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Abstract

Original Article

Introduction

Brachytherapy is a form of internal radiation therapy 
where radioactive sources are placed close to or inside 
the tumor. This technique is highly effective for treating 
various cancers, including those of the cervix, prostate, 
breast, and skin. It offers several advantages over external 
beam radiation therapy such as high precision, localized 
treatment, shorter treatment duration, and reduced side 
effects.[1,2] The success of brachytherapy hinges on the precise 
delivery of radiation doses, which necessitates meticulous 
treatment planning. Accurate segmentation of organs at 
risk  (OARs), which are normal tissues or organs sensitive 

to radiation and located near the treatment area, is a critical 
component of the planning process. Precise segmentation of 
these structures is essential for optimizing dose distribution, 
minimizing radiation‑induced toxicity, improving treatment 
planning and verification, and enabling personalized 
treatment.[3]

Aim: This article presents a novel approach to automate the segmentation of organ at risk (OAR) for high‑dose‑rate brachytherapy patients 
using three deep learning models combined with ensemble learning techniques. It aims to improve the accuracy and efficiency of segmentation. 
Materials and Methods: The dataset comprised computed tomography (CT) scans of 60 patients obtained from our own institutional image 
bank and 10 patients from the other institute, all in Digital Imaging and Communications in Medicine format. Experienced radiation oncologists 
manually segmented four OARs for each scan. Each scan was preprocessed and three models, Double U‑Net (DUN), Bi‑directional ConvLSTM 
U‑Net (BCUN), and Transformer Networks (TN), were trained on reduced CT scans (240 × 240 × 128) due to memory limitations. Ensemble 
learning techniques were employed to enhance accuracy and segmentation metrics. Testing and validation were conducted on 12 patients from 
our institute (OID) and 10 patients from another institute (DID). Results: For DID test dataset, using the ensemble learning technique combining 
Transformer Network (TN) and BCUN, i.e., TN + BCUN, the average Dice similarity coefficient (DSC) ranged from 0.992 to 0.998, and for 
DUN and BCUN (DUN + BCUN) combination, the average DSC ranged from 0.990 to 0.993, which reflecting high segmentation accuracy. 
The 95% Hausdorff distance (HD) ranged from 0.9 to 1.2 mm for TN + BCUN and 1.1 to 1.4 mm for DUN + BCUN, demonstrating precise 
segmentation boundaries. Conclusion: The proposed method leverages the strengths of each network architecture. The DUN setup excels in 
sequential processing, the BCUN captures spatiotemporal dependencies, and transformer networks provide a robust understanding of global 
context. This combination enables efficient and accurate segmentation, surpassing human expert performance in both time and accuracy.
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Advancements in medical imaging have revolutionized the 
field of medical diagnosis and treatment planning, particularly 
in areas such as oncology.[4] The precision in delineating 
critical structures directly influences the effectiveness of 
treatment and the minimization of radiation‑induced damage 
to healthy tissues.[5‑8] However, Manual segmentation is 
time‑consuming and depends heavily on the expertise of 
radiation oncologists, often resulting in variable outcomes. 
Consequently, automated segmentation methods, especially 
those leveraging deep learning  (DL), have garnered 
significant attention in recent years.[9‑11] DL models, 
particularly convolutional neural networks  (CNNs), have 
demonstrated exceptional capabilities in image analysis and 
segmentation tasks.[12,13] Among these, the U‑Net architecture 
is a foundational model for medical image analysis, renowned 
for its ability to accurately localize structures and capture 
contextual information. However, continuous efforts aim to 
enhance its performance through advanced techniques and 
architectures. This study explores the integration of Double 
U‑Net (DUN), Bi‑directional Convolutional Long Short‑Term 
Memory (BCUN) U‑Net, and Transformer networks (TN)  in 
an ensemble learning framework for three‑dimensional (3D) 
medical image segmentation. The DUN architecture is an 
innovative extension of the traditional U‑Net, designed 
to overcome the limitations of single‑stage networks by 
employing a two‑step process. The first U‑Net serves as a 
coarse structure identifier, generating an initial prediction 
map. This preliminary output is then fine‑tuned by the 
second U‑Net, which corrects and sharpens the boundaries 
of the identified regions. This setup leverages the strengths 
of sequential processing, ensuring that the network captures 
both global context and local details more effectively. 
Incorporating temporal dependencies and spatial relationships 
is crucial for accurate 3D medical image segmentation.[14,15] 
The BCUN introduces recurrent neural network components 
into the segmentation pipeline, enabling the network to learn 
from sequential slices of the 3D volumes. Convolutional 
long short-term memory (ConvLSTM) are particularly suited 
for this task as they can maintain spatial hierarchies while 
capturing temporal dependencies. By processing the image 
slices bi‑directionally, the network benefits from contextual 
information from both past and future slices, leading to more 
coherent and accurate segmentations. On the other hand, 
TN has also transformed various fields of machine learning, 
including natural language processing and image analysis. 
Transformers, known for their self‑attention mechanisms, 
excel at capturing long‑range dependencies and complex 
relationships within data. Their application to medical 
image segmentation is relatively novel but promising. 
Transformer network segment images by treating patches 
of the image as sequences, similar to words in a sentence, 
and applying self‑attention to capture intricate patterns and 
features.[16,17] This study integrates transformer network into 
the segmentation framework, aiming to exploit their powerful 
feature extraction and contextual learning capabilities.

The Dice similarity coefficient (DSC) uses a complex formula 
that considers both the areas where the predicted and ground 
truth segmentations overlap and those where they do not. 
This formula results in a score ranging from 0 to 1, with 1 
indicating a perfect overlap between the predicted and ground 
truth segmentations. The 95% Hausdorff distance  (HD) is 
another sophisticated metric that measures the maximum 
distance between corresponding points in the predicted and 
ground truth segmentations, allowing for a 95% tolerance of 
the total distance. This metric is highly adaptable, achieved 
using weighting factors and threshold values that can be 
adjusted to optimize the metric for specific segmentation 
tasks.

As automated segmentation in medical image is a complex 
and critical task that directly impacts treatment efficacy and 
patient safety, this study proposes an ensemble learning 
framework that combines the strengths of DUN, BCUN, and 
TN to enhance performance. By addressing the limitations 
of individual models and leveraging their complementary 
strengths, this approach aims to provide more accurate 
and reliable delineation outcomes. The integration of these 
advanced architectures represents a significant step forward 
in the field of medical image analysis, with the potential to 
improve clinical workflows and patient outcomes in radiation 
therapy.

Materials and Methods

Data collection and processing
In this study, a set of 3D computed tomography (CT) images 
was used. The data were collected from our own institute. It 
included images of 60 patients’ CT scans (noncontrast), with 
their corresponding structure sets, which were taken for the 
purpose of brachytherapy treatment of cancer patients. For 
training and testing the model, 80% and 20% of data were 
used, respectively, accounting for 48  patients for training 
and 12 patients for testing the model, respectively. All the 
scans were in Digital Imaging and Communications in 
Medicine (DICOM) format having a size of 512 × 512 × 128. 
The scans were done on Siemens go.SIM pro  (Siemens 
Healthcare Private Limited) CT Simulator. The CT scan 
DICOM files as well as structure set were converted to 
NIFTI format, so that it can be easily read by the DL models. 
The structure set includes manually segmented OARs such 
as bladder, bowel, sigmoid, and rectum using the protocol 
provided by EMBRACE II[18]  (Image guided intensity 
modulated External beam radiochemotherapy and MRI 
based adaptive BRAchytherapy in locally advanced CErvical 
cancer‑v. 1.0.) protocol for OAR delineation. All the scans 
were processed for size reduction due to the limitation of 
system memory. The reduced size was 240 × 240 × 128 (128 
slices were exported for all the patients using treatment 
planning system), which is the final input for the model, as 
shown in Figure 1. For testing the model, we had used two 
different types of datasets. The first testing dataset consisted 
of 12 patients from our institute (OID), with organs-at-risk 
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(OAR) manually segmented by experienced oncologists 
following a standardized delineation protocol. The second 
testing dataset, comprising 10 patients, was sourced from an 
external institute for model validation; scans were conducted 
using the Canon Aquilion Start CT simulator (Canon Medical 
Systems Corporation). The code was executed on Google 
Collaboratory Pro, utilizing Python v3.7, with 25 GB of RAM 
and a Tesla P100 GPU equipped with 16 GB of graphics 
memory.[19]

Models
Originally transformer networks were built for natural 
language processing. The capacity to simulate global context 
and long‑range interdependence has made them suitable for 
medical image analysis. Transformers employ self‑attention 
processes to record links between visual areas independent 
of spatial distance, unlike CNNs, which concentrate on local 
characteristics by applying filters to tiny regions. Transformers 
excel at interpreting the whole image, which is beneficial 
for segmenting huge anatomical structures or where global 
properties are critical. Transformers can better capture distant 
pixel associations than CNN‑based models in medical images, 
notably in global context segmentation tasks. At the same time, 
transformers need plenty of tagged data to work correctly. 
Due to inadequate labeled data, medical imaging transformers 
may not perform well without augmentation or transfer 
learning. They use attention techniques that demand plenty 
of memory, making them computationally costly, particularly 
for high‑resolution medical images.

The Bi‑directional ConvLSTM U‑Net  (BCUN) combines 
U‑Net and ConvLSTM networks. LSTMs are commonly 
used in sequence data because they can capture temporal 
dependencies and spatial correlations across time and integrate 
well into U‑Net structures. The bi‑directional component lets 
the model evaluate data dependencies forward and backward. 
BCUN captures medical image spatiotemporal connections 
well. Dynamic or volumetric imaging  (magnetic resonance 
imaging scans or CT volumes) may benefit from this since 
image slice relationships can give contextual information. 
BCUN models may use structural consistency to improve 
segmentation accuracy in 3D or sequential medical data. 

BCUN models may overfit if trained on short datasets because 
of their intricacy and capacity to collect a lot of data, requiring 
careful regularization.

DUN, an expansion of U‑Net, is commonly used for medical 
image segmentation. U‑Net is famous for its encoder‑decoder 
structure, which downsamples image features at several scales 
and upsamples the segmentation mask. DUN improves feature 
extraction and hierarchical learning by stacking two U‑Nets. 
The first U‑Net gathers coarse, high‑level characteristics, 
while the second refines them to segment smaller or more 
sophisticated structures. It helps segment organs or tumors 
with complex borders. The second U‑Net layer enhances 
segmentation detail, making DUN good at detecting tiny 
medical image areas.

Model used combined with ensemble learning technique
Ensemble learning combines the predictions from multiple 
models to improve the overall performance and robustness of 
the system. In this study, we employ an ensemble of DUN,[20] 
BCUN,[21] and TN.[22,23] Each model contributes its unique 
strengths: DUN provides refined segmentation maps, BCUN 
captures spatial‑temporal dependencies, and TN leverages 
self‑attention for capturing complex patterns. The ensemble 
approach aims to mitigate the weaknesses of individual 
models, providing a more accurate and reliable segmentation 
outcome.[24‑26] This study aims to advance the accuracy and 
reliability of 3D medical image analysis by utilizing the 
combined strengths of multiple state-of-the-art deep learning 
architectures within an ensemble framework, striving to 
enhance automated performance.[27,28]

After training, the trained models were used to evaluate the 
models’ performance on two different datasets. Figure  2 
shows the segmentation workflow, which includes the training 
and testing stages. In this instance, 48 scans were input into 
the model to train it. Following training, the models were 
evaluated on two datasets that were manually segmented by 
experienced oncologists. The training and testing exercise was 
also conducted using the ensemble learning model also which 
includes the combination of TN and BCUN (TN + BCUN) and 
DUN and BCUN (DUN + BCUN).

Performance evaluation metrics
For accessing the model performance, we had used different 
types of image segmentation metrics such as DSC,[29,30] 
95% HD (mm),[31,32] and mean boundary distance.[33] The DSC 
or f1 score for two given sets X and Y was expressed as given 
in equation (1) and shown in Figure 3.

DSC = 2* | Intersection (X, Y) |/(|X| + |Y|)� (1)

where X represents ground truth and Y represents segmented 
mask.

The 95% HD is the maximum distance between the bounds 
of the expected segmentation and the ground truth. The 95% 
HD measure is often used in medical imaging to minimize 
outliers by concentrating on the 95th percentile of distances as 

Figure 1: (a) The raw computed tomography (CT) scan image before any 
size reduction with their corresponding segmented contours and (b) the 
CT scan image after reducing the size to 240 × 240 × 128

ba
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given in equation (2) and shown in Figure 4. In other words, 
the 95% HD is the greatest distance from one point in a set to 
the nearest point in another.

HD (mm) = max (hd[X, Y], hd[Y, X])� (2)

Mean boundary distance is crucial in medical image 
segmentation, particularly for OAR segmentation, since it offers 
an accurate assessment of the alignment between projected 
segmentation boundaries and the ground truth (manual expert 
segmentation). It quantifies the mean distance between the 
borders of the segmented item and the true organ boundary, 
providing critical information into the model’s proficiency in 
delineating organ edges.

Clinical relevance of metrics used for accessing the 
model
The DSC is a sophisticated metric and this advanced 
measure evaluates the similarity between the predicted 
segmentation and the ground truth segmentation, enabling 
the assessment of the accuracy and robustness of the 
segmentation process.

In medical imaging, accurate border delineation is essential for 
ensuring that treatments, such as radiation therapy, precisely 
target the intended locations while protecting adjacent healthy 
tissue. Reduced 95% HD values indicate more clinically 
acceptable segmentation borders.

Medical procedures, such as radiation therapy and surgical 
planning, rely significantly on the precise delineation of 
anatomical boundaries. A  high mean boundary distance 
indicates a substantial discrepancy between the anticipated 
boundary and the actual border, which may result in erroneous 
treatment zones. A  low value indicates accurate border 
alignment, resulting in safer and more efficient treatments. 
In brachytherapy, a little inaccuracy in border definition may 
result in excessive radiation exposure to adjacent important 
tissues, such as the bladder or rectum. It quantifies and 
mitigates boundary errors, hence enhancing the protection of 
delicate organs during treatment.

Results

In this study, we evaluated the proposed ensemble learning 
technique using two datasets of brachytherapy CT images, 
each containing four structures: rectum, bladder, bowel, and 
sigmoid. The CT images had a 3 mm interslice thickness. 
This technique harnessed the combined strengths of different 
learning algorithms to improve the overall performance and 
reliability of the segmentation results. Our approach aimed 
to enhance precision and efficiency in cervix brachytherapy 
planning, addressing the challenges posed by these anatomical 

Figure 2: The workflow of segmenting multiple organs. ADAM: Adaptive moment estimation, BDC‑LSTM U‑Net: Bi‑directional ConvLSTMU‑Net

Figure 4: The 95% Hausdorff distance between two‑point sets, X and Y

Figure 3: Dice similarity coefficient: 2 × overlap/sum of area
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structures and metal artifacts from the applicators. The results, 
discussed below, provide valuable insights into the feasibility 
and effectiveness of the proposed ensemble learning technique, 
contributing to advancements in treatment planning and 
improving patient outcomes in cervix brachytherapy.

Segmentation results using Double U‑Net, Bi‑directional 
ConvLSTM U‑Net, Transformer Network, and ensemble 
learning models
For OID dataset, using DUN, for all the OARs, the mean and 
standard deviation of DSC was 0.961 ± 0.001, 95% HD (mm) 
was 13.0 ± 0.2, and mean boundary distance was 8.0 ± 0.1. 
Using the BCUN, DSC was 0.972  ±  0.001, 95% HD was 

12.9 ± 0.3, and mean boundary distance was 4.3 ± 0.1. For 
TN, DSC was 0.980 ± 0.001, 95% HD was 4.5 ± 0.1, and mean 
boundary distance was 3.1 ± 0.1. By employing combination 
of DUN + BCUN ensemble learning model, the mean and 
standard deviation of DSC was 0.992 ± 0.002, 95% HD was 
1.9 ± 0.1, and mean boundary distance was 1.8 ± 0.1, and for 
BCUN + TN ensemble learning model, the mean and standard 
deviation of DSC was found to be 0.996 ± 0.001, 95% HD 
was 1.2 ± 0.1, and mean boundary distance was 1.3 ± 0.1. 
Table 1 shows the values of segmentation parameters for OID 
and DID datasets.

The locality and spread using DUN + BCUN ensemble learning 
model for DSC, 95% HD, and the mean boundary distance are 

Figure 5: The Dice similarity coefficient (a), 95% Hausdorff distance (b), Mean boundary distance (c) for Double U‑Net and Bi‑directional ConvLSTM 
U‑Net ensemble learning models. DUN: Double U‑Net, BCUN: Bi‑directional ConvLSTM U‑Net

c

ba

Figure 6: The Dice similarity coefficient (a), 95% Hausdorff distance (b), Mean boundary distance (c) for Bi‑directional ConvLSTM U‑Net and Transformer 
Network ensemble learning models. TN: Transformer Network, BCUN: Bi‑directional ConvLSTM U‑Net

c

ba
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shown in Figure 5a‑c, respectively. Figure 6a‑c shows the DSC, 
95% HD, and the mean boundary distance using BCUN + TN 
ensemble learning model. Figure 7 represents the different test 
images with their corresponding mask and segmented mask 
for different OARs.

Comparison with existing work
We also evaluated our methods against other existing 
approaches. As illustrated in Table 2, the proposed method 
consistently outperforms the others across all parameters. This 
comparison clearly demonstrates the superior performance of 
our method in the segmentation task.

Discussion

The article aims to automate the registration‑free segmentation 
process by leveraging three distinct models – DUN, BCUN, 
and TN – combined using an ensemble learning technique. 
These models were trained on cervix CT scans to segment 
four different OARs: rectum, bladder, bowel, and sigmoid. To 

enhance model accuracy and other segmentation metrics, the 
ensemble learning approach was employed. For testing, CT 
scans from 12 patients, manually segmented by oncologists, 
were used. Additionally, the model was evaluated on a 
dataset from a different institute, also consisting of scans 
from 10 patients. The results highlight the effectiveness of 
the proposed method. The average DSC, which measures the 
overlap between predicted and manual segmentations, was 
consistently high for all models across all tested OARs. The 
use of the ensemble learning technique further improved the 
results, indicating enhanced accuracy. The 95% HD, which 
measures the maximum distance between two sets, also 
showed satisfactory segmentation results. Furthermore, the 
proposed method was compared with other existing methods, 
and the findings suggest that it achieves high accuracy and 
maintains excellent segmentation metrics. By reducing the 
dependence on manual segmentation by human experts, this 
approach offers significant time savings. Automating this 
process can potentially expedite planning for brachytherapy 

Table 2: Comparison of the proposed method with existing methods

Study Modal Dice coefficient 95% HD (mm) Mean boundary distance (mm)
Zhang et al.[34] 3D DSD U‑Net 0.780 15.7 *
Jiang et al.[35] Refine Net 0.720 35.8 *
Mohammadi et al.[36] 2D ResU‑Net 0.950 1.9 *
Zabihollahy et al.[37] 3D Dense U‑Net (coarse‑to‑fine) 0.870 2.8 *
Li et al.[38] nnUnet (2DU‑Net, 3DU‑Net and 3D‑Cascade U‑Net) 0.860 5.8 *
Yoganathan et al.[39] 2.5D ResNet, 2.5D IRN 0.700 13.1 *
Wang et al.[40] Modified CNN 0.880 5.8 *
Xue et al.[41] Prompt‑nnUnet 0.960 2.0 *
Kraus et al.[42] Ensemble learning U‑Net 0.982 1.5 *
Our method Ensemble learning 0.998 1.3 1.2
CNN: Convolutional neural network, HD: Hausdorff distance, IRN: Iterative refinenet, DSD: Deep supervision discriminator, *Not Reported

Table 1: The dice similarity coefficient, 95% Hausdorff distance  (mm), and mean boundary distance for all the models 
for our institute as well as different institute dataset

Parameters Method Bladder Rectum Bowel Sigmoid

OID DID OID DID OID DID OID DID
DSC DUN 0.967 0.966 0.959 0.96 0.961 0.963 0.958 0.957

BCUN 0.975 0.975 0.973 0.973 0.972 0.973 0.975 0.976
TN 0.987 0.988 0.985 0.986 0.978 0.977 0.987 0.988
Ensemble of DUN + BCUN 0.991 0.992 0.992 0.992 0.992 0.991 0.991 0.992
Ensemble of TN + BCUN 0.998 0.998 0.997 0.997 0.996 0.996 0.998 0.997

95% HD (mm) DUN 12 12 12 12.1 12.8 12.7 13.7 13.8
BCUN 12.6 12.5 13.4 13.5 11.6 11.5 13.6 13.5
TN 4.6 4.5 4.8 4.7 4.9 4.7 5.2 5.3
Ensemble of DUN + BCUN 1.7 1.7 1.8 1.8 1.9 1.8 1.7 1.6
Ensemble of TN + BCUN 1.2 1.3 1.4 1.5 1.3 1.4 1.2 1.1

Mean boundary 
distance (mm)

DUN 7.7 7.9 8.2 8.1 8 8.1 8.3 8
BCUN 3.9 4.1 4.5 4.7 4.3 4.4 4.6 4.5
TN 3 3.2 3.4 3.5 3 3.1 3.3 3.2
Ensemble of DUN + BCUN 1.5 1.6 1.8 1.7 1.8 1.7 1.7 1.6
Ensemble of TN + BCUN 1.2 1.1 1.2 1.1 1.3 1.2 1.4 1.2

DUN: Double U‑Net, BCUN: Bi‑directional ConvLSTM U‑Net, TN: Transformer Network, DSC: Dice similarity coefficient, HD: Hausdorff distance, 
OID: Our institute dataset, DID: Different institute dataset
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cancer patients, leading to improved efficiency and precision 
in radiotherapy.

While the study presents promising results, certain 
considerations must be addressed. The evaluation was 
conducted on a relatively small dataset, and it would be 
beneficial to validate the approach on larger cohorts to 
establish its generalizability.[43‑45] Future work could also 
explore integrating additional clinical features or imaging 
modalities to further enhance the accuracy and robustness 
of the segmentation models. Furthermore, the validation 
of the model on the bigger dataset collected from different 
regions of the country or throughout the world can enhance 
the reliability and accuracy of the model. This can be 
done through multicenter studies as we can increase the 
generalizability of the models across various clinical 
settings and demographic groups using data harmonization. 
Another method is augmenting data through synthetic and 
semi‑synthetic approaches (like use of generative models). 
Another approach is transfer learning and domain adaptation 
where we can transfer the learning of one model and adapt 
trained models on one dataset to perform well on different 
datasets. Cross‑modality data integration will also be 
helpful to overcome the problem of data scarcity. Moreover, 
employing a metal artifact reduction method could improve 
the accuracy of the segmentation.

Conclusion

This study successfully demonstrates the feasibility of 
federated automated multi‑organ segmentation in cervical 

brachytherapy CT images by integrating advanced CNN 
architectures, namely DUN, BCUN, and Transformer 
Networks  (TN), within an ensemble learning framework. 
This approach achieved remarkable segmentation 
accuracy, particularly for the four OARs in cervical cancer 
patients, reflected by a mean DSC of 0.998. These results 
signify substantial progress in automating medical image 
segmentation, potentially revolutionizing clinical workflows 
by improving precision and efficiency in treatment planning. 
Despite these promising outcomes, challenges remain. One of 
the primary limitations is the limited availability of annotated 
medical image datasets, which hampers further development 
and optimization of segmentation techniques. Future 
research should focus on validating the approach on larger 
and more diverse datasets to establish its generalizability. 
Multicenter studies, cross‑modality data integration, and 
the use of synthetic or semi‑synthetic data could address 
these limitations and further enhance the model’s robustness. 
Additionally, incorporating metal artifact reduction methods 
could improve segmentation accuracy in real‑world clinical 
applications.

In conclusion, this study highlights the powerful potential of 
combining DL models with ensemble learning techniques to 
automate the segmentation of OARs in cervical brachytherapy. 
This not only enhances precision in treatment planning 
but also holds promise for improving patient outcomes. 
Future work should explore broader applications and further 
refinement of these models to ensure their effective clinical 
deployment.

Figure 7: The input computed tomography scan image (left), manually drawn organ at risk (OAR) by an oncologist (middle), and segmented OAR 
by model (right)
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