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The expressions of reference genes used in gene expression studies are assumed to be stable under most circumstances. However,
a number of studies had demonstrated that such genes were found to vary under experimental conditions. In addition, genes that
are stably expressed in an organ may not be stably expressed in other organs or other organisms, suggesting the need to identify
reference genes for each organ and organism. This study aims at identifying stably expressed genes in Escherichia coli. Microarray
datasets from E. coli substrain MG1655 and 1 dataset from W3110 were analysed. Coefficient of variance (COV) of was calculated
and 10% of the lowest COV from 4631 genes common in the 3 MG1655 sets were analysed using NormFinder. Glucan biosynthesis
protein G (mdoG), which is involved in cell wall synthesis, displayed the lowest weighted COV and weighted NormFinder Stability
Index for the MG1655 datasets, while also showing to be the most stable in the dataset for substrain W3110, suggesting that
mdoG is a suitable reference gene for E. coli K-12. Gene ontology over-representation analysis on the 39 genes suggested an over-
representation of cell division, carbohydrate metabolism, and protein synthesis which supports the short generation time of E.
coli.

1. Introduction

Gene expression analysis is examining the variations in gene
expression as a result of changes in environmental conditions
by measuring DNA expression levels over time. Quantitative
real-time polymerase chain reaction (qRT-PCR) is a com-
monly used technique to quantify gene expressions [1]. How-
ever, several parameters need to be controlled in this process
in order to obtain accurate and reliable results. These include
variations in the amounts of starting material between
samples, RNA extraction efficiency, RNA integrity/quality,
efficiency of cDNA synthesis, and differences in the overall
transcriptional activity of the cells analyzed. Of which, only
the differences in transcriptional activity is of interest. A
possible method for accounting other effects is relative
normalization, which is the correction of the raw expression
values with a reference gene. The reference gene acts as an
invariant endogenous control which implies that reference

genes should be stably expressed under a wide variety of
conditions [2].

However, several studies had suggested that it is not
easy to find universal reference genes [3–5]. This cor-
roborates several studies demonstrating that several genes
originally considered invariable in terms of expression may
vary under different experimental conditions [6–8]. For
an accurate comparison of DNA expression in different
samples, it is necessary to use verified reference genes, such
as GAPDH (glyceraldehyde-3-phosphate dehydrogenase) [9]
or UBQ (ubiquinone) [9], for normalisation or determine
new ones for each experimental system with varying external
stimuli [3, 10]. However, some studies had also demon-
strated that the expression of GAPDH [11] and UBQ [12]
is varying in some conditions. Other studies had also iden-
tified references genes, such as recA (recombinase A), proC
(pyrroline-5-carboxylase reductase) and gyrA (DNA gyrase)
in Pectobacterium atrosepticum [8], and map (methionine
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aminopeptidase), rpoC (RNA polymerase, beta prime sub-
unit), and alaS (alanyl-tRNA synthetase) in Acidithiobacillus
ferrooxidans [13]. This suggests that established reference
genes for a particular organism may not be suitable for other
organisms.

Escherichia coli, a Gram-negative bacterium commonly
found in the gastrointestinal tract, was selected as it has
a genome of approximately 4,000 genes. In addition, the
genetic material in its plasmids is easily manipulated.
Furthermore, E. coli is easily cultured and is a commonly
studied prokaryotic model [14, 15]. As it is easily cultured
in the laboratory environment and is of low pathogenicity
[16–18].

Candidate reference genes, which are commonly believed
to be invariant, can be identified using algorithms such
as geNorm [19], NormFinder [20], and BestKeeper [21].
These methods require a wide range of accessible gene
expression data, normally obtained through DNA profiling
such as quantitative PCR. However, microarrays, which
usually contain thousands of probes, present a good source of
data for identifying reference genes [22]. A recent study had
successfully identified MARK3 as a suitable reference gene in
mouse liver using microarray analysis [23].

Currently, there are numerous studies being conducted
to validate known reference genes and possibly identify new
ones [3, 8, 9, 13, 24]. In this study, we identify and evaluate a
set of invariant genes in E. coli K-12 substrains MG1655 and
W3110. Our results suggest that glucan biosynthesis protein
G (mdoG) is a suitable reference gene for both MG1655 and
W3110 strains of E. coli.

2. Materials and Methods

2.1. Microarray Data. Four datasets were obtained from
publicly available microarray databases, Gene Expression
Omnibus, National Centre for Biotechnology Information,
of which 3 were from E. coli K-12 substrain MG1655
and 1 from substrain W3110. Briefly, the studies con-
ducted with the datasets are as follows: GDS680: MG1655
grown in either aerobic or anaerobic conditions, deleted
for transcriptional regulators in oxygen response, and used
to validate a computational model of transcriptional and
metabolic networks. GDS1099: aerobically grown MG1655
cells in several media with varied carbon sources including
glucose, glycerol, succinate, L-alanine, acetate, and L-proline.
GDS1494: analysis of derivatives of strain 1655: wild type,
fur mutant, and wild type with added FeSO4, induced to
overexpress RyhB, a noncoding RNA regulated by the fur
repressor protein. GDS1827: W3110 cells grown aerobically
and exposed to low, neutral, or high pH to study acid and
base response.

2.2. Finding Invariant Genes. The coefficient of variation
(COV) of every gene was calculated as the quotient of
standard deviation and arithmetic mean. From 4631 genes,
the top 10% with the lowest COV from each dataset were
listed. The intersection between the 3 MG1655 data sets
(GDS680, GDS1099, and GDS1494) was identified and
analysed using NormFinder version 0.953 [20] to rank the

stability of these genes. A weighted stability index for each
gene was then calculated from the NormFinder’s stability
index, and an average of the NormFinder stability indexes
multiplied by number of samples was taken.

2.3. Gene Ontology Overrepresentation Analysis. The list of
genes from the intersection of the top 10% with the lowest
COV from the 3 MG1655 data sets were analysed for gene
ontology overrepresentation using the Gene ontology gene
annotation file for E. coli dated July 8, 2011. Chi-square
test was carried out to identify the overrepresented gene
ontology terms in the list of genes using the overall P value of
0.01, corrected for multiple testing using Holm-Bonferroni
method [25].

2.4. Comparing NormFinder and COV. Spearman’s correla-
tion was used to determine the correlation between stability
index generated by NormFinder and COV values using the
equation r = 1 − [6

∑
d2
i /(n(n2 − 1))], where r is the

Spearman’s correlation, d is the difference in the rank of
two parameters, and n is the sample size. The t-statistic was
calculated by equation t = r

√
(n− 2)/(1− r2), which was

used to test for the null hypothesis of no correlation with
(n− 2) degrees of freedom.

3. Results and Discussion

A threshold of less than 10% COV was used to select
stably expressed genes across the three datasets GDS 680,
1099, and 1494 (MG1655). A total of 39 genes of consistent
low variance were found (Table 1) with the weighted COV
values ranging from 0.099 to 0.138. Glucan biosynthesis
protein G (mdoG) was found to be most stable with both
the lowest weighted COV value and weighted NormFinder
Stability Index for MG1655. In GDS 1827 (W3110), mdoG
was the most stable in the dataset, with a COV of 0.088
and NormFinder Stability Index of 0.078. The highest COV
in GDS 1827 is 0.791 for hslV (peptidase component of the
HslUV protease). Our results suggest that mdoG may be a
suitable reference gene across both E. coli strains W3110 and
MG1655. This may imply that mdoG may be suitable for use
as reference genes in other strains of E. coli K-12.

Gene ontology overrepresentation is a commonly used
mechanistic analysis method to provide biological insights
into a list of genes [26–28]. The analysis of the 39 genes
with consistently low variance for gene ontology overrep-
resentation showed that 3 primary functions were found to
be overrepresented (Table 2). They were cell division, carbo-
hydrate metabolic process, and protein synthesis. As E. coli
is generally accepted as a rapidly dividing prokaryote [29],
it is plausible to expect genes responsible for cell division
to be constantly expressed. As the cells grow, new cellular
structures, such as cell wall and other enzymes, need to be
synthesized. Hence, it is plausible to expect protein synthesis
to be stable throughout the cell cycle. The role of glutathione
[30, 31] and tetrapyrrole [32] had been implicated in protein
synthesis while diaminopimelate had been shown to have
a role in the maintenance of cell wall [33]. At the same
time, cell division involves the replication and segregation of
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Table 1: Weighted mean COV and NormFinder stability index of 39 invariant genes across 3 datasets (MG1655).

Gene symbol Gene name Weighted COV values
Weighted NormFinder

Stability Index

mdoG Glucan biosynthesis protein G 0.099 0.082

dapA Dihydrodipicolinate synthase 0.106 0.090

crp DNA-binding transcriptional dual regulator 0.106 0.102

hslV Peptidase component of the HslUV protease 0.111 0.105

mrdB Cell wall shape-determining protein 0.101 0.114

fucU L-Fucose mutarotase 0.107 0.117

yjgP LPS transport (lptF) 0.105 0.117

yigC 3-Octaprenyl-4-hydroxybenzoate decarboxylase 0.126 0.117

sun
16S rRNA m(5)C967 methyltransferase,

S-adenosyl-L-methionine-dependent
0.130 0.119

gor Glutathione oxidoreductase 0.117 0.126

hflB ATP-dependent metalloprotease 0.127 0.130

yqiB Predicted dehydrogenase 0.125 0.134

murG N-Acetylglucosaminyl transferase 0.124 0.134

yrbG Predicted calcium/sodium:proton antiporter 0.122 0.134

yejK Nucleotide associated protein 0.120 0.141

yfgA Cytoskeletal protein required for MreB assembly 0.118 0.142

hflX Putative GTPase HflX 0.105 0.142

spoT
Bifunctional (p)ppGpp synthetase II/guanosine-

3′,5′-bis pyrophosphate 3′-pyrophosphohydrolase
0.117 0.143

holC DNA polymerase III, chi subunit 0.134 0.144

xerD Site-specific tyrosine recombinase 0.114 0.146

tolB Periplasmic protein 0.115 0.146

yheS
Fused predicted transporter subunits of ABC

superfamily: ATP-binding components
0.110 0.146

ntpA Dihydroneopterin triphosphate pyrophosphatase 0.118 0.147

yabB Conserved protein, MraZ family 0.115 0.148

lolA Chaperone for lipoproteins 0.117 0.153

yggD Predicted DNA-binding transcriptional regulator 0.116 0.153

pnp Polynucleotide phosphorylase/polyadenylase 0.110 0.155

yrbB
ABC transporter maintaining OM lipid asymmetry,

cytoplasmic STAS component
0.123 0.156

rnc RNase III 0.117 0.157

xerC Site-specific tyrosine recombinase 0.138 0.160

rfaF ADP-heptose:LPS heptosyltransferase II 0.120 0.161

yigP Conserved protein, SCP2 family 0.122 0.164

gyrB DNA gyrase, subunit B 0.126 0.164

nagC
DNA-binding transcriptional dual regulator, repressor

of N-acetylglucosamine
0.132 0.165

nrdR Conserved protein 0.118 0.168

hemD Uroporphyrinogen III synthase 0.108 0.169

pheT Phenylalanine tRNA synthetase, beta subunit 0.124 0.171

frr Ribosome recycling factor 0.129 0.173

cls Cardiolipin synthase 1 0.129 0.181

genetic material [34]. Carbohydrate is both a primary source
of energy for E. coli [35] as well as the primary component
of bacterial cell wall [36]. The gene mdoG has been shown
to be involved in the formation of the β-1,6 glucose linkage

[37] and in the periplasmic release of newly synthesized
osmoregulated periplasmic glucans [38, 39], which is needed
for bacterial cell wall. Thus, it is plausible that the expression
of mdoG is needed during binary fission. As E. coli divides
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Table 2: Gene ontology overrepresentation of the 39 invariant genes.

Primary function GOID Gene ontology terms P value

Cell division

GO:0071139 Cell cycle 5.51E − 61

GO:0006276 Plasmid recombination 6.01E − 31

GO:0016051 Cell division 2.90E − 16

GO:0006432 Plasmid maintenance 2.90E − 16

GO:0042594 Response to starvation 3.39E − 11

GO:0007049 Chromosome segregation 6.61E − 09

GO:0017038 Resolution of recombinant intermediates 1.21E − 08

GO:0006004 Guanosine tetraphosphate metabolic process 1.21E − 08

GO:0042953 Lysogeny 4.20E − 07

GO:0051301 Diaminopimelate biosynthetic process 3.50E − 06

Carbohydrate metabolism
GO:0030259 Carbohydrate biosynthetic process 2.34E − 31

GO:0006749 Lipid glycosylation 2.34E − 31

GO:0007059 Fucose metabolic process 8.08E − 13

Protein synthesis

GO:0030069 Phenylalanyl-tRNA aminoacylation 2.34E − 31

GO:0016075 RNA catabolic process 2.34E − 31

GO:0015969 Lipoprotein transport 2.90E − 16

GO:0019277 Phenylalanyl-tRNA aminoacylation 2.90E − 16

GO:0042150 Protein import 3.39E − 11

GO:0006396 RNA processing 2.48E − 09

GO:0033014 Tetrapyrrole biosynthetic process 1.21E − 08

GO:0019877 Glutathione metabolic process 4.20E − 07

rapidly, constant synthesis of cell wall is needed. Therefore,
it is likely that mdoG is constantly needed, which may be a
reason to its constant expression in E. coli. Hence, both gene
ontology overrepresentation and the function of the most
stably expressed gene, mdoG, support the short generation
time of E. coli.

Our results showed that none of the 7 housekeeping
genes consistently appeared in the lowest 10% COV subset
of each dataset (Table 3), while GAPDH [9], gyrA [8], and
alaS [13] were found to be in the lowest 10% COV subset,
in one dataset each. Our results illustrated that recA [8] has
the highest weighted COV of 0.5378 and gyrA [8] has the
lowest weighted COV of 0.1607, which is higher than that
of mdoG (COV of 0.099). This suggests that commonly used
housekeeping genes such as GAPDH [9] and recA [8] are
not suitable for the expression profiling of E. coli. Hence,
our results support our earlier hypothesis that common
housekeeping genes found to be stable in one organism
cannot be assumed to be stable in all organisms. This
suggests the need to identify suitable reference genes for each
organism of interest.

The advantage of COV is its capability to analyse as
large number of samples as required [23] as the number
of calculations increases proportionally to the sample size,
resulting in linear complexity. NormFinder uses residual
analysis between sample subgroup variation and the overall
variation of the expression dataset to evaluate the variation
contributed by each gene in the entire dataset [20]. Thus,
the computational complexity of NormFinder increases
exponentially as the number of samples increases; hence, it

Table 3: Seven housekeeping genes and their mean COV values
across 4 datasets.

Gene symbol Gene name
Weighted

COV values

recA Recombinase A 0.537752244

proC Pyrroline-5-carboxylate reductase 0.257211257

gyrA DNA gyrase 0.16070208

map Methionine aminopeptidase 0.282917613

rpoC RNA polymerase, beta prime subunit 0.273422333

alaS Alanyl-tRNA synthetase 0.160829965

GAPDH
Glyceraldehyde-3-phosphate

dehydrogenase
0.230513521

is only able to work with a small number of genes within
reasonable time and computational resources. Therefore, we
used Spearman’s rank correlation coefficient to determine
the correlation of stability index by NormFinder and COV
values which showed that the sum of d2 was 5664 and
the P value was 0.006748. Since the P value was less than
0.01, the null hypothesis is rejected, indicating that there
is correlation between the stability index from NormFinder
and COV values but the strength of this correlation is difficult
to establish as the significance in P value did not indicate
the correlation strength. However, our results do not suggest
that COV is a suitable replacement for NormFinder. As
NormFinder [20] takes account of the overall variability in
the entire dataset, it is likely to be statistically stronger than
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COV which is a normalized standard deviation. Given the
advantageous ability of COV to process large amounts of
data such as those derived from microarrays, it is plausible
that COV can be used as a weaker filter for a broad category
of genes with low expression variation, followed by stronger
statistical analysis by NormFinder [20] to identify suitable
reference genes.
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