [29,30,38], and after centrifugation, the

supernatant contains soluble cytosolic components and the pellet

comprises permeabilised cells possessing intact intracellular

membrane bound compartments (MBC). Data presented in

Fig. 6A demonstrate that both neutral fOSGN2-P and fOS are

predominantly recovered from the cytosolic compartment.

However, inspection of the neutral fOS recovered from MBC

revealed the presence of two fOS species (marked with asterisks)

that were not observed in the cytosol fraction, attesting to

selectivity of the SLO permeabilisation process.

An in vitro assay to monitor Man7GlcNAc2-P generation
using SLO-permeabilised CDG Ig cells

In order to further investigate the compartmentalisation of

fOSGN2-P generation an in vitro assay was established for the

generation of Man7GlcNAc2-P using SLO-permeabilised EBV-

CDG Ig cells. It has been demonstrated that after specific

permeabilisation of the plasma membrane of various cell lines with

SLO, vesicle-mediated intracellular transport of proteins [39],

protein N-glycosylation [31,40] and non-vesicular ER-to-cytosol

transport of neutral fOS [31] do not occur unless cytosolic factors

are added back to the permeabilised cells. Aspects of the dolichol

cycle have also been studied in SLO permeabilised EBV cells from

control subjects and CDG patients and it was shown that DLO

glucosylation is maintained when UDP-Glc is added to the

incubation mixtures [22]. Accordingly, in order to reproduce

observations made in intact cells, permeabilised EBV-CDG Ig cells

were incubated for up to 1 h with UDP-Glc, GDP-Man and UDP-

GlcNAc using the protocol outlined in Fig. 6B. As indicated in

Fig. 6C and D, both neutral fOS and fOSGN2-P are generated in

a time dependent manner, but whereas the former are generated

predominantly in the MBC fraction, the latter appear predomi-

nantly in the cytosolic fraction. TLC analysis of the DLO-, and

fOSGN2-P-derived oligosaccharides generated during the incu-

bations is shown in Fig. 6E. Within 10 min DLO intermediates

possessing 9 residues of mannose are predominantly triglucosy-

lated, and after 60 min Glc3Man9GlcNAc2-PP-dol is the major

DLO with smaller amounts of Glc3Man7GlcNAc2-PP-dol and

Man7GlcNAc2-PP-dol also being present. Despite the presence of

fully glucosylated DLO species, Man7GlcNAc2-P was the only

fOSGN2-P detected. It has been reported that the DLO

pyrophosphatase activity is inhibited by pyrophosphate [19]. As

demonstrated in Fig. 6E, this reagent does reduce Man7GlcNAc2-

P generation but also leads to the accumulation of a DLO

intermediate behaving as Man9GlcNAc2-PP-dolichol. Indeed,

after jack bean a-mannosidase digestion of radioactive compo-

nents eluted from this region of the chromatogram, it was

ascertained that the predominant component was not glucosylated

(Durrant-Arico, C. and Moore, S. results not shown). These data

suggest that in addition to inhibiting the DLO pyrophosphatase,

pyrophosphate blocks DLO glucosylation. The appearance of fully

mannosylated DLO intermediates in cells from this CDG Ig

patient is not unexpected because the mutation in the ALG12-

encoded mannosyltransferase is leaky [28]. In the context of the in

vitro system reported here where DLO utilisation is strikingly

reduced, Man7GlcNAc2-PP-dolichol elongation by the defective

ALG12-encoded mannosyltransferase may be significantly en-

hanced. To summarise, Man7GlcNAc2-P is generated in SLO-

permeabilised CDG Ig cells and the selectivity of fOSGN2-P

generation reproduces that observed in intact cells.

N-glycosylation and fOSGN2-P generation compete for
the same DLO pool

Although DLO pyrophosphatase activity has been identified in

various microsome preparations [13,19] we wanted to demon-

strate that Man7GlcNAc2-P generation and ER-mediated poly-

peptide N-glycosylation [41] occur at the same subcellular

localisation in permeabilised cells. Accordingly, if the DLO pool

required for polypeptide N-glycosylation is functionally linked to

that which gives rise to fOSGN2-P, then addition of a tripeptide

(Ac-Asn-Tyr-Thr-NH2, NYT) containing the N-glycosylation

concensus sequence to the vesicular transport-incompetent

permeabilised cells could potentially deplete the DLO pool giving

rise to fOSGN2-P and therefore inhibit fOSGN2-P generation. As

indicated in Fig. 7A, when permeabilised cells are incubated with

1 mM NYT, there is a rapid generation of glycosylated NYT in the

MBC accompanied by the appearance of smaller quantities of this

component in the cytosol, indicating, as expected, that under these

assay conditions peptide N-glycosylation occurs, and the ER

membrane represents a significant barrier for the movement of the

resulting glycopeptide into the cytosolic compartment [31]. In the

same incubations the quantity of fOSGN2-P only increased in the

cytosolic compartment, and this increase was reduced by ,20%

when the tripeptide was present (Fig. 7B). Finally, as shown in

Fig. 7C, the concentration dependence of the inhibition of

fOSGN2-P by tripeptide was evaluated and compared to that of

the inhibition of neutral fOS in the same incubations. The

appearance of cytosolic fOSGN2-P was inhibited in a dose

dependent manner by NYT, but the quantity of MBC-associated

fOSGN2-P remains quite stable even at high tripeptide concen-

trations. A proportion of neutral fOS are thought to be generated

by OST when glycosylation acceptor polypeptides are limiting

[13,15]. In accordance with this, addition of NYT also causes a

dose-dependent inhibition of neutral fOS in both the MBC and

cytosolic compartments (Fig. 7C). The ensemble of these results

indicate that, in SLO permeabilised EBV CDG Ig cells,

Figure 5. Computation of the ratio of fOSGN-P to DLO for different oligosaccharide structures observed in the different cell lines
cultivated in the absence or presence of glucosidase and mannosidase inhibitors. A. Oligosaccharides derived from DLO and fOSG2-P
isolated from EBV Ctrl1, EBV Ctrl2, EBV CDG Ia, EBV CDG Ie, EBV CDG Ig, EBV CDG Ih, BW5417.3 and Thy-1 cells were prepared and resolved by HPLC as
described in Fig. 4. Peak areas were recorded and used to derive the ratio fOSGN2-P/DLO for each oligosaccharide structure. These values were
multiplied by 1000 and imposed on a logarithmic scale. Abbreviations: M1-9; Man1-9GlcNAc2, G1-3M1-9; Glc1-3Man1-9GlcNAc2, G1-3M1-7; Glc1-3Man1-

7GlcNAc2, G1-3M1-5; Glc1-3Man1-5GlcNAc2. In a separate experiment EBV Ctrl2 (B) and EBV CDG Ig (C) cells were preincubated and then radiolabeled as
described above, in the presence of the mannosidase inhibitors swainsonine (SW) and kifunensin (KIF) or the glucosidase inhibitor castanospermine
(CST). Oligosaccharides derived from DLO and fOSGN2-P were resolved by TLC and, after elution of radioactive components from the
chromatography plates followed by scintillation counting, the ratio fOSGN2-P/DLO for the oligosaccharide structures M7–G3M9 were generated and
presented as described above. D. Using data from the experiment described in B and C the percentage of total DLO species occurring as
triglucosylated species was computed for EBV Ctrl2 and EBV CDG Ig cells radiolabeled in either the absence or presence of CST. E. Using data from the
experiment described in B and C, DLO-, and fOSGN2-P-derived oligosaccharides possessing 7 residues of mannose were quantitated. The amounts of
these components that were generated in cells treated with CST have been expressed as a percentage of those generated in cells radiolabeled in the
absence of this reagent.
doi:10.1371/journal.pone.0011675.g005
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Figure 6. fOSGN2-P are generated in streptolysin O-permeabilised cells. A. EBV CDG Ig cells were pulse radiolabeled for 30 min with
[2-3H]mannose and then permeabilised with streptolysin O (SLO) at 4uC in permeabilisation buffer as described in Materials and Methods. After

Phospho-Oligosaccharides

PLoS ONE | www.plosone.org 11 July 2010 | Volume 5 | Issue 7 | e11675



Man7GlcNAc2-P generation is an ER-associated event and that

this structure is either generated in the lumen followed by highly

efficient ER-to-cytosol transport (Fig. 7D, left panel), or is cleaved

from cytosolically disposed Man7GlcNAc2-PP-dolichol (Fig. 7D,

right panel).

Discussion

fOSGN2-P were first identified in microsomes derived from

mouse myeloma tumour MOPC-46B cells incubated with

dolichol-P-[14C]Man [18]. These incubations yielded [14C]Man5-

GlcNAc2-PP-dolichol, [14C]Man5GlcNAc2-P and [14C]glycopro-

teins, and time course studies led to the conclusion that, whereas

the DLO was the precursor for protein glycosylation, the

fOSGN2-P was a degradation product of the DLO [18]. In intact

rat spleen lymphocytes, Man9-8GlcNAc2-P were the major

fOSGN2-P identified despite the presence of substantial quantities

of glucosylated DLO [20]. Inhibition of glucosidase activities did

not unmask the presence of glucosylated fOSGN2-P but did

reduce the appearance of non glucosylated fOSGN2-P [20]. In

DPM synthase deficient CHO cells in which glucosylated DLO

intermediates predominate over their non-glucosylated counter-

parts, only Man5GlcNAc2-P and Man2GlcNAc2-P were identified

[21]. Here we demonstrate the presence of fOSGN2-P in EBV

lymphoblastoid and mouse lymphoma cells. We have also detected

fOSGN2-P in skin biopsy fibroblasts from control subjects and

CDG I patients. However, due to variable amounts of truncated

DLO in cells from normal subjects, interpretation of data from

these cells is difficult. Under our cell culture and metabolic

radiolabeling conditions it was found that the EBV transformed

lymphoblasts gave more reproducible results. In EBV cells from

control subjects and parental mouse lymphoma cells Man1-

7GlcNAc2-P predominated despite the fact that the major DLO

species were found to be Glc0-3Man9GlcNAc2-PP-dolichol. In cells

from CDG I patients the same fOSGN2-P species were observed

but they occured at higher levels which appeared to reflect higher

levels of truncated DLO intermediates in these cells. Accordingly,

the increased fOSGN2-P generation that occurs in CDG cells

appears to result from an elevated flux of substrate through a

pathway already operating at a low level in normal cells. It was

found that CST increased the proportion of triglucosylated

Man9GlcNAc2-PP-dolichol in control cells and triglucosylated

Man7GlcNAc2-PP-dolichol in CDG Ig cells, and in both cases

reduced the amount of Man7GlcNAc2-P. Accordingly, it can be

concluded that the glucosylation of some immature DLO

intermediates protects them from giving rise to fOSGN2-P.

Because CST does not cause complete inhibition of fOSGN2-P

generation, the previously described DLO glucosylation/degluco-

sylation cycle [14] that is known to occur in EBV cells [22] is not a

feature of all fOSGN2-P generation. Although our results

demonstrating the paucity of glucosylated fOSGN2-P, even under

conditions of glucosidase inhibition, are in agreement with other

studies [20,21], the cut-off structure for efficient fOSGN2-P

generation from DLO in our studies appears to be Man7GlcNAc2-

PP-dolichol rather than the Man9-8GlcNAc2-PP-dolichol struc-

tures noted by others [19,20,36]. By contrast to the glucosidase

inhibitor, the class I and II mannosidase inhibitors, kifunensin and

swainsonine had no effect on either DLO biosynthesis or

fOSGN2-P generation, suggesting that, unless an unusual

mannosidase activity is involved, Man7GlcNAc2-P generation

does not involve demannosylation of more fully mannosylated

DLO or fOSGN2-P. Under normal circumstances it is thought

that DLO biosynthesis follows the pathway shown in Fig. 1 but it

may be more complex. In analogous fashion to the processing of

N-glycans during glycoprotein folding, DLO intermediates may be

subjected to different processes depending on their residence time

in the lumen of the ER. For example, under normal circumstances

Man7GlcNAc2-PP-dolichol is rapidly converted to Man8GlcNAc2-

PP-dolichol by the DPM-requiring Alg12p mannosyltransferase

[4]. If this reaction is slowed down, Man7GlcNAc2-PP-dolichol

could be involved in several less efficient reactions such as

glucosylation by DPG-requiring Alg6p glucosyltransferase, OST-

mediated transfer of Man7GlcNAc2 onto polypeptide or water to

yield either glycopeptides or neutral fOS, respectively, and finally,

in vitro evidence suggests that ER luminal Man7GlcNAc2-PP-

dolichol may be able to slowly flip back onto the cytosolic face of

the ER [8]. Our results indicate that Man7GlcNAc2-PP-dolichol

can also give rise to Man7GlcNAc2-P. Clearly, the eventual fate of

the Man7GlcNAc2-PP-dolichol will depend on the relative rates of

these competing reactions. The question of why immature DLO

intermediates are capable of giving rise to fOSGN2-P rather than

fully mature DLO in normal cells remains to be elucidated, but in

CDG I cells two factors may come into play. First, defects in

enzymic steps of the DLO pathway will clearly favour consump-

tion of the accumulated DLO intermediate by the type of less

efficient secondary reactions described above. Second, in CDG I

cells a more generalised perturbation of ER function, caused by,

for example, misfolded glycoproteins, may lead to a slow down in

certain steps of the DLO cycle. To conclude, our results show that

in EBV lymphoblastoid cells from normal subjects and mouse

lymphoma cells fOSGN2-P generation occurs at low levels, but in

EBV CDG I cells and DPM1-deficient mouse lympoma cells

increases in immature DLO intermediates lead to increases in

fOSGN2-P generation.

The selectivity and subcellular localisation of fOSGN2-P
generation

Three hypotheses could explain the selectivity of fOSGN2-P

generation that we observe in EBV lymphoblastoid or mouse

lymphoma cells. First, the pyrophosphatase activity may show

specificity towards non-glucosylated, hypomannosylated, DLO

intermediates. However, it has been demonstrated that calf thyroid

centrifugation fOSGN2-P and neutral fOS were recovered from both the supernatant containing cytosolic components (Cyt) and the permeabilised
cell pellet containing intact membrane bound compartments (MBC). After dephosphorylation with mild acid treatment fOSGN2-P and fOS were
examined by TLC. The migration position of Man7GlcNAc2 (M7GN2), derived by mild acid hydrolysis of Man7GlcNAc2-PP-dolichol isolated from CDG Ig
cells, is indicated to the left of each pair of chromatograms. B. EBV CDG Ig cells were pulse radiolabeled for 30 min with [2-3H]mannose and then
permeabilised with SLO in incubation buffer as described in Materials and Methods. After incubation of permeabilised cells in the presence of 20 mM
each of UDP-Glc, GDP-Man, and UDP-GlcNAc for various times at 37uC, Cyt and MBC fractions were generated as described above. Neutral fOS (C) and
fOSGN2-P (D) were recovered from the Cyt and MBC fractions and assayed by scintillation counting. E. DLO (L) and fOSGN2-P (P) recovered from the
incubations described in C and D were hydrolysed using mild acid treatment and the resulting oligosaccharides were analysed by TLC.
Pyrophosphate 10 mM was added to the indicated reaction mixture. The migration positions of standard oligosaccharides are indicated by the solid
lines to the left of the chromatograms. The oligosaccharide migrating slightly slower than Man9GlcNAc2 (indicated with the dotted line) was not
characterised but migrates as Glc1Man9GlcNAc2 or Glc3Man7GlcNAc2. The TLC plate on which DLO-derived oligosaccharides were resolved was
exposed to film for 7 days whereas that on which fOSGN2-P-derived oligosaccharides were resolved was exposed for 14 days.
doi:10.1371/journal.pone.0011675.g006
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Figure 7. A tripeptide containing the N-glycosylation concensus sequence inhibits fOSGN2-P generation in permeabilised cell
incubations. Permeabilised EBV CDG Ig cells were prepared as described for Fig. 6B and incubated in the absence (2NYT) or presence of 1 mM
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microsomes are capable of yielding fOSGN2-P from exogenous

Glc3Man9GlcNAc2-PP-dolichol and a yeast microsomal pyro-

phosphatase activity is capable of generating Man8GlcNAc2-P

from exogenous Man8GlcNAc2-PP-dolichol. Second, all DLO

structures could yield corresponding fOSGN2-P structures but

either a phosphatase or cytosolic Engase1p could potentially

specifically neutralise Glc3-0Man9-8GlcNAc2-P structures to yield

the corresponding fOSGN2 or fOSGN, respectively, which would

go undetected in our assays. This hypothesis can not be excluded

but as human cytosolic Engase1p can cleave triglucosylated

fOSGN2 (Chantret, I. and Moore, S., manuscript in preparation)

the presence of a highly selective fOSGN2-P would have to be

proposed. Third, the pyrophosphatase activity may be compart-

mentalised differently to more fully mature DLO intermediates,

and the selectivity of the putative mechanism that regulates this

DLO compartmentalisation would underly the selectivity of

fOSGN-P generation. This hypothesis is difficult to evaluate

because the subcellular localisation of the pyrophosphatase is not

clear. Although the subcellular site for the generation of Man9-

8GlcNAc2-P has not been investigated, the lumenal orientation

Man9-8GlcNAc2-PP-dolichol has led to the assumption of an ER

luminal pyrophosphatase activity [19]. On the other hand

Man5GlcNAc2-P and Man2GlcNAc2-P were only recovered in

the cytosol fraction of DPM-deficient CHO cells whose plasma

membrane is permeabilised. As DLO intermediates containing 5

or less mannose residues are generated on the cytosolic face of the

ER, the pyrophosphatase activity was proposed to work at the

cytosolic face of this organelle [42].

Is Man7GlcNAc2-P generated within the ER or in the
cytoplasm or in both compartments?

Using an in vitro assay we show that fOSGN2-P generation is

reduced when permeabilised cells are incubated with a peptide

containing the N-glycosylation consensus sequence. This result

demonstrates that the DLO pool that gives rise to fOSGN2-P

and the pool which is required for peptide glycosylation are

functionally related. Furthermore, as peptide N-glycosylation is

mediated by OST in the ER and vesicular transport is not

supported in SLO permeabilised cells, these data indicate that

fOSGN2-P generation is a property of the ER itself or of some

contiguous membrane structure. When cells are metabolically

radiolabeled and then permeabilised with SLO at 4uC we noted

that although ,80% of Man7GlcNAc2-P was recovered in the

cytosol fraction, trypan blue exclusion studies indicated that

greater than 95% of cells had been permeabilised. Three

hypotheses may be postulated to explain these data. First, under

our permeabilisation conditions, Man7GlcNAc2-P may be less

permeant than trypan blue. Second, a Man7GlcNAc2-P pool

could be generated within an MBC. Third, cytosolic Man7-

GlcNAc2-P could bind to exposed sites of the permeabilised

cells. Whatever the explanation behind the localisation of MBC-

associated Man7GlcNAc2-P, in vitro incubations reveal that this

fOSGN2-P pool is stable and little affected by the presence of

the glycosylation acceptor peptide. By contrast, the amount of

cytosolic Man7GlcNAc2-P increases 6 fold during such incuba-

tions and this production is sensitive to the presence of the

glycosylation acceptor peptide. Accordingly, we were unable to

detect the precursor/product relationship between MBC-, and

cytosol-situated Man7GlcNAc2-P that would be expected from

ER-to-cytosol transport of this structure. Both glycopeptides

[43,44,45,46] and fOS [31,47] have been reported to be

transported out of the ER into the cytosol, but these processes

require cytosolic factors such as GTP and ATP and, as

expected, in our in vitro assay for the generation of Man7-

GlcNAc2-P which is carried out in the absence of such

molecules, a glycotripeptide and fOS remain predominantly

within the MBC.

Potential mechanisms for the appearance of cytosolic
Man7GlcNAc2-P

What mechanism could account for the generation of cytosolic

Man7GlcNAc2-P from luminal Man7GlcNAc2-PP-dolichol with-

out the appearance of luminal Man7GlcNAc2-P under conditions

where other known transport processes, if present, operate so

inefficiently that their substrates accumulate in the ER? First, a

luminal pyrophosphatase activity could be tightly coupled to an

ER-to-cytosol transport process allowing efficient molecular

channelling of the pyrophosphatase product to the transporter

resulting in an undetectable pool of luminal Man7GlcNAc2-P

(Fig. 7D, left panel). Second, a flippase could retrotranslocate

Man7GlcNAc2-PP-dolichol from the luminal to the cytosolic face

of the ER thereby exposing the DLO intermediate to a

pyrophosphatase whose active site is cytosolic (Fig. 7D, right

panel). Indeed, there is evidence for ATP-independent, protein-

mediated, flipping of Man7GlcNAc2-PP-dolichol across artificial

sealed liposomes, although in these studies, Man5GlcNAc2-PP-

dolichol appeared to be the best substrate for this activity [8].

Thus, if it is hypothesesied that the DLO pyrophosphatase acts at

the cytosolic face of the ER, flippase-mediated distribution of

DLO intermediates across the ER membrane could conceivably

contribute to the apparent selectivity of fOSGN2-P generation.

To conclude, fOSGN2-P have been observed in EBV

lymphoblastoid cells from control subjects and CDG I patients

and murine lymphoma cells. In cells with glycosylation deficits

where non-glucosylated DLO intermediates containing 7 or less

mannose residues accumulate, increased fOSGN2-P generation is

observed. The functional link between DLO pools required for N-

glycosylation and fOSGN2-P generation in permeabilised cells

indicates that they are contiguous and substantiates the hypothesis

that pyrophosphatase-mediated cleavage of DLO intermediates

could yield rapidly recyclable dolichol-P. The mechanisms

underlying fOSGN2-P generation appear complex and reveal a

novel ER-to-cytosol translocation process for either fOSGN2-P or

DLO.
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this structure can be potentially flipped onto the cytosolic face of the ER (right panel).
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