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Abstract: Few prospective cohort trials have investigted the effect of pretreatment nutritional and in-
flammatory status on the clinical outcome of patients with cancer and optimal performance status and
assessed the interplay between nutrition, inflammation, body composition, and circulating metabo-
lites before treatment. Here, 50 patients with locally advanced head and neck squamous cell carcinoma
(LAHNSCC) and Eastern Cooperative Oncology Group performance status (ECOG PS) ≤ 2 were
prospectively recruited along with 43 healthy participants. Before concurrent chemoradiotherapy,
compared with healthy controls, the cancer group showed lower levels of histidine, leucine, and
phenylalanine and had low values in anthropometric and body composition measurements; however,
the group displayed higher ornithine levels, more malnutrition, and severe inflammation. Pretreat-
ment advanced Glasgow prognostic score (1 and 2) status was the sole prognostic factor for 3-year
mortality rate and was associated with age and serum histidine levels in patients with cancer. Thus,
even at the same tumor stage and ECOG PS, patients with LAHNSCC, poor nutrition, and high
inflammation severity at baseline may have inferior survival outcomes than those with adequate
nutrition and low inflammation severity. Assessment of pretreatment nutritional and inflammatory
status should be included in the enrollment criteria in future studies.

Keywords: head and neck cancer; metabolites; Glasgow prognostic score; histidine; inflammation;
performance status

1. Introduction

Most patients with head and neck cancer (HNC) present with locally advanced dis-
ease [1]. High prevalence of inadequate nutritional status and severe inflammatory re-
sponse have been observed in patients with locally advanced head and neck squamous cell
carcinoma (LAHNSCC) at the time of diagnosis [2–5]. A malnourished and hyperinflamma-
tory condition imposes a significant negative impact on the treatment regimen tolerability,
quality of life, and survival outcomes of patients with LAHNSCC [3,6–8]. However, in
oncologists’ routine clinical practice, the assessment of nutritional and inflammatory status
is not regularly made and is also not routinely required during prospective cancer studies.
This is mainly due to the lack of clinicians’ awareness and scarcity of convincing random-
ized control trials [9–11], substantially weakening the importance of a clinical nutritional
assessment in parallel with conventional cancer stage examination and treatment [12].
Furthermore, it is possible that patients with LAHNSCC who have been suffering from
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poor nutrition and severe inflammation show inferior treatment outcomes than that of
those with adequate nutrition and no inflammation even in the equivalent and optimal
medical performance status. Hence, proper assessment of nutritional and inflammatory
status before treatment should be conducted, and high-quality prospective trials are re-
quired to improve oncologists’ awareness of such an issue. For patients with LAHNSCC
and optimal performance status, no appropriate prospective trial regarding the interplay
between pretreatment nutritional and inflammatory status and survival outcome prediction
has been reported.

Certain clinicopathologic variables, nutrition-inflammation biomarkers (NIBs), and
body composition parameters can assess pretreatment malnourished status, reflect the
severity of systemic inflammation, and predict the outcomes of patients with HNC [13–15].
These include old age [14], comorbidity [14,15], poor performance status [13,14], low body
mass index (BMI) and body weight (BW) [13,14,16], anemia [14,15], low total lymphocyte
count [13], low prognostic nutritional index (PNI) [17], high levels of C-reactive protein
(CRP), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) [18–20],
and total muscle and fat mass [19,21]. In particular, the Glasgow prognostic score (GPS), an
inflammation-based model that combines the levels of serum albumin and CRP, has demon-
strated significance for predicting outcomes in patients with HNC under different clinical
circumstances [22–26]. Patients with HNC or oropharyngeal squamous cell carcinoma
who expressed a low pretreatment modified Glasgow prognostic score (mGPS) showed
better survival outcomes than those who expressed a high mGPS [23,25]. The improved
GPS subgroup of patients with LAHNSCC after concurrent chemoradiotherapy (CCRT)
showed a tendency toward superior overall and recurrence-free survivals [22]. GPS status
after nivolumab treatment was also identified as an independent prognostic factor for the
overall survival of patients with recurrent/metastatic HNC [24]. The correlation between
pretreatment GPS or mGPS status and overall survival has also been reported in patients
with recurrent/metastatic HNC receiving nivolumab therapy [26,27]. However, most of
these studies were retrospectively conducted among heterogeneous patient populations
with varied tumor stages, treatment protocols, and data collection periods. Furthermore, a
comprehensive analysis which includes all the possible confounding covariates among the
published reports is lacking. Although poor performance status showed an independent
contribution to prognostic outcomes as well as NIBs in some studies [24,26,27], the effect of
clinicopathologic factors, NIBs, and body composition on the survival outcome of patients
with HNC who have good performance status remains uncertain. Therefore, these results
should be interpreted with caution before clinical application.

Metabolomics offers a powerful tool to assess the biochemical changes in cells, tissues,
and body fluids, helps to understand complicated disease processes, and is applied to
patients with HNC [28–31]. A comprehensive review showed different metabolite profiles
between healthy participants with no cancer and patients with HNC using various sample
types and metabolomics platforms [28]. Although metabolomics improves our knowledge
of the HNC pathogenesis, its clinical application in daily practice is limited, probably due
to the complex interpretation of multi-metabolite measurements, inherent inconsistency
of metabolite profiles from different tissue samples, limited availability of technology
platforms, and equivocal data from heterogeneous enrollment of study patients with mixed
tumor stages [29–32]. Recently, a simple and easy-to-read metabolite panel was developed
using ultra-performance liquid chromatography (UPLC) to measure the serum levels of
four amino acids (histidine, leucine, ornithine, and phenylalanine; HLOP) [28,33,34]. The
HLOP panel, corresponding to the muscle synthesis and breakdown, nutritional status, and
nitrogen waste via the urea cycle, has shown a prognostic influence in patients with severe
infection [35], congestive heart failure [33,34], chronic kidney disease [36], and chronic
obstructive pulmonary disease [37]. However, it remains unknown whether the HLOP
profile differs between patients with HNC and healthy adults. Furthermore, the clinical
implications of pretreatment levels of the HLOP-based panel in patients with HNC have
not yet been studied. The interactions among metabolomics, clinicopathological variables,
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malnutrition status, inflammation severity, body composition parameters, and clinical
outcomes also require further investigation.

To solve the confounding issues of retrospective study designs, mixed tumor stages,
varied performance status, and diverse treatment protocols, a prospective, observational
study was required. We prospectively enrolled a homogenous group of patients with
LAHNSCC (stage III, IVA, or IVB) who had an optimal performance status, i.e., Eastern
Cooperative Oncology Group performance status (ECOG PS) ≤ 2 before CCRT, and subse-
quently received standard CCRT (RT at a fraction daily for 5 days per week over 6–8 weeks
concurrently with weekly cisplatin infusion chemotherapy). In this study, we evaluated the
differences between the patients with cancer and optimal performance status and healthy
controls with regard to anthropometric parameters, NIBs, and serum HLOP profiles. By
simultaneously analyzing all covariates, including clinicopathological variables, anthropo-
metric data and NIBs, body composition measurements, and the HLOP panel, we aimed
to identify prognostic factors contributing to the 3-year mortality rate of patients with
LAHNSCC receiving CCRT and independent factors associated with the pretreatment of
these prognostic factors in patients with cancer.

2. Materials and Methods
2.1. Patient Recruitment

Eligible patients with histologically proven LAHNSCC originating in the oral cavity,
oropharynx, hypopharynx, and larynx were prospectively recruited between January 2018
and July 2019. According to the 8th edition of the American Joint Committee on Cancer
(AJCC) staging system and criteria of inclusion and exclusion, the HNC committee of our
institute confirmed LAHNSCC and tumor stage, including stages III (T1-2, N1, or T3, N0-1),
IVA (T4a, N0-1, or T1-4a, N2), and IVB (any T, N3, or T4b, any N). The inclusion criteria
were age ≤75 years, optimal performance status defined as an ECOG PS score ≤2, sufficient
hematopoietic or organ function, and no expression in the human papilloma virus test in
tumor specimens. The exclusion criteria were as follows: (1) systemic illnesses such as
enduring infections, uncontrolled diabetes mellitus, end-stage renal disease, severe chronic
obstructive pulmonary disease, decompensated liver cirrhosis with intractable ascites
or hepatic encephalopathy, heart failure with New York Heart Association classification
IV, major gastrointestinal disorders, or autoimmune diseases and (2) consumption of
medications, such as steroids or megestrol acetate, that probably interfere with metabolism
or BW.

Forty-three control participants matched with the LAHNSCC population with respect
to age and sex were included in this study. They had to fulfill the following requirements:
(1) no active or previous malignancies, (2) no reported exposure to cigarette smoking,
alcohol, or betel nut, and (3) no medications for hypertension, diabetes, dyslipidemia,
endocrine illness, coronary artery disease, pulmonary disorders, or autoimmune diseases.

The median follow-up time and interquartile range for cancer patients was 27.6 months
and 10.0 months, respectively. The follow-up time was defined as the period from diagnosis
to the day of the last visit or death due to any cause. At the time of writing this manuscript,
fourteen cancer patients have died, while all 43 control participants remain alive and have
regular outpatient clinic visits.

Patients received either postoperative adjuvant CCRT for oral cavity cancer or curative-
intent primary CCRT for unresectable cancers of the oropharynx, hypopharynx, and larynx.
Intensity-modulated radiotherapy at a dose of 60–72 Gy in 30–36 fractions, a fraction daily
for 5 days per week over a 6–8-week period, with concurrent chemotherapy with weekly
cisplatin (40 mg/m2) was administered.

This study was approved by the Institutional Review Board (IRB) of the Chang Gung
Memorial Hospital (CGMH), Taiwan (approval numbers: 101-4047B and 201700158B0), and
was conducted in compliance with the Good Clinical Practice Guidelines and Declaration
of Helsinki. Written informed consent was obtained from the control participants and
patients with cancer upon enrollment.
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2.2. Clinicopathological Data

Clinicopathological data, including age, sex, body height (BH), BW, ECOG PS, comor-
bid illness, tumor sites, tumor stage, histologic differentiation grade, status of tumor size
(T), regional lymph node involvement (N), presence of tracheostomy, and exposure records
of cigarette smoking, alcohol, and betel nut, were collected. Smokers were defined as
current cigarette smokers or those who had been previously exposed to cigarette smoking.
Alcohol drinkers were defined as those who consumed alcohol more than 4 times per
week. Betel quid users were defined as patients who had consumed betel nuts during the
previous year. The severity of comorbidity was assessed using the head and neck Charlson
comorbidity index (HN-CCI) [38]. BMI (kg/m2) was determined as the BW (in kilograms)
divided by the square of the BH (in meters).

2.3. Biochemical Data and Blood NIBs

Blood samples were collected after overnight fasting within one week before CCRT.
Biochemical data and NIBs, including hemoglobin (Hb, g/dL), white blood cell count (WBC,
103/mm3), platelet count (103/mm3), albumin (g/dL), prealbumin (g/dL), transferrin
(g/dL), creatinine (mg/dL), alanine transaminase (ALT, U/L), total bilirubin (mg/dL), uric
acid (mg/dL), fasting glucose (mg/dL), total cholesterol (mg/dL), triglycerides (mg/dL),
and CRP (mg/dL) were measured using an auto-analyzer (Beckman, CA, USA) at the
CGMH central laboratory in Keelung, Taiwan.

The estimated glomerular filtration rate (eGFR, mL/min/1.73 m2) was calculated
using the abbreviated modification of diet in renal disease study equation, corrected to a
body surface area of 1.73 m2 [39]. Total lymphocyte count (TLC), total neutrophil count
(TNC), total monocyte count (TMC), total eosinophil count (Teso), and total basophil
count (Tbaso) were calculated as WBC counts (/mm3) × the percentages of lymphocytes,
neutrophils, monocytes, eosinophils, and basophils in the blood, respectively. The NLR was
calculated as the ratio of absolute neutrophil count to lymphocyte count, while PLR was
calculated as the ratio of platelet count to lymphocyte count. Further, PNI = 10 × serum
albumin (g/dL) + 0.005 × TLC (/mm3) [17]. The percentage of BW change was calculated
using the following formula: [(current weight in kg-previous weight in kg)/previous
weight in kg] × 100, where previous weight was defined as the BW measured in the six
months preceding diagnosis. GPS was defined based on the presence of hypoalbuminemia
(<3.5 g/dL) and elevated CRP (>10 mg/L) as follows: if both were abnormal, the score was
2; if either was abnormal, the score was 1; if neither was abnormal, the score was 0 [40].

The malnutrition status was determined using BW loss (BWL) > 5.0%, BMI < 18.5 kg/m2,
albumin < 3.5 g/dL, TLC < 1.5 × 103 cells/mm3, or the patient-generated subjective
global assessment (PG-SGA). PG-SGA scores were in a range between 0 and 3, and
scores of 0–3, 4–8, and ≥9 indicated no, moderately, and severely malnourished status,
respectively [41–43].

2.4. Body Composition Measurements

Following the guidelines set by the International Society for Clinical Densitometry to
accurately place each participant, we obtained body composition parameters, including
the lean body mass (LBM), total fat mass (TFM), and appendicular skeletal mass (ASM,
arm and leg), using dual-energy fan-beam X-ray absorptiometry (Lunar iDXA, GE Medical
System, Madison, WI, USA) within one week before CCRT [44]. According to the BMI and
body size, the scanner software selected the scan mode (standard, thin, or thick). Scans
were analyzed using enCORE software, version 15 (San Jose, CA, USA).

2.5. Ultra-Performance Liquid Chromatography (UPLC)-Based Measurement

Blood levels of histidine, leucine, ornithine, and phenylalanine were measured as
previously described [34,37]. Briefly, EDTA-treated plasma samples were harvested within
one week before CCRT and within three days after CCRT. They were stored at −80 ◦C until
assayed. Plasma samples (100 µL) were precipitated by adding an equal volume of 10.0%
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sulfosalicylic acid containing 200 µM norvaline (an internal standard). Derivatization was
initiated by adding 10 mM AQC in acetonitrile after protein precipitation and centrifugation
at 12,000× g for 10 min at room temperature. Eluent A (20 mM ammonium formate/1.0%
acetonitrile) was added to the mixture after 10 min of incubation, and the amino acids
were examined using the ACQUITY UPLC System [45,46], which consisted of a binary
solvent manager, sample manager, and tunable UV detector. The system was controlled,
and data were collected using Empower™ 2 software (Waters Corporation, Milford, MA,
USA). Separations were conducted on a 2.1 × 100 mm ACQUITY BEH C18 column at a
flow rate of 0.70 mL/min. For histidine, ornithine, leucine, and phenylalanine, the average
intra-assay coefficients of variation were 4.3, 4.6, 4.5, and 4.6%, respectively, while the total
coefficients of variation were 3.1, 3.6, 4.1, and 3.7%, respectively. Further, the detection
limits for histidine, ornithine, leucine, and phenylalanine were 0.5 µM, 2.0 µM, 0.9 µM, and
3.3 µM, respectively. The linear range for these four amino acids was 25–500 µM.

2.6. Statistical Analysis

SPSS (version 22.0; SPSS Inc., Chicago, IL, USA) was used for the statistical analyses.
Based on a power of 80%, α error of 0.05, and the annual number of patients with LAHNSCC
receiving CCRT at our institute, the calculated minimum sample size was 42. The primary
endpoint of this prospective study was the correlation between NIBs and all variables, while
the secondary endpoint was 3-year mortality rate. All continuous variables were examined
for normality before analysis. Independent t-tests, analysis of variance (ANOVA) with
Bonferroni adjustments or nonparametric Mann–Whitney tests, and the Kruskal–Wallis H
test were used for continuous variables, where appropriate. The chi-square test was used for
categorical variables. Variables showing statistical significance (p < 0.05) in the univariate
logistic regression analysis were employed during the multivariate logistic regression
analysis to identify the independent variables associated with 3-year mortality rate and
pretreatment advanced GPS in patients with LAHNSCC. Three-year mortality rate was
defined as the proportion of patients who died within 1095 days of the start of treatment,
which was used as the reference date due to variations in the time for stage workups. All
differences with a two-tailed p-value < 0.05 were considered statistically significant.

Correlation matrices visualizing correlations among metabolites, biochemical and
anthropometric factors, NIBs, and DXA-derived parameters were obtained using the
Pearson correlation coefficient between each pair of variables and were constructed using
Statgraphics Centurion version 19 (Statgraphics Technologies, Inc. The Plains, VA, USA).

3. Results
3.1. Comparison between Patients with LAHNSCC and Control Participants

Table 1 shows the clinical features of 50 patients with LAHNSCC and 43 control partic-
ipants. No differences were observed in age, sex, BH, WBC, TNC, Teso, Tbaso, triglyceride
concentration, hepatorenal function, NLR, or PNI between the two groups. Compared to
the control group, the LAHNSCC group had significantly more comorbid illness; exposure
to smoking, alcohol, and betel quid; and lower values of BW, BMI, Hb, TLC, albumin,
uric acid, and cholesterol but higher levels of fasting sugar, platelet count, TMC, CRP, and
PLR. Patients with LAHNSCC showed significantly higher malnutrition rates compared to
the control group participants according to the different criteria (BWL > 5.0%: 26.0% vs.
2.3%, p = 0.001; BMI < 18.5 kg/m2: 18.0% vs. 0.0%, p = 0.003; TLC < 1.5 × 103 cells/mm3:
34.0% vs. 14.0%, p < 0.001; albumin < 3.5 g/dL: 14.0% vs. 0.0%, p < 0.001), advanced GPS
(GPS 1 + 2: 34.0% vs. 2.3%, p = 0.001), and displayed a more severe inflammatory status
(CRP > 5 mg/L: 34.0% vs. 2.3%, p = 0.001). Further, patients with LAHNSCC showed
lower pretreatment blood levels of histidine, leucine, and phenylalanine but higher levels
of ornithine than the control participants (Table 1). Finally, we performed a PG-SGA for
both healthy controls and patients with LAHNSCC. All participants in the control group
reported “unchanged”, while 94% of cancer patients reported “less than usual” in the status
of food intake during the month before treatment.
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Table 1. Clinical features, anthropometric data, biochemical data, nutrition-inflammation biomarkers
measurements, and serum metabolites concentrations in the healthy control and patients with
LAHNSCC groups.

Variables, Number (%) or Mean ± SD Control Group LAHNSCC Group p-Value *

Included participant number 43 50

Age (years) 53.6 ± 5.9 54.9 ± 8.9 0.516

Male:Female 37 (86.0):6 (14.0) 48 (96.0):2 (4.0) 0.098

Smoking exposure (no:yes) 32 (74.4):11 (25.6) 8 (16.0):42 (84.0) <0.001 *

Alcohol consumption (no:yes) 32 (74.4):11 (25.6) 14 (28.0):36 (72.0) <0.001 *

Betel quid use (no:yes) 43 (100.0):0 (0.0) 19 (38.0):31 (62.0) <0.001 *

Comorbid illness

Diabetes mellitus (no:yes) 43 (100.0):0 (0.0) 38 (76.0):12 (24.0) 0.001 *

Hypertension (no:yes) 43 (100.0):0 (0.0) 33 (75.0):11 (25.0) 0.001 *

Dyslipidemia (no:yes) 41 (95.4):2 (4.6) 45 (90.0):5 (10.0) 0.366

Congestive heart failure (no:yes) 43 (100.0):0 (0.0) 44 (100.0):0 (0.0) —

Cardiovascular accident (no:yes) 43 (100.0):0 (0.0) 46 (92.0):4 (8.0) 0.068

Chronic obstructive pulmonary disease (no:yes) 43 (100.0):0 (0.0) 44 (100.0):0 (0.0) —

Liver cirrhosis with no decompensation (no:yes) 42 (97.7):1 (2.3) 38 (76.0):12 (24.0) 0.003 *

Anthropometric data

BH (m) 1.66 ± 0.05 1.66 ± 0.06 0.829

BW (kg) 69.9 ± 10.8 64.0 ± 11.9 0.272 *

BWL ≤ 5%:>5% 42 (97.7):1 (2.3) 37 (74.0):13 (26.0) 0.001 *

BMI (kg/m2) 25.2 ± 3.0 22.9 ± 3.8 0.015 *

<18.5:≥18.5 0 (0.0):43 (100.0) 9 (18.0):41 (82.0) 0.003 *

Biochemical data

eGFR (mL/min/1.73 m2) 95.5 ± 18.8 101.6 ± 29.8 0.237

ALT (U/L, normal ≤ 36) 29.0 ± 6.9 22.7 ± 15.7 0.114

Total bilirubin (mg/dL, normal ≤ 1.3) 0.9 ± 0.3 0.8 ± 0.5 0.380

Uric acid (mg/dL, normal < 7.0) 6.0 ± 1.2 5.2 ± 1.7 0.008 *

Sugar (fasting, mg/dL) 99.7 ± 9.5 114.6 ± 46.5 0.032 *

Nutrition-Inflammation Biomarkers

Hb (g/dL) 14.8 ± 1.3 12.0 ± 1.8 <0.001 *

WBC (×103 cells/mm3) 6.5 ± 1.7 6.6 ± 2.8 0.930

Platelet count (×103/mm3) 222.2 ± 57.2 261.3 ± 88.7 0.013 *

TLC (×103 cells/mm3) 2.1 ± 0.9 1.8 ± 0.6 0.007 *

<1.5:≥1.5 6 (14.0):37 (86.0) 17 (34.0): 33(66.0) <0.001 *

TNC (×103 cells/mm3) 3.8 ± 1.3 4.0 ± 2.0 0.462
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Table 1. Cont.

Variables, Number (%) or Mean ± SD Control Group LAHNSCC Group p-Value *

TMC (×103 cells/mm3) 0.3 ± 0.2 0.5 ± 0.3 0.045 *

Teso (cells/mm3) 194.9 ± 24.1 202.5 ± 42.9 0.590

Tbaso (cells/mm3) 33.2 ± 28.1 32.8 ± 21.9 0.954

Albumin (g/dL, normal:3.5–5.5) 4.4 ± 0.3 3.9 ± 0.4 <0.001 *

<3.5:≥3.5 0 (0.0):43 (100.0) 7 (14.0):43 (86.0) <0.001 *
Total cholesterol (mg/dL, normal < 200) 213.5 ± 34.9 170.0 ± 42.9 <0.001 *

Triglycerides (mg/dL, normal < 150) 147.2 ± 91.6 157.2 ± 97.9 0.629

CRP (mg/L) 1.6 ± 2.6 6.8 ± 8.5 <0.001 *

<5:≥5 42 (97.7):1 (2.3) 33 (66.0): 7 (34.0) 0.001*

NLR 1.8 ± 0.6 2.9 ± 4.2 0.075

PLR 108.4 ± 43.8 166.8 ± 85.3 <0.001 *

PNI 47.4 ± 16.9 47.6 ± 6.1 0.934

GPS 0:1:2 42 (97.7):1 (2.3):0 (0.0) 33 (66.0):13 (26.0):4 (8.0) 0.001 *

Serum HLOP Metabolites

Histidine (µM) 92.8 ± 16.1 78.4 ± 16.2 <0.001 *

Leucine (µM) 152.8 ± 20.2 127.8 ± 38.9 <0.001 *

Ornithine (µM) 93.6 ± 17.1 122.1 ± 34.2 <0.001 *

Phenylalanine (µM) 68.4 ± 12.4 62.9 ± 11.5 0.016 *
* For each variable, p-value was determined based on the difference between healthy controls and patients with
LAHNSCC; p < 0.05, statistical significance. Nonparametric statistics were obtained using Mann–Whitney U
test for platelet count, Teso, Tbaso, ALT, uric acid, sugar (fasting), CRP, NLR, PLR, PNI, and all metabolites.
Independent t-test was implemented for other continuous variables, while chi-square test was used for analyzing
sex, smoking, alcohol, betel quid, all comorbid illnesses, BWL (cutoff: 5%), BMI (cutoff: 18.5 kg/m2), TLC (cutoff:
1.5 × 103 cells/mm3), albumin (cutoff: 3.5 g/dL), CRP (cutoff: 5 mg/L), and GPS. Abbreviations: SD, standard
deviation; LAHNSCC, local advanced head and neck squamous cell carcinoma; BH, body height; BW, body
weight; BWL, body weight loss; BMI, body mass index; eGFR, estimated glomerular filtration rate; ALT, alanine
aminotransferase; Hb, hemoglobin; WBC, white blood cell; TLC, total lymphocyte count; TNC, total neutrophil
count; TMC, total monocyte count; Teso, total eosinophil count; Tbaso, total basophil count; CRP, C-reactive
protein; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; PNI, prognostic nutritional
index; GPS, Glasgow prognostic score; HLOP, histidine, leucine, ornithine, and phenylalanine.

3.2. Characteristics of Patients with LAHNSCC before CCRT

Of the 50 patients with LAHNSCC, 28 with oral cavity cancer received postopera-
tive adjuvant CCRT, while 22 with non-oral cavity cancer received primary CCRT. The
patients were predominantly male (96.0%), with an average age of 54.9 years. The most
common tumor site was the oral cavity (56.0%), followed by the hypopharynx (22.0%)
and oropharynx (18.0%). Over 90 percent of the patients had non-metastatic TNM stage
IV (IVA + IVB: 92.0%) and had an ECOG PS of ≤ 1 (92.0%). Most patients presented with
advanced tumor size (T3 + T4: 70.0%), extended regional lymph node invasion (N2 + N3:
68.0%), good histologic differentiation (well + moderate: 86.0%), and exposure to cigarette
smoke (84.0%), alcohol (72.0%), and betel quid (62.0%). Sixty percent of patients had at
least one comorbid illness. Further, 40.0% patients underwent tracheostomy before CCRT
(Table 2).
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Table 2. Clinicopathologic variables, biochemical and nutrition-inflammation data, anthropometric
and body composition characteristics, and serum HLOP metabolite of 50 patients with LAHNSCC
stratified by GPS status.

Variables, Numbers (%) or
Mean ± SD ALL GPS 0 GPS 1 GPS 2 p-Value *

Included patient number 50 (100.0) 33 (66.0) 13 (26.0) 4 (8.0)

Clinicopathologic

Age (years) 54.9 ± 8.9 53.6 ± 8.7 57.3 ±9.1 57.8 ± 10.2 0.367

<65:≥65 44 (88.0):6 (12.0) 32 (97.0):1 (3.0) 9 (69.2):4 (30.8) 3 (75.0):1 (25.0) 0.024 *

Sex (male:female) 48 (96.0):2 (4.0) 32 (97.0):1 (3.0) 12 (92.3):1 (7.7) 4(100.0):0 (0.0) 0.702

Tumor site 0.072

Oral cavity 28 (56.0) 20 (60.6) 7 (53.8) 1 (25.0)

Oropharynx 9 (18.0) 6 (18.2) 1 (7.7) 2 (50.0)

Hypopharynx 11 (22.0) 6 (18.2) 5 (3.5) 0 (0.0)

Larynx 2 (4.0) 1 (3.0) 0 (0.0) 1 (25.0)

TNM stage 0.671

III
IVA
IVB

4 (8.0)
23 (46.0)
23 (46.0)

3 (9.1)
17 (51.5)
13 (39.4)

1 (7.7)
5 (38.5)
7 (53.8)

0 (0.0)
1 (25.0)
3 (75.0)

T status 0.123

T0–2
T3–4

15 (30.0)
35 (70.0)

11 (33.3)
22 (66.7)

2 (15.4)
11 (84.6)

2 (50.0)
2 (50.0)

N status 0.936

N0–1
N2–3

16 (32.0)
34 (68.0)

11 (33.3)
22 (66.7)

4 (30.8)
9 (69.2)

1 (25.0)
3 (75.0)

Histological differentiation
grade

Well
Moderate
Poor

6 (12.0)
37 (74.0)
7 (14.0)

5 (15.2)
23 (69.6)
5 (15.2)

1 (7.7)
11 (84.6)
1 (7.7)

0 (0.0)
3 (75.0)
1 (25.0)

0.739

ECOG performance status 0.024 *

0
1
2

3 (6.0)
43 (86.0)
4 (8.0)

2 (6.1)
30 (90.9)
1 (3.0)

1 (7.7)
11 (84.6)
1 (7.7)

0 (22.2)
2 (50.0)
2 (50.0)

Tracheostomy 0.159

No
Yes

30 (60.0)
20 (40.0)

19 (57.6)
14 (42.8)

10 (76.9)
3 (23.1)

1 (25.0)
3 (75.0)

Smoking exposure 0.443

No
Yes

8 (16.0)
42 (84.0)

6 (18.2)
27 (81.8)

2 (15.4)
11 (84.6)

0 (0.0)
4 (100)

Alcohol consumption 0.470

No
Yes

14 (28.0)
36 (72.0)

11 (33.3)
22 (66.7)

2 (15.4)
11 (84.6)

1 (25.0)
3 (75.0)

Betel quid use 0.018 *

No
Yes

19 (38.0)
31 (62.0)

16 (48.5)
17 (51.5) 3 (23.1) 10 (76.9) 0 (0.0)

4 (100.0)

HN-CCI 0.233
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Table 2. Cont.

Variables, Numbers (%) or
Mean ± SD ALL GPS 0 GPS 1 GPS 2 p-Value *

0
≥1

20 (40.0)
30 (60.0)

16 (48.5)
17 (51.5) 3 (23.1) 10 (76.9) 1 (25.0)

3 (75.0)

PG-SGA assessment
before CCRT 0.948

Malnutrition
none
moderate
severe

1 (2.0)
21 (42.0)
28 (56.0)

1 (3.0)
14 (42.4)
18 (54.6)

0 (0.0)
5 (38.5)
8 (61.5)

0 (22.2)
2 (50.0)
2 (50.0)

Biochemical data

eGFR (mL/min/1.73 m2) 101.6 ± 29.8 109.8 ± 29.5 97.2 ± 29.4 104.8 ± 14.3 0.408

ALT (U/L, normal ≤ 36) 22.7 ± 15.7 26.5 ± 15.8 20.3 ± 10.6 37.0 ± 23.9 0.153

Total bilirubin
(mg/dL, normal ≤ 1.3) 0.8 ± 0.5 0.4 ± 1.7 0.8 ± 0.9 0.4 ± 0.3 0.148

Uric acid (mg/dL, normal < 7.0) 5.2 ± 1.7 5.6 ± 1.7 4.7 ± 1.6 3.7 ± 2.0 0.074

Sugar (fasting, mg/dL) 114.6 ± 46.5 111.8 ± 45.9 125.2 ± 54.1 108.9 ± 21.6 0.606

Anthropometric and
blood NIB data

BW (kg) 64.0± 11.9 64.3 ± 11.3 64.4 ± 13.7 60.1 ± 13.4 0.755

BWL
≤5%
>5%

37 (74.0)
13 (26.0)

24 (72.7)
9 (27.3)

11 (84.6)
2 (15.4)

2 (50.0)
2 (50.0)

0.370

BMI (kg/m2) 22.9 ± 3.8 22.9 ± 3.8 23.1 ± 3.7 22.1 ± 4.1 0.924

<18.5
≥18.5

9 (18.0)
41 (82.0)

6 (18.2)
27 (81.8)

1 (7.7)
12 (92.3)

2 (50.0)
2 (50.0) 0.252

Hb (g/dL) 12.0 ± 1.8 12.3 ± 1.5 11.8 ± 2.3 9.8 ± 1.3 0.027 *b

WBC (×103 cells/mm3) 6.6 ± 2.8 6.0 ±1.4 8.0 ±4.4 6.4 ±2.5 0.189

Platelet count (×103/mm3) 261.3 ± 88.7 257.5 ± 75.4 293.9 ± 99.3 207.7 ± 108.3 0.197

TLC (×103 cells/mm3) 1.8 ± 0.6 1.9 ±0.5 1.8 ±0.8 1.6 ± 0.7 0.189

<1.5
≥1.5

17 (34.0)
33 (66.0)

9 (27.3)
24 (72.7)

5 (38.5)
8 (61.5)

3 (75.0)
1 (25.0) 0.151

TNC (×103 cells/mm3) 4.0 ± 2.0 3.5 ±1.1 5.2 ±3.1 4.6 ± 2.0 0.061

TMC (×103 cells/mm3) 0.5 ± 0.3 0.4 ±0.1 06 ±0.5 0.4 ± 0.1 0.080

Teso (cells/mm3) 202.5 ± 42.9 195.9 ± 116.4 254.8 ± 64.8 212.7 ± 67.2 0.202

Tbaso (cells/mm3) 32.8 ± 21.9 34.5 ± 20.3 35.7.9 ± 25.0 29.5 ± 14.5 0.184

Albumin (g/dL) 3.9 ±0.4 3.9 ±0.3 3.9 ±0.6 2.9 ±0.3 <0.001 *bc

<3.5
≥3.5

7 (14.0)
43 (86.0)

0 (0.0)
33 (100.0)

3 (23.1)
10 (76.9)

4 (100.0)
0 (0.0) <0.001 *

Prealbumin (g/dL, normal: 20–40) 25.1 ± 5.6 26.7 ± 4.6 23.1 ± 6.3 17.3 ± 3.5 0.002 *b

Transferrin (g/dL normal: 200–360) 203.1 ± 37.9 208.2 ± 36.1 206.5 ± 31.2 149.8 ± 32.8 0.010 *bc

Total cholesterol (mg/dL,
normal < 200) 170.0± 42.9 175.6 ± 37.7 172.3 ± 51.5 117.0 ± 15.1 0.032 *bc
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Table 2. Cont.

Variables, Numbers (%) or
Mean ± SD ALL GPS 0 GPS 1 GPS 2 p-Value *

Triglycerides (mg/dL, normal < 150) 157.2 ± 97.9 157.0 ± 95.0 172.5 ± 71.7 139.0 ± 57.3 0.536

CRP (mg/L) 6.8 ± 8.5 2.3 ± 1.9 13.0 ± 8.5 23.1 ± 11.1 <0.001
*abc

NLR 2.9 ± 4.2 2.0 ± 0.6 3.1 ± 1.6 9.9 ± 3.8 0.001 *bc

PLR 166.8 ± 85.3 153.3 ± 78.7 184.5 ± 73.8 220.2 ± 93.1 0.230

PNI 47.6 ± 6.1 49.0 ± 3.8 49.1 ± 7.0 34.7 ± 9.7 <0.001 *bc

DXA-related measurements

LBM (kg) 44.1 ± 5.7 44.3 ± 5.4 43.6 ± 6.8 43.7 ± 5.7 0.914

TFM (kg) 17.3 ± 7.2 17.4 ± 6.9 18.4 ± 7.5 15.3 ± 8.6 0.415

ASM (kg) 18.4 ± 4.2 19.1 ± 3.2 18.4 ± 3.3 12.5 ± 5.7 0.008 *bc

Serum HLOP metabolites

Histidine (µM) 78.4 ± 16.2 83.3 ± 13.8 71.8 ± 16.9 61.8 ± 16.6 0.007 *b

Leucine (µM) 127.8 ± 38.9 127.6 ± 34.9 134.8 ± 49.0 119.9 ± 34.5 0.431

Ornithine (µM) 122.1 ± 34.2 120.8 ± 28.8 129.9 ± 46.1 110.2 ± 34.2 0.462

Phenylalanine (µM) 62.9 ± 11.5 61.3 ± 13.6 69.2 ± 22.4 69.2 ± 14.8 0.528

Three-year mortality rate (%) 28.0 15.2 46.2 75.0 0.010 *
* For each variable, statistics were determined by comparing the differences among GPS 0, GPS 1, and GPS 2;
p < 0.05, statistical significance. a Statistical significance between GPS 0 and GPS 1. b Statistical significance
between GPS 0 and GPS 2. c Statistical significance between GPS 1 and GPS 2. Nonparametric data for WBC,
TNC, TMC, Teso, CRP, NLR, PLR, PNI, phenylalanine, and ASM were analyzed using the Kruskal–Wallis H
test, while analysis of variance (ANOVA) with Bonferroni adjustments was implemented for other continuous
variables. Chi-square test was used to analyze sex, smoking, alcohol, betel quid, all comorbid illnesses, BWL
(cutoff: 5%), BMI (cutoff: 18.5 kg/m2), TLC (cutoff: 1.5 × 103 cells/mm3), albumin (cutoff: 3.5 g/dL), CRP
(cutoff: 5 mg/L), and 3-year mortality rate. Abbreviations: SD, standard deviation; LAHNSCC, local advanced
head and neck squamous cell carcinoma; HLOP, histidine, leucine, ornithine, and phenylalanine; GPS, Glasgow
prognostic score; TNM stage, tumor–node–metastasis stage; HN-CCI, head and neck—Charlson comorbidity
index; ECOG, Eastern Cooperative Oncology Group; PG-SGA, patient-generated subjective global assessment;
NIBs, nutrition-inflammation biomarkers; BW, body weight; BMI, body mass index; eGFR, estimated glomerular
filtration rate; ALT, alanine aminotransferase; Hb, hemoglobin; WBC, white blood cell; TLC, total lymphocyte
count; TNC, total neutrophil count; TMC, total monocyte count; Teso, total eosinophil count; Tbaso, total basophil
count; CRP, C-reactive protein; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; PNI,
prognostic nutritional index; DXA, dual-energy X-ray absorptiometry; LBM, lean body mass; TFM, total fat mass;
ASM, appendicular skeletal mass.

The average BMI was 22.9 kg/m2. Pretreatment malnutrition rates were assessed using dif-
ferent malnutrition criteria: PG-SGA-defined malnourished status (98.0%), BWL > 5.0% (26.0%),
BMI < 18.5 kg/m2 (18.0%), albumin < 3.5 g/dL (18.0%), and TLC < 1.5 × 103 cells/mm3

(34.0%). The patients with cancer and optimal ECOG PS developed varying degrees of
malnutrition and inflammation severity before the start of CCRT (Tables 1 and 2). A 3-year
mortality rate of 28.0% was observed (Table 2).

3.3. Correlation among the Pretreatment Levels of Biochemical and Anthropometric Variables,
NIBs, DXA-Related Measurements, and Serum Metabolites in Patients with LAHNSCC

Figure 1 shows the associations among pretreatment levels of biochemical and anthro-
pometric variables, NIBs, DXA-related measurements, and serum metabolites. The four
amino acid metabolites were positively correlated with each other. Histidine levels were
positively correlated with the levels of albumin and uric acid but negatively correlated with
the CRP levels. Leucine showed positive correlation with albumin, prealbumin, fasting
sugar, and cholesterol levels. Ornithine and phenylalanine levels negatively correlated
with TLC. Hb levels were positively correlated with histidine, leucine, albumin, preal-
bumin, transferrin, cholesterol, TG, BW, and BMI. Albumin positively correlated with
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prealbumin, transferrin, cholesterol, TG, and BW. All pretreatment values of BW, BMI,
and DXA-associated measurements were positively correlated with each other. The TFM
was positively correlated with Hb, TLC, albumin, transferrin, and ALT levels. ASM was
positively correlated with albumin, prealbumin, transferrin, and TLC but negatively corre-
lated with CRP levels. This correlation analysis suggests an intricate and tight relationship
between the pretreatment levels of various blood-related variables and anthropometric and
body composition parameters.
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Figure 1. Correlation matrices used to visualize the correlations of the pretreatment levels of metabo-
lites, biochemical and anthropometric factors, NIBs, and DXA-derived parameters were obtained
using Pearson correlation coefficient.

3.4. Pretreatment GPS Independently Correlated with 3-Year Mortality Rate in Patients with
LAHNSCC

We further stratified patients according to their GPS status. Two-thirds of patients had
a GPS of 0. We found no statistical differences in the following variables, irrespective of
GPS status: sex, tumor sites, status of T and N, smoking, exposure to cigarette smoking
and alcohol, the presence of tracheostomy, PG-SGA, pretreatment hepatorenal function,
pretreatment WBC count, platelet count, TLC, TNC, TMC, Teso, Tbaso, uric acid, TG, BW,
BMI, LBM, TFM, leucine, ornithine, and phenylalanine. Nonetheless, a higher percentage
of patients with a GPS of 1 or 2 were aged ≥ 65 years and had an ECOG PS of 2; further, pa-
tients with a GPS of 1 or 2 expressed lower pretreatment levels of Hb, albumin, prealbumin,
transferrin, PNI, ASM, and histidine but higher levels of NLR and CRP than those with
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a GPS of 0 (Table 2). Patients with an advanced GPS (score of 1 + 2) had a higher 3-year
mortality rate than that of those with a low GPS (score of 0) (52.9% vs. 15.2%, p = 0.005).

We further investigated the prognostic factors associated with the 3-year mortality
rate of patients with LAHNSCC and found that age ≥ 65 years and pretreatment levels of
Hb, TNC, transferrin, cholesterol, CRP, NLP, and GPS status were the significant factors in
the univariate analysis. However, only advanced GPS status independently contributed to
the 3-year mortality rate in multivariate analysis (Table 3).

Table 3. Univariate and multivariate logistic regression analysis of prognostic factors associated with
3-year mortality rate of 50 patients with LAHNSCC.

Variables
Univariate Analysis Multivariate Analysis

Odds Ratio (95% CI) Odds Ratio (95% CI) p-Value

Clinicopathologic

Sex (ref: male) 1.000 (0.989;1.002)

Age (years) 1.041 (0.965;1.123)

Age (ref: ≥ 65 years) 0.147 (0.023;0.974)

Tumor stage (ref: stage III) 1.600 (0.142;18.011)

T status (ref: T0–2) 1.110 (0.283;4.282)

N status (ref: N0–1) 2.072 (0.498;8.804)

Tumor site (ref: non oral cavity) 0.477 (0.136;1.670)

Histologic differentiation grade
(ref: poorly differentiated) 0.846 (0.135;5.317)

HN-CCI (ref: 0) 2.000 (0.527;7.584)

ECOG PS (ref: 0) 3.110 (0.521;10.013)

Smoking (%) (ref: no) 3.138 (0.349;28.180)

Alcohol (%) (ref: no) 3.000 (0.576;15.614)

Betel quid (%) (ref: no) 2.754 (0.354;26.523)

Tracheostomy (ref: no) 1.179 (0.337;4.125)

PG-SGA (ref: none) 1.235 (0.835;2.449)

Biochemical data

eGFR (ml/min/1.73 m2) 0.977 (0.953;1.002)

ALT (U/L) 0.976 (0.927;1.026)

Total bilirubin (mg/dL) 1.392 (0.460;4.215)

Uric acid (mg/dL) 0.798 (0.546;1.168)

Sugar (fasting, mg/dL) 1.001 (0.987;1.014)

Anthropometric and blood NIB data

BW (kg) 0.985 (0.932;1.040)

BWL (ref: < 5%) 1.944 (0.506;7.473)

BMI (kg/m2) 0.941 (0.791;1.119)

BMI (ref: > 18.5 kg/m2) 1.384 (0.290;6.415)

Hb (g/dL) 0.659 * (0.437;0.996)
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Table 3. Cont.

Variables
Univariate Analysis Multivariate Analysis

Odds Ratio (95% CI) Odds Ratio (95% CI) p-Value

WBC (×103 cells/mm3) 1.224 (0.935;1.603)

Platelet (×103/mm3) 0.997 (0.989;1.004)

TLC (×103 cells/mm3) 0.999 (0.998;1.004)

TNC (×103 cells/mm3) 1.002 * (1.001;1.033)

TMC (×103 cells/mm3) 1.001 (0.999;1.004)

Teso (cells/mm3) 1.001 (0.997;1.005)

Tbaso (cells/mm3) 0.983 (0.954;1.013)

Albumin (g/dL) 0.314 (0.074;1.342)

Prealbumin (g/dL) 0.923 (0.825;1.034)

Transferrin (g/dL) 0.980 * (0.961;0.998)

Total cholesterol (mg/dL) 0.983 * (0.966;0.997)

Triglycerides (mg/dL) 0.997 (0.989;1.014)

CRP (mg/L) 1.102 * (1.018;1.193)

NLR 2.045 * (1.030;4.059)

PLR 1.004 (0.957;1.011)

PNI 0.907 (0.813;1.008)

GPS (ref: 0) 6.300 * (1.639;24.212) 6.180 * (1.639;24.212) 0.007 *

DXA-related measurements

LBM (kg) 1.012 (0.953;1.134)

TFM (kg) 0.951 (0.863;1.048)

ASM (kg) 0.911 (0.785;1.057)

Serum HLOP metabolites

Histidine (µM) 0.977 (0.939;1.017)

Leucine (µM) 0.997 (0.980;1.013)

Ornithine (µM) 0.997 (0.979;1.016)

Phenylalanine (µM) 1.008 (0.971;1.046)
* p < 0.05 represents statistical significance. Abbreviations: SD, standard deviation; LAHNSCC, local advanced
head and neck squamous cell carcinoma; GPS, Glasgow prognostic score; TNM stage, tumor–node–metastasis
stage; HN-CCI, head and neck—Charlson comorbidity index; ECOG, Eastern Cooperative Oncology Group;
PS, performance status; PG-SGA, patient-generated subjective global assessment; NIBs, nutrition-inflammation
biomarkers; BW, body weight; BMI, body mass index; eGFR, estimated glomerular filtration rate; ALT, alanine
aminotransferase; Hb, hemoglobin; WBC, white blood cell; TLC, total lymphocyte count; TNC, total neutrophil
count; TMC, total monocyte count; Teso, total eosinophil count; Tbaso, total basophil count; CRP, C-reactive
protein; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; PNI, prognostic nutritional
index; DXA, dual-energy X-ray absorptiometry; LBM, lean body mass; TFM, total fat mass; ASM, appendicular
skeletal mass; HLOP, histidine, leucine, ornithine, and phenylalanine.

3.5. Pretreatment GPS Correlated with Age and Histidine Levels in Patients with LAHNSCC
Undergoing CCRT

To further determine the factors associated with advanced GPS, we performed multi-
variate analysis after adjustment for all the covariates, including clinicopathologic variables,
biochemical and anthropometric data, blood NIBs, body composition parameters, and lev-
els of the four individual amino acid metabolites. Only two variables, namely, age and
pretreatment histidine levels, were independently correlated with the advanced GPS of
patients with LAHNSCC (Table 4).
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Table 4. Univariate and multivariate logistic regression analysis of factors associated with GPS ≥ 1 in
50 patients with LAHNSCC.

Variables
Univariate Analysis Multivariate Analysis

Odds Ratio (95% CI) Odds Ratio (95% CI) p-Value

Clinicopathologic

Sex (ref: male) 2.000 (0.117;34.092)

Age (years) 1.055 (0.980;1.136)

Age (ref: ≥ 65 years) 0.075 * (0.008;0.710) 0.041 * (0.003;0.546) 0.016 *

Tumor stage (ref: stage III) 2.308 (0.208;12.234)

T status (ref: T0–2) 1.625 (0.428;6.169)

N status (ref: N0–1) 1.200 (0.337;4.272)

Tumor site (ref: non oral cavity) 0.578 (0.177;1.882)

Histologic differentiation grade
(ref: poorly differentiated) 0.500 (0.034;1.452)

HN-CCI (ref: 0) 3.059 (0.824;11.324)

ECOG PS (ref: 0) 6.000 (0.221;10.423)

Smoking (%) (ref: no) 1.667 (0.298;6.310)

Alcohol (%) (ref: no) 2.333 (0.552;9.866)

Betel quid (%) (ref: no) 1.375* (1.049;3.624)

Tracheostomy (ref: no) 1.351 (0.403;4.534)

PG-SGA (ref: none) 4.000 (0.437;36.576)

Biochemical data

eGFR (ml/min/1.73 m2) 0.986 (0.964;1.008)

ALT (U/L) 0.990 (0.950;1.031)

Total bilirubin (mg/dL) 8.369 * (1.013;69.919)

Uric acid (mg/dL) 0.665 * (0.445;0.995)

Sugar (fasting, mg/dL) 1.004 (0.991;1.016)

Anthropometric and blood NIB data

BW (kg) 0.993 (0.944;1.045)

BMI (kg/m2) 0.998 (0.850;1.172)

Hb (g/dL) 0.710 (0.489;1.030)

WBC (×103 cells/mm3) 1.314 (0.956;1.805)

Platelet (×103/mm3) 1.001 (0.995;1.008)

TLC (×103 cells/mm3) 0.999 (0.998;1.002)

TNC (×103 cells/mm3) 1.030 * (1.001;1.200)

TMC (×103 cells/mm3) 1.002 (0.998;1.002)

Teso (cells/mm3) 1.002 (0.996;1.006)

Tbaso (cells/mm3) 0.989 (0.962;1.017)

Albumin (g/dL) 0.198 * (0.042;0.920)

Prealbumin (g/dL) 0.835 * (0.732;0.952)

Transferrin (g/dL) 0.989 (0.972;1.005)

Total cholesterol (mg/dL) 0.991 (0.976;1.005)
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Table 4. Cont.

Variables
Univariate Analysis Multivariate Analysis

Odds Ratio (95% CI) Odds Ratio (95% CI) p-Value

Triglycerides (mg/dL) 1.000 (0.994;1.006)

CRP (mg/L) 1.693 * (1.230;2.331)

NLR 3.655 * (1.437;9.298)

PLR 1.005 (0.998;1.013)

PNI 0.890 * (0.798;0.992)

DXA-related measurements

LBM (kg) 0.977 (0.880;1.085)

TFM (kg) 0.998 (0.917;1.086)

ASM (kg) 0.881 (0.751;1.033)

Serum HLOP metabolites

Histidine (µM) 0.938 * (0.896;0.983) 0.906 * (0.835;0.984) 0.019 *

Leucine (µM) 1.000 (0.985;1.016)

Ornithine (µM) 1.003 (0.986;1.020)

Phenylalanine (µM) 1.030 (0.993;1.068)
* p < 0.05 represents statistical significance. Abbreviations: SD, standard deviation; LAHNSCC, local advanced
head and neck squamous cell carcinoma; GPS, Glasgow prognostic score; TNM stage, tumor–node–metastasis
stage; HN-CCI, head and neck—Charlson comorbidity index; ECOG, Eastern Cooperative Oncology Group;
PS, performance status; PG-SGA, patient-generated subjective global assessment; NIBs, nutrition-inflammation
biomarkers; BW, body weight; BMI, body mass index; eGFR, estimated glomerular filtration rate; ALT, alanine
aminotransferase; Hb, hemoglobin; WBC, white blood cell; TLC, total lymphocyte count; TNC, total neutrophil
count; TMC, total monocyte count; Teso, total eosinophil count; Tbaso, total basophil count; CRP, C-reactive
protein; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; PNI, prognostic nutritional
index; DXA, dual-energy X-ray absorptiometry; LBM, lean body mass; TFM, total fat mass; ASM, appendicular
skeletal mass; HLOP, histidine, leucine, ornithine, and phenylalanine.

4. Discussion

At the time of diagnosis, 30–50% of patients with LAHNSCC have associated with
malnutrition and hyperinflammation, which consequently accounts for up to 20% of cancer-
related deaths [3,47]. Lonbro et al. found that patients with HNC had significantly lower
values of BW, BMI, and lean body mass than those of healthy controls [48]. Ghadjar et al.
showed that 32% of patients with HNC presented with BWL > 5% before treatment, which
was associated with treatment failure and inferior survival outcomes [49]. The development
of malnutrition and hyperinflammation is ascribed to mechanical intake difficulty and
increased catabolism due to systemic inflammation mediators, both of which are caused
by cancer itself, comorbid illnesses, and excess exposure to substances or immune cells
in the tumor microenvironment and peripheral blood [8,50–56]. Takenaka et al. reported
that tumor size and comorbidity independently affected pretreatment BMI in patients with
HNC [56]. Cigarette smoke constituents can directly affect the skeletal muscle tissue or
indirectly stimulate the production of certain pro-inflammatory cytokines (tumor necrosis
factor (TNF)-α and interleukin (IL)-6) from the lung, activated leukocytes, bone marrow,
and muscle tissue, which, consequently, enhance muscle proteolysis and inhibit muscle
protein synthesis, leading to skeletal muscle loss [51]. Loss of skeletal muscle mass mainly
accounts for BWL in patients with HNC presenting with cachexia syndrome [57]. Alcohol
can induce muscle loss and dysfunction via disruption of both anabolic and catabolic
pathways of muscle mass maintenance by increasing oxidative and pro-inflammatory
stress in skeletal muscle or by directly inhibiting the regenerative capacity of muscle
progenitor cells [55]. In Taiwan, approximately 85% of patients with HNC have betel quid
chewing habits, which independently contribute to the risk of HNC [58]. More than 50%
of these patients who are betel quid users are alcohol and cigarette consumers [58]. Betel
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quid is formed by areca nuts usually wrapped with piper betel leaves or inflorescences to
improve the chewing flavor [58]. Areca nut extracts contain several alkaloids, of which
arecoline is the most abundant component, which increases reactive oxygen species, induces
inflammation, and actively participates in cancer development [58]. In patients with HNC,
several pro-inflammatory mediators have been reported, which are released from the
cancer and immune cells into circulation and induce chronic, debilitating symptoms and
sarcopenia [53]. However, these results should be further verified before clinical use because
these studies were preclinical, had retrospective design, and enrolled heterogeneous study
populations with varied therapeutic modes and data collection timing. The salient features
of the current study are its prospective design and homogenous study population with
standard data collection timelines and treatment protocols. Our results partially support the
observations of previous reports on the effect of malnutrition and hyperinflammation on
survival outcomes [48,49,56]. On the other hand, we also compared healthy adult controls
and found that, although more than 90% of patients had an ECOG PS ≤1 before CCRT,
they still had significant reductions in BW, BMI, serum levels of essential amino acids
(histidine, leucine, and phenylalanine), were more likely to develop malnutrition status,
and presented with higher inflammation severity (indicated by advanced GPS and elevated
CRP levels). A greater proportion of patients with LAHNSCC had BWL > 5%, suffered
from comorbid illness, and experienced substance exposure, including cigarette smoking,
alcohol consumption, and betel quid use. Furthermore, patients with advanced GPS before
CCRT had a higher 3-year mortality rate. This essential finding highlights the fact that a
certain proportion of patients with LAHNSCC with an optimal ECOG PS are already at
malnutrition and hyperinflammation status before CCRT and may experience a survival
disadvantage, showing a more aggressive clinical course at baseline. Unfortunately, the
status of nutrition and inflammation in patients with cancer is seldom recognized as one of
the inclusion criteria in any clinical trials.

Accumulative evidence has focused on the establishment of easy and practical indi-
cators to help healthcare professionals to identify malnourished and inflammatory status
early. Several surrogate indicators of nutrition and inflammation have been reported as
independent prognostic factors in patients with HNC [18]. However, certain limitations
restrict their application in evaluating the association between malnutrition status and
prognosis. First, separate anthropometric (BWL, BMI), biochemical, nutritional (albumin,
pre-albumin, transferrin, Hb, and TLC), and inflammatory indicators (CRP, NLR, and PLR)
are widely used as different arbitrary cutoffs that, consequently, produce inconsistent mal-
nutrition rates and inflammation severity among studies. They are also interrelated since
malnutrition could be a consequence of hyperinflammation, metabolic derangement, and
immune system perturbations due to cancer itself and the patient’s own clinicopathological
factors. Additionally, aggregate parameters (PG-SGA, integrating BWL-BMI grading) may
offset their values in prognosis prediction because of either data recall bias or insufficient
analysis of specific cancer stages [4,59]. Furthermore, although body composition parame-
ters generated from DXA or computerized tomography provide a close understanding of
muscle, fat, and other tissues that could correspond to nutrition and inflammation status
and correlated the prognosis of patients with LAHNSCC receiving CCRT [19,21], cost and
inconvenience limit their clinical application. In this context, GPS offers two advantages in
clinical practice: ease of use with low cost and simultaneous reflection of the systematic
nutritional and inflammatory status of patients with cancer [60]. In partial accordance with
previous reports [22–26], our data found that patients with cancer and advanced GPS status
were older, showed more betel quid use, and had decreased Hb levels, nutritional index
(albumin, prealbumin, transferrin, and PNI), muscle mass, and histidine levels but higher
levels of inflammatory markers (NLR and CRP), indicating a correlation between GPS,
nutrition, and inflammation. Using the multivariate analysis that included all the possible
confounding covariates, we further confirmed that advanced GPS outperformed other
variables and was the sole prognostic factor for the 3-year mortality rate of patients with
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LAHNSCC (Table 3). These observations again strengthen that nutrition and inflammation
status before treatment affects survival outcomes.

Circulating amino acid profiles are regarded as systemic biomarkers of nutritional and
inflammatory status, corresponding to food intake and absorption, disease severity, comor-
bid illness, and tissue synthesis and breakdown [61,62]. In the current study, the levels of
amino acids (HLOP panel) in patients with cancer before CCRT differed significantly from
those in the control group (Table 1). In particular, histidine levels were negatively associated
with GPS status, which independently predicted the 3-year mortality rate in the patients
with cancer (Tables 3 and 4). These results verified the prognostic relevance of the HLOP
panel, as demonstrated in different, previously published clinical situations [33–37,61,62].
It is, thus, evident that the pretreatment HLOP panel in patients with LAHNSCC can
represent a miniature set of circulating amino acids, showing changes in levels in response
to nutrition and inflammation status.

Multivariate analysis further showed the factors affecting the pretreatment levels of
individual amino acids in the HLOP panel in patients with cancer. We found that histidine
levels were positively associated with levels of phenylalanine but negatively associated
with the GPS; leucine levels were positively associated with prealbumin, fasting sugar, and
phenylalanine levels but negatively associated with ornithine levels; ornithine levels were
positively associated with PLR; phenylalanine levels were positively associated with levels
of leucine and ornithine and histologic grade but negatively associated with TLC (Table
S1). Based on these observations, the following possible mechanisms, affecting the changes
in pretreatment HLOP levels and association with GPS, are proposed. First, HNC-induced
dietary intake problems, such as dysphagia and chewing difficulty, result in inadequate
ingestion and storage of essential amino acids, which, consequently, affect protein synthesis
and turnover. The leucine levels in blood act as a surrogate indicator of the total amount of
all essential amino acids [63]. The levels of albumin, prealbumin, Hb, and three essential
amino acids (histidine, leucine, and phenylalanine) were found to be reduced in this study,
indicating insufficient dietary intake (Figure 1 and Table S1). The positive connection
between leucine, phenylalanine, and ornithine in patients with cancer further accentuates
the inadequacy and redistribution of leucine and other essential amino acids in mending
protein loss, resulting in a decrease in ornithine loads from amino acids. Hence, a lack
of essential amino acid supply from dietary intake certainly gave rise to a pretreatment
malnutrition status in patients with LAHNSCC. Second, the intimate relationship between
histidine, leucine, and phenylalanine can be further strengthened by the fact that they
share a common membrane transporter, L-type amino acid transporter 1 (LAT1), which is
responsible for the delivery of histidine, phenylalanine, and branched-chain amino acids
(BCAAs) into cells and is mainly related to protection against inflammatory stress [64,65].
LAT1 is usually over-expressed in patients with oral cavity squamous cell carcinoma [66].
Through LAT1-mediated delivery into the cells, these three essential amino acids can exert
anti-inflammatory effect [67–69] or enter the Krebs cycle for energy production to maintain
calorie needs from inadequate food intake [70]. Histidine acts as an anti-inflammatory
agent by eliminating the NF-κB-mediated production of pro-inflammatory cytokines [69]
or suppressing prostaglandin E2 (PGE2) function by interacting with its imidazole ring [71].
CRP production has been shown to be strongly associated with pro-inflammatory cytokines
in patients with HNC [72,73]. Histidine is also one of the major amino acids and is involved
in the modulation of redox and inflammation of albumin [74]. Thus, the observed negative
correlation between histidine and GPS is clear. Leucine, a BCAA, is obtained by diet or
from the breakdown of tissue proteins. It acts as the major nitrogen donor to build up
the body proteins commonly observed in tissues such as the liver, pancreas, and skeletal
muscle [75,76]; leucine reduces oxidative and inflammatory stress in chronic illness [68].
The shift of leucine from blood into the intracellular microenvironment via LAT1 resulted
in a decrease in pretreatment serum leucine levels in patients with LAHNSCC, contributing
to either the repair of tissue protein damage by oxidative and inflammatory stress from
cancer or regulation of energy homeostasis [77]. Since leucine and its metabolites, such as
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α-ketoisocaproate, are insulin secretagogues [78], an association between fasting sugar and
serum leucine levels is possible (Table S1). Additionally, the expression of LAT1 is inversely
correlated with the grade of histological differentiation in patients with HNC, which might
affect the serum levels of essential amino acids [66]. This implication is supported by the
positive association between phenylalanine and histological differentiation observed in
our study (Table S1). Although insufficient intake may explain the relationship between
phenylalanine, leucine, and ornithine, the negative correlation between phenylalanine
and TLC and the positive correlation between ornithine and PLR indirectly reflect the
cumulative response of oxidative and inflammatory mediators from cancer itself and/or
immune cells in patients with HNC [53,54]. Released from HNC and immune cells, vascular
endothelial growth factor (VEGF) directly inhibits T cell development, including thymocyte
maturation and differentiation [79], while IL-6 promotes platelet formation [80]. Further,
PGE2 released from HNC cells can autocrinally induce the production of hypoxia-inducible
factors and VEGF, which, subsequently, generates reactive oxygen species (ROS) from
regulatory T cells, macrophages, and myeloid-derived suppressor cells within tumor tissue
and in the peripheral blood [81,82]. The balance between the consumption and production
of ROS determines T cell proliferation and function [81] and the initiation of thrombopoiesis
from mature megakaryocytes in the bone marrow [83]. Similarly, phenylalanine has the
antioxidant ability to neutralize ROS-induced oxidative damage via NF-κB-mediated
signaling [67], but its intracellular conversion to tyrosine is impaired, probably by ROS-
related nitric oxide synthase (NOS) dysregulation and tetrahydrobiopterin depletion [84,85].
Furthermore, pro-inflammatory cytokines and VEGFs synergistically upregulate the NOS
activity and induce nitric oxide (NO) production [86,87]. The NO-mediated inhibition
of ornithine decarboxylase activity, which is the rate-limiting enzyme of the ornithine
degradation pathway and is responsible for the conversion of ornithine to putrescine [88],
can increase serum ornithine levels. The orchestrated effect of these mediators, cancer
cells, and immune cells on the magnitude of oxidative and inflammatory stress probably
determines the serum levels of histidine, leucine, phenylalanine, and ornithine. We have
summarized and illustrated the possible mechanisms affecting the serum levels of the
pretreatment HLOP panel in Figure 2. Therefore, the HLOP panel provides a summary
of circulating amino acids and reveals the nutritional status and inflammation in patients
with LAHNSCC before CCRT.

Some intriguing issues merit further investigation. First, the superiority of the GPS
and mGPS in prognostic prediction has been compared and debated in several cancer
types, including HNC [89–94]. However, the results failed to provide a consensus. The
major difference between the GPS and mGPS is the risk classification of patients with
hypoalbuminemia without an increased CRP levels; these patients are considered an
intermediate-risk group in GPS (GPS 1), while they are at low risk in mGPS (mGPS 0).
Although mGPS can be a useful prognostic biomarker in patients with HNC in various
clinical scenarios [23,25,26,94,95], mGPS classification showed results similar to GPS (Tables
S2 and S3), and the systemic inflammation indicated by CRP levels led to escalated protein
breakdown and subsequent hypoalbuminemia [96–98]. In this study, we still preferred GPS
to mGPS due to following reasons. First, patients with HNC developed hypoalbuminemia,
probably due to diet intake problems and essential amino acid insufficiency rather than the
inflammation. Reduced serum levels of histidine, leucine, and phenylalanine affected albu-
min, prealbumin, and Hb concentrations in our study, supporting this inference. Although
hypoalbuminemia may be partially explained by CRP-mediated systemic inflammation, our
data showed that the correlation between albumin and NLR (p = 0.023, Pearson correlation)
was more significant than that between albumin and CRP (p = 0.078, Pearson correlation),
and PLR was positively associated with serum ornithine levels rather than CRP levels. Thus,
it is plausible that certain inflammatory processes irrelevant to CRP levels may change
the serum albumin levels. Hence, the effect of hypoalbuminemia without elevated CRP
levels on the risk and prognosis of patients with HNC should be addressed in the analysis.
Second, in this study, we found that, in addition to serum histidine levels, age ≥ 65 years
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was an independent factor associated with pretreatment advanced GPS status (GPS ≥ 1) in
patients with LAHSCC (Table 4). Further analysis showed that patients aged ≥ 65 years
had significantly lower albumin levels than that of those aged < 65 years (3.44 ± 0.52 vs.
3.92 ± 0.42, respectively; p = 0.015), while no difference was found in CRP levels between
the two age groups (7.92 ± 0.45 vs. 6.63 ± 8.83, respectively; p = 0.733). Gom et al. analyzed
more than 60,000 Japanese community-dwelling residents and found a significant decline
in serum albumin levels (0.012–0.015 g/dL per year); significantly greater decline was
observed in those aged ≥ 65 years: 1.2% and 3.1% in those aged 65–74 and 85–89 years,
respectively [99]. The positive association between age ≥ 65 years and pretreatment ad-
vanced GPS can be ascribed to hypoalbuminemia. Additionally, serum histidine levels
are associated with dietary intake and protein synthesis [100,101]. Our data showed that
reduced histidine levels are associated with low albumin levels and advanced GPS but not
with the muscle mass. Thus, it is less likely that pretreatment-driven reduction in serum his-
tidine levels is a consequence of an increased shift into muscle, where histidine is converted
to carnosine against oxidative stress [102] and subsequently to methylhistidine for muscle
synthesis [103]. Finally, decreased serum levels of histidine, leucine, and phenylalanine
before treatment may have therapeutic implications. For instance, the histidine degradation
process is critical for determining methotrexate efficacy in tumor cells, and addition of histi-
dine to methotrexate significantly hampers the growth of tumors in vivo [104]. Exogenous
histidine treatment can reverse sorafenib resistance and enhance anti-tumor activity against
hepatocellular carcinoma via LAT1 modulation [105]. In addition, supplementation with
certain amino acids aids protein synthesis in patients with cancer cachexia [106]. Although
supplements of these essential amino acids before and during the anti-cancer treatment
course might avoid treatment failure and mend malnutrition status, this clinical application
should be applied carefully as radiation and chemotherapeutic agents generate ROS and
inflammation that mainly eradicate cancer cells but also cause toxicity during the treatment
course. Whether exogenous amino acids with antioxidative abilities, such as histidine,
enhance or comprise the treatment outcomes remains to be investigated.
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pro-inflammatory stress ( 2©), fuel provider for energy production ( 3©), and nitric oxide synthase
(NOS)–nitric oxide (NO) pathway ( 4©). First, reduced dietary intake directly results in decreased
serum levels of essential amino acids (histidine, leucine, and phenylalanine). Second, essential amino
acids are delivered into cells via L-type amino acid transporter 1 (LAT1); once inside, they can neutral-
ize the reactive oxygen species (ROS) and pro-inflammatory mediators using their antioxidative and
anti-inflammatory activities or enter into the Krebs cycle for energy production to compensate calorie
deficiency from inadequate food intake. Finally, ROS and pro-inflammatory mediators can stimulate
thrombopoiesis from mature megakaryocytes in the bone marrow, inhibit lymphocyte differentiation
and proliferation, and upregulate NOS and NO production. Produced NO can decrease ornithine
decarboxylase (ODC) activity and increase the ornithine levels. The magnitude of oxidative stress
and pro-inflammatory mediators are reciprocally regulated by cancer and immune cells, such as
regulatory T cells (Treg), macrophages, and myeloid-derived suppressor cells (MDSC), within the
tumor microenvironment and in the peripheral blood. ROS and pro-inflammatory mediators can
reduce the function of phenylalanine hydroxylase (PAH) and prevent the conversion of phenylalanine
to tyrosine. Tetrahydrobiopterin (BH4) and tetrahydrofolate (THF) are essential cofactors for the
conversion of phenylalanine into tyrosine and histidine into glutamate, respectively.

This study had several limitations. First, this was a single-center study, and, hence,
the selection bias should be considered. Although the advantages of this study included
the prospective design, homogenous enrollment, standard data collection and treatment
protocol, and precise sample size calculation following the head and neck cancer registry
of our institute, an advanced, prospectively designed, large-scale, multi-institutional study
is required. Second, the study participants, including healthy controls and patients with
LAHNSCC, were Taiwanese (predominantly male), had locally advanced cancer status,
presented optimal medical performance status, and did not express human papilloma virus.
Hence, it is uncertain whether the results of this study can be applied to female patients,
non-Taiwanese patients, or patients with varied cancer types, tumor stages, and positive
expression of human papilloma virus. Finally, this study lacked a comprehensive profile
of the circulating amino acids before CCRT. This drawback may explain the results on the
correlation between histidine and GPS and factors associated with the debated HLOP panel.
However, even if all amino acid metabolites are produced and the associations are changed,
the result regarding the decrease in the levels of certain essential amino acids before CCRT
and the association of certain amino acids possessing antioxidative and anti-inflammatory
functions with GPS still remains valid.

5. Conclusions

This prospective, observational study demonstrated that pretreatment advanced GPS
status correlated with low serum histidine levels and 3-year mortality rates in patients with
LAHNSCC before CCRT, indicating a close association between inflammation, circulating
metabolites, and cancer mortality. Importantly, even with the same tumor stage and medical
performance status, patients who already have poor nutrition and high inflammation
severity at the beginning of the treatment course may present a more aggressive clinical
course and, consequently, show worse survival outcomes than those who have adequate
nutrition and low inflammation severity. The assessment of nutritional and inflammatory
status, thus, should be routinely performed and considered in future clinical trials to avoid
selection bias.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14173475/s1, Table S1. Associations between clinicopathologic
variables, NIBs, and body composition parameters and pretreatment levels of histidine, leucine,
ornithine, and phenylalanine in 50 patients with LAHNSCC. Table S2. The mGPS was the only
prognostic factor associated with 3-year mortality in 50 patients with LAHNSCC. Table S3. Univariate
and multivariate logistic regression analyses of factors associated with an mGPS ≥ 1 in 50 patients
with LAHNSCC.
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