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Abstract: Discovery of drugs against newly emerged
pathogenic agents like the SARS-CoV-2 coronavirus (CoV)
must be based on previous research against related species.
Scientists need to get acquainted with and develop a global
oversight over so-far tested molecules. Chemography (here-
in used Generative Topographic Mapping, in particular)
places structures on a human-readable 2D map (obtained
by dimensionality reduction of the chemical space of
molecular descriptors) and is thus well suited for such an

audit. The goal is to map medicinal chemistry efforts so far
targeted against CoVs. This includes comparing libraries
tested against various virus species/genera, predicting their
polypharmacological profiles and highlighting often en-
countered chemotypes. Maps are challenged to provide
predictive activity landscapes against viral proteins. Defini-
tion of “anti-CoV” map zones led to selection of therein
residing 380 potential anti-CoV agents, out of a vast pool of
800 M organic compounds.
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1 Introduction

Coronaviruses (CoVs; family Coronaviridae, order Nidovir-
ales, realm Riboviria) are a family of enveloped RNA
viruses known to be able to cause acute and persistent
infections in mammals and birds.!" Before recent out-
breaks of severe acute respiratory syndrome (SARS) and
Middle East respiratory syndrome (MERS), the infections
caused by human CoVs (HCoV-229E, HCoV-OC43, HCoV-
NL63 and HCoV-HKU1) had been considered as usually
resulting in mild, self-limiting upper respiratory tract
infections, similar to the common cold. Ongoing pan-
demic of CoV disease (COVID-19) caused by severe acute
respiratory syndrome-related coronavirus 2 (SARS-CoV-2;
species Severe acute respiratory syndrome-related corona-
virus, subgenus Sarbecovirus, genus Betacoronavirus,
subfamily Orthocoronavirinae),”” commonly referred to as
2019-nCoV, is posing a major public health challenge
and has already caused significant damage to the world
economy. There is no approved specific treatment for
the infections caused by CoVs and the development of
new anticoronaviral compounds is an urgent task.

The coronavirus genome (26-32kb) is the largest
among all RNA viruses."? It encodes 4 structural and 16
non-structural proteins, many of which have already been
exploited as the targets for anticoronaviral drug discovery.”
Apart from viral proteins, numerous host-cell factors
required for virus replication cycle can also serve as the
targets for the development of CoVs reproduction inhib-
itors. The data on anticoronaviral activity of compounds has
been accumulated in large repositories of bioactivity data
such as ChEMBL,” PubChem BioAssay,” etc. There are more
than 3.7 thousand activity entries related to more than 2.1
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thousand structures extracted from 143 literature sources in
the current ChEMBL version 26.

Large efforts have been made recently in order to curate
and analyze antiviral chemical space,”™ as well as to
validate the applicability of machine learning methods for
the discovery of new antiviral compounds."” The data on
activity of closely related viruses were proven to be
informative enough for the guided discovery of hit
compounds against a particular virus.”! For example, the
data on activity against flaviviruses extracted from
ViralChEMBL® projected onto Universal Maps (UMs) of
chemical space built by generative topographic mapping
(GTM) method were successfully used to discover new
compounds with activity against tick-borne encephalitis
virus, although only few data points were available for this
virus.”

Chemography"" provides a computer-generated, hu-
man-readable framework (“map”) in which chemical com-
pounds can be located - ideally, by positioning similar
molecules close to each other. Molecules, typically repre-
sented by high-dimensional descriptor vectors, are pro-
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jected on such maps by means of some dimensionality
reduction techniques."? Generative Topographic
Mapping"*'¥ appears to be a particularly multifaceted and
flexible approach to chemography. As a probabilistic
generalization of popular Kohonen maps,™ it has the rather
unique ability to be both a support for visualization and
comparison of compound libraries and a support for
quantitative predictive models (property landscapes). This
non-linear dimensionality reduction tool maps each mole-
cule to a bidimensional probability distribution over a
manifold. In turn, these distributions are used to generate
2D maps and locate compounds on them. Thus, molecules
appear to be projected from a very high-dimensional
descriptor space onto the map that can be quantitatively
characterized in terms of Neighborhood Behavior (NB)
compliance: do similar molecules (expected to have similar
properties) map within a same local map neighborhood?
This is the necessary condition for GTM-based quantitative
prediction models, and it was confirmed over several
hundreds of distinct biological properties. Notably, the so-
called Universal maps™'® were precisely dedicated to the
goal of “polypharmacological competence”: the ability to
host a maximum of such predictive landscapes on a same
map. These were successfully applied in the above-
mentioned scrutiny of antiviral compound space, leading to
compound repurposing.

The primary goal of this work is to apply the above-
mentioned validated chemography methods in order to
achieve an overview of the medicinal chemistry efforts so
far targeted against coronaviruses. It addresses the follow-
ing key questions:

e What kind of compounds were so far assessed against
CoVs? Where on the map are the predominant antiviral
chemotypes located?

e How do they relate to other antiviral compound sets?
How do these sets associated to viruses of different
genera or species relate to each other?

e How do they relate to clinically approved or pending
antivirals from DrugBank?

e There are no compound libraries tested against SARS-
CoV-2 so far, but could cartography help to evaluate the
focused libraries prioritized by docking?

e Can a typical polypharmacological profile of CoV com-
pounds be established by (cartography-supported) in
silico prediction? What can be learned from it?

e Does the available data support the construction of
predictive structure-activity models for virtual screening?

¢ Alternatively, is there enough data to support simple
selection of putative active antivirals on the basis of their

“residence” in privileged map areas occupied by CoV-

associated compounds and reference antivirals? Is this a

filter stringent enough to pick a few hundreds out of the
> 1 billion commercially available compounds?

This includes comparing the compound libraries that
were tested on various species and genera of viruses, using
the maps to pinpoint positions of reference antivirals and
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highlight the main chemotypes/structural features observed
in so-far tested compounds. In this framework, comparisons
were extended to focused libraries prioritized by docking™”
against the recently solved structure of SARS-CoV-2 3 C-like
proteinase. In Silico profiling of CoV compounds turned out
to be a useful exercise, allowing both to highlight specific
antiviral chemotypes and to establish sometimes unex-
pected relations to host targets potentially involved in
antiviral response. Eventually, as far as the limited structure-
activity data allows, the maps were assessed in terms of
their propensity to provide predictive activity class land-
scapes against specific viral proteins.

Last but not least, “anti-CoV” map zones in which
selected CoV-associated compounds and reference antivi-
rals preferentially reside were selected, and used for a
direct, map neighborhood-based virtual screen of 800
million standardized and unique structures extracted out of
1.5 billion commercially available ZINC compounds."® 380
potential antiviral agents stand out by the fact that they are
consensually located in anti-CoV zones on at least four of
the seven used UMs.

2 Methods
2.1 Generative Topographic Mapping

Generative Topographic Mapping (GTM), introduced by
Bishop et. al." is a dimensionality reduction technique
which transforms the initial, multi-dimensional dataspace
into 2D manifold latent space (the “map”). The manifold is
non-linearly fitted into high-dimensional molecular descrip-
tor space. Only a brief description of the methodology is
given here, please refer to previous publications"' for
technical details. This manifold is sampled by a (squared)
grid of nodes. Its geometry is optimized (“bent”) to
approach at best all the items in descriptor space. Each
item can then be “projected” on this bent manifold by
fuzzily associating it to the nodes (the closer the node, the
stronger the degree of association). A projected compound
is described by its associated probability densities at each
node, sometimes referred to as “node residence times” - as
if the molecule would alternatively “reside” on several
nodes, more often on the nearest. They form a vector of
real numbers technically termed responsibility vector. The
sum of responsibilities of a molecule is 1.0 - it must reside
“somewhere” on the map. The strength of this fuzzy-logical
approach is the ability to ensure a finer analysis of chemical
space (in a Kohonen map all residents of a same node are
indistinguishable, as far as the Kohonen formalism may tell
- on a GTM, two compounds predominantly residing on a
same node may still be distinguished in terms of their
responsibility values on other nodes).

Also, a GTM may host property landscapes, by assuming
that each node has a property value taken as responsibility-
weighted mean of the properties of reference compounds
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used for landscape “coloring”. Herewith, GTMs can be de
facto used as Quantitative Structure-Activity Relationship
(QSAR) models. Once a map is established, it does not
support any model-specific, tunable parameters (to en-
hance rendering of the specific activity landscape on the
map). The only possibility is to select a map showing the
best predictive propensity, out of a pool of considered
maps (based on different molecular descriptor spaces, with
different grid sizes, manifold flexibility, etc. — please see
cited articles for a complete discussion on GTM operational
parameters). If the map is NB compliant, all compounds
close to a node will have similar properties and the
resulting mean value is a meaningful representative of a
map region. Then, any external compound with significant
residence time in that area will have its property predicted
equal to the local mean. Such predictions can be cross-
validated, or even validated in prospective virtual screening,
herewith confirming the quality of the map. Any manifold
can be challenged to host several different and unrelated
properties. In particular, Universal™ Maps (UMs) were
selected for their propensity to support prediction of
several hundreds of biological activities, and are therewith
the primary choice to explore the medchem-relevant
chemical space, especially for situations where no single
biological target is under scrutiny. They were hence used
for antiviral chemical space analysis and antiviral compound
repurposing, as already mentioned in Introduction. Here, all
the seven®® UMs - each based on different descriptor
spaces, capturing complementary chemical information -
were used for quantitative assessments (vide infra) but most
of the displayed landscapes were shown on UM#1 (the one
of best average predictive propensity over the battery of
selection targets).

2.2 Datasets and Curation

CoV-associated molecules (sometimes simply called “CoV”
molecules) were retrieved from ChEMBL®™ version 26,
following the previously described® procedure. The latest
International Committee on Taxonomy of Viruses (ICTV)
master species list (2018b.v2) was downloaded from https://
talk.ictvonline.org/files/master-species-lists/m/msl/8266. All
viral species names for Orthocoronavirinae subfamily were
retrieved from it. The only species name that did not
contain ‘coronavirus’ as a part of the name was Porcine
epidemic diarrhea virus. Thus, substrings ‘corona’ and
‘porcine epidemic diarrhea’ were searched in the ChEMBL
assays table (fields: “description”, “assay_organism”, “mc_
organism”), after removing all non-alphanumeric characters
from both queries and ChEMBL strings. Entries containing
‘coronary’ were stripped and the rest were manually
checked. Next, short versions of the virus names (‘coVv/,
'HKU10’, 'HKU8', 'HKU1’, '"HKU24', 'HKU2', 'HKU5’, 'HKU4',
'MERS’, 'SARS’, 'GCCDC1’, 'CDPHE15, 'SW1’, 'BtKYNL63’,
'HKUY’, 'HKU20’, 'HKU11/, 'HKU15, 'HKU13’, 'HKU16/,
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'HKU19’, 'HKU271’, 'SW1’, '‘GCCDC1’, '229F, 'NL63’, 'OC43,
'hcoVv’, 'MHV’, 'FIPV’, 'ncoV’) were also searched in the same
fields of ChEMBL assay table. At this step, query strings
were embedded between two white spaces (to force
matching of entire words) whereas in ChEMBL strings all
non-alphanumerical characters were replaced by white
spaces and then trailing whitespaces were removed.
Eventually the same procedure was applied to the “organ-
ism” field of target_dictionary table. All searches were done
in a case-insensitive mode. Entries from ViralChEMBL®
related to Coronaviridae family were extracted and those
not already retrieved from the search above were added.

Other compound sets were compiled for comparison
purposes. They include excerpts from the ViralChEMBL®
database — compound sets associated to virus species other
than CoV - including (a) RNA viruses that are not CoVs but
are biologically most related to the latter and (b) some
viruses of major concern having attracted a lot of research
effort so far (see Table 1). To ensure that the kept entries
have been tested quantitatively, a simple filter was applied
to ensure that a numerical activity value was reported in
the “standard_value” field, irrespective of whether this was
declared to be an exact value, a minimal or a maximal
threshold, and irrespective of units. A detailed statistics on
the various entries related to activity and other fields is
provided in the Supplementary Materials. With the excep-
tion of one specific SARS-CoV protein inhibitor subset, no
attempt to exploit these values in order to classify
compounds into “active” and “inactive” was made.

Eventually, the DrugBank™" set of all molecules includ-
ing “antiviral” amongst associated categories (irrespective
of their approval status, or the nature of targeted viruses)
was used as an “indicator” set to annotate map regions by
the reference antiviral drugs residing there.

There are of course no chemical libraries systematically
screened against SARS-CoV-2, but in silico screening already
produced potential candidates from docking into the
recently resolved structures of its proteins. Notably,"” a set
of 1000 candidates with promising docking scores for the
SARS-CoV-2 3CL proteinase were selected by “deep dock-
ing” from 1.3 billion commercially available compounds in
the ZINC database. This pool was also analyzed in this
study, by positioning it in the context of above-retrieved
CoV compounds.

All compounds were first standardized according to the
business rules implemented on the ChemAxon-powered®”
server  http://infochim.u-strasbg.fr/webserv/VSEngine.html
of the Chemoinformatics Laboratory of Strasbourg (return-
ing standardized unique stereochemistry-depleted strings).
These were encoded by the ISIDA fragment descriptors
employed by the seven complementary"® UMs" and then
projected, herewith determining the responsibility vectors
of every compound on each map. Cumulated responsibility
vectors of compound sets have been obtained by summing
up the responsibilities of compounds.
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Table 1. Compound set sizes by viral genus and species with more than 100 associated compounds. Sets associated to a given genus also
include compounds associated to species not explicitly listed in column 3. CoVs are given first.

Genus Genus Set Size Species Species Set Size
Betacoronavirus 1308 Severe acute respiratory syndrome-related coronavirus (SARS-CoV) 1015
Tylonycteris bat coronavirus HKU4 221
Alphacoronavirus 269 (Feline) Alphacoronavirus 1 192
Alphainfluenzavirus 35681 Influenza A virus 35681
Betalnfluenzavirus 698 Influenza B virus 698
Flavivirus 3808 Dengue virus 1852
West Nile virus 757
Yellow fever virus 599
Lentivirus 49783 Human immunodeficiency virus 1 46868
Human immunodeficiency virus 2 2915
Mammarenavirus 63001 Lassa mammarenavirus 63001
Marburgvirus 84835 Marburg marburgvirus 84835
Orthobunyavirus 129 California encephalitis virus 129
Orthohantavirus 119 Sin Nombre orthohantavirus 119
Orthonairovirus 222 Crimean-Congo hemorrhagic fever orthonairovirus 222
Phlebovirus 414 Punta Toro virus 414

The chemical space occupied by compounds associated
to a given antiviral activity was defined by monitoring the
cumulated responsibilities of the corresponding compound
sets. Compound sets were defined both with respect to the
viral species (all compounds being reported in ChEMBL as
tested on a virus, or a target of a virus of species S — query:
species_name="S") and with respect to the viral genus G
(query: genus_name="G"). Obviously, the chemical space
associated to a genus G is the overlap of the chemical
spaces associated to the species representing the genus.
Chemical spaces were only monitored if they featured at
least 100 compound members.

2.3 Assessing the Degree of Overlap of the Chemical
Space of Compound Sets

For each of the seven UMs, average cumulated responsi-
bility vectors were calculated for each set, in order to
calculate the degree of overlap of represented chemical
spaces as the Tanimoto score of the mean cumulated
responsibility vectors. Here CoV sets were compared to all
the other antiviral sets, by genus or by species, respectively.
For any pair of compared chemical spaces, mean and
standard deviations of the seven overlap scores returned by
each map were taken as the “generic” degree of overlap.
Comparative graphical display of compound sets used by
default the UM with the highest degree of overlap.

2.4 In Silico Profiling of CoV Molecules
As a natural consequence of projecting the pool of CoV-
tested compounds on the seven UMs, some of them can be

directly traced back to chemical space zones shown to be
preferentially populated by known “actives” on various
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(most but not exclusively human) biological targets dispos-
ing of significant structure-activity data in the ChEMBL
database (v. 24). A battery of 749 such activity landscapes
can be rapidly used to predict for which of these activities a
given compound appears to reside in an “active” neighbor-
hood. Compounds that are consensually located in active
neighborhoods by all the seven UMs are predicted “active”
with respect to that target. Activity landscapes are originat-
ing from previous studies incorporating tested actives,
tested inactives and random decoys.”” CoV-assessed com-
pounds (all genera/species confounded) were subjected to
this in silico profiling procedure and regrouped by the
targets on which they were predicted active. Beyond
highlighting potential off-target effects of these molecules,
this regrouping by “virtually hit” target is a useful way to
cluster and browse through the chemical diversity of the
CoV compounds. The consensus profiling tool can be used
by selecting “ChEMBL24_profiler” in the “Select property to
predict” roll-down of the QSAR property predictor tool on
http://infochim.u-strasbg.fr/webserv/VSEngine.html.

2.5 CoV Activity Class Landscapes and their Quantitative
Validation

Above-collected structure-activity data include > 100 affin-
ity-related (dose-response) measures with respect to the
3 C-like proteinase (3CL) with 176 tested compounds of the
SARS-CoV of the 2003 outbreak (the so-far best explored
CoV). Within this series, compounds with ICs, or K; values
below 10 uM were considered active (25/176). This set,
albeit small, was used to verify, by means of repeated 5-fold
cross-validation, whether the herein employed UMs are
capable to support predictive activity class landscapes in
terms of binding to the viral proteinase. This cross-
validation procedure consists in iteratively using 4/5 of the
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set to build an activity class landscape, by assigning each
map node a likelihood to host actives — as observed by
counting the resident active and inactive compounds. Then,
the left-out 1/5 is projected on the landscape and assigned
predicted active/inactive labels. After five iterations, each
molecule has been exactly once within the left-out 1/5 -
thus, all molecules have predicted activity labels that can
be confronted to actual activity labels. A Balanced Accuracy
(BA) score can be computed as the mean of the ratio of
correctly predicted actives and correctly predicted inactives.
The procedure is repeated five times after reshuffling the
compound order, leading each time to a (slightly) different
BA score. The mean BA and its standard deviation over the
five reshuffling attempts is reported as a measure of the
predictive performances of the landscape.

2.6 Responsibility Pattern-based Virtual Screening of ZINC
Compounds

As part of ongoing chemical space mapping studies
conducted by the Laboratory of Chemoinformatics, the
pool of 1.5 billion ZINC entries was standardized to unique
stereochemistry-depleted SMILES, and then projected on
the seven UMs. After discarding compounds that could not
be properly processed by the standardizer, and removing
duplicates of the standardized SMILES, 800 million struc-
tures remained. Note that each of these might represent
several stereoisomers or even compounds originally ren-
dered under another tautomeric form - therefore, each
standardized SMILES is associated with the “-+"-concaten-
ated string of all the ZINC id fields of the initial entries
converging to that SMILES (and also reported in the list of
selected items, in Supplementary Material). Since the frag-
ment descriptors used to build the maps ignore stereo-
chemistry, this means that any “hit” selected for residing in
a relevant map neighborhood stands for all its possible
stereoisomers.

For each of the seven UMs, the Responsibility Patterns
(RP) of both SARS-CoV compounds and DrugBank com-
pounds were generated: these are nothing but character-
istic strings obtained by rounding up the real-value
responsibility vectors, as already described.” Each RP
defines a “block” in the space of responsibility vectors, and
compounds sharing a same RP can be regarded as
members of a same cell-based cluster in responsibility
space. RPs seen to occur in at least four of the SARS-CoV
compounds, or in at least two of the sparser DrugBank
reference pool were used to define the “Relevant Antiviral
Spaces (RAS)” on each map. An external compound having
an RP that matches either of above-selected RPs on a given
map is de facto considered a resident of that RAS.

Since RP generation is an extremely fast procedure
when responsibility vectors are already available, and a
simple string matching operation suffices to decide
whether a ZINC compound is or is not a member of the RAS
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of the current map, the virtual screening of 800 M ZINC
entries took no more than a few hours on a standard multi-
CPU workstation.

Eventually, ZINC “hits” were sorted with respect to the
number of UMs on which they were seen to reside within
its RAS. Compounds residing in at least 4 out of 7 RAS were
considered the virtual “hits” of this screening campaign.

3 Results and Discussion
3.1 Curated Compound Sets

Table 1 reports the sizes of ChEMBL-extracted compound
sets, by viral genus and species, respectively. As mentioned,
these are sets of compounds reported to have been tested
- all test protocols confounded - against one or more
species and genera of CoV, including both active and
inactive ones. Given the rather diverse panel of different
testing protocols, defining the “actives” in each context is
challenging - intimate knowledge of the testing protocols
is required — but ineffective: it results in many very small
compound sets labeled as “active”, but each label has
ultimately a different meaning. That is detrimental® to
statistics-based chemoinformatics methods and machine
learning, as the small sets cannot be merged (too
heterogeneous), nor used individually (too small). The only
notable exception in this work was the compilation of two
small, yet acceptable structure-activity sets pertaining to
binding to SARS-CoV proteinase.

Thus, compounds recruited in the above sets have in
common the fact that scientists have deemed them to be
interesting choices for testing in antiviral tests and screens.
Most of these are far from being effective agents against
those viruses — and, in particular, there are no approved
human drugs against CoVs.

Note that some key species — particularly the virus
responsible for the Middle East Respiratory Syndrome
(MERS) did not make it onto the list of monitored subsets,
because of insufficient (< 100) entries (70 only for MERS-
CoV - a rather small set to illustrate chemical space
occupancy, out of which 34 are furthermore also associated
to SARS-CoV). Therefore, this study is not a quantitative/
predictive attempt of rational antiviral design - it is just an
audit of the previous research effort, using chemography as
a means to highlight relevant structures and inter-com-
pound relationships. This work is meant to provide a
general, “bird’s eye” view of CoV chemical space. It does not
preclude that short chemical series of <100 compounds,
supporting local QSAR models could be extracted. However,
local models of limited applicability domain covering a
specific series are only of interest for scientist wishing to
expand that series, while here we assess global structure-
activity relations throughout the available chemical space.
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Figure 1. Mean Overlap Score (Tanimoto index of cumulated responsibility vectors) over the seven UMs (with standard deviations) between
the chemical space occupied by Betacoronavirus compounds and spaces associated to other viral genera.

3.2 Degrees of Chemical Space Overlap

Pairwise comparison of the cumulated responsibility vectors
of above compound sets revealed that in general there is
no systematic overlap of the chemical spaces associated to
viral species or genera. In particular, the chemical space of
compounds targeted against the genus Betacoronavirus
(including the so-far most studied SARS-CoV species) is
clearly distinct from the ones of other viral genera, as
illustrated by the low overlap degrees displayed in Figure 1.

Scores above 0.3 arise when the chemical space covered
by one of the sets happens to be a subzone of the space
occupied by the larger set. Viruses of the Flavi-, Influenza-,
Lenti-, Mammarena- and Marburgvirus genera have attracted
by far most of the research effort, and the much sparser
tests against betacoronaviruses often relied on compound
classes already used for the former.

Figure 2 illustrating the overlap of Lentivirus and
Betacoronavirus chemical spaces on UM" nr. 4 is fully
dominated by the very large Lentivirus collection. The map
was chosen because it scored the overall highest overlap
value of 0.37, albeit this is not outstanding (the minimal
was 0.29, mean 0.33+0.03) and the landscapes are graphi-
cally very similar, irrespective of the chosen map). Protease
inhibitors form a significant subset thereof, and peptidomi-
metics are indeed also shared by both sets (zones A and C).
Interestingly, zone B is an intriguing fragment-like molecule
zone also shared by both libraries, with SARS-CoV com-
pounds forming a structurally homogeneous family of
pyridol esters of thiophencarboxylic acid whereas Lentivirus
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compounds in this area are structurally quite diverse (their
common denominator is the fragment-like size). This
comparative mapping can serve as a departure point to
“repurpose””? some of the members of the large antiviral
sets which share the CoV chemical space but were not yet
assessed against CoVs.

Interestingly, there is almost no overlap of the chemical
spaces associated to the two genera (o,8) of CoVs
represented in ChEMBL. Research against alphacoronavi-
ruses (feline) is veterinary medicinal chemistry, and its
scope is rather distinct from compounds targeting human
respiratory viruses.

3.3 DrugBank and Reference Compounds

In Figure 3 below, the very small set of DrugBank molecules
including the keyword “antiviral’® in category was pro-
jected on UM#1 and color-coded by their status (approved
in blue, not [yet] approved in red). Zones with intermediate
colors signal chemical space areas of ongoing research
within already explored chemical space zones - notably in
the south-west (the realm of protease inhibitors) and north-
north-east (nucleotide/nucleoside-like compounds). By con-
trast, a second zone of various “-navir” protease inhibitors
(center-east) is rendered blue: confirmed drug exists, and
no new analogues are pending approval. However, this
zone is structurally not clearly distinct from the main south-
west peptidomimetics, as residents of both share common
structural features — linear, flexible compounds with multi-
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Figure 2. The vast chemical space of (anti-HIV) compounds tested against lentiviruses occupies (red trace) virtually the entire UM#4 (refer to
publication®). Zones addressed by Betacoronavirus research “shine” through the high density of anti-HIV compounds. For key regions
(labeled A, B, and C), representative residents associated to Betacoronavirus (yellow background) and respectively Lentivirus (grey) are
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Figure 3. Projection (on UM#1) of DrugBank antiviral compounds color-coded by their approval status.

ple amide bonds, where some main residents of the center-
east show some residual responsibility in the south-west
area. The main difference between the zones pertains to

Wiley Online Library © 2020 Wiley-VCH Verlag GmbH & Co. KGaA,

molecular complexity: the south-west regroups some of the
most complex, almost natural product-like compounds such
as the anti-hepatitis “-previr” (mainly macrocyclic) series of
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compounds. Other molecules here tend to feature fused
aromatic heterocycles. Sometimes, the additional size/
complexity in the south-western corner stems, admittedly,
from protective groups (t-butyl ether on threonine residues,
N-terminal benzyloxycarbonyl groups) of no mechanistic
interest — a common issue in the chemography of
compound series including prodrugs. By contrast, central-
eastern “-navir” peptidomimetics are somewhat smaller and
do not include any fused aromatic systems. The north-
western corner is populated by sulfonamide derivatives,
some of which (Tipranavir, for example) are large and linear
enough to be considered as peptidomimetics.

Red zones represent compounds that are not approved
by the Food and Drug Administration (which is the
reference for the DrugBank approval flag) which are either
“radical novelties” - chemotypes different from the ones in
consecrated antivirals, but which still need to prove their
efficacy, or antivirals in use elsewhere but not in the USA
(Umifenovir). Key antivirals and promising new compounds
are nominally localized on the map, with those attracting
recent attention as potential anti-SARS-CoV-2 highlighted in
red. Note — Favipiravir, currently in clinical trials against
SARS-CoV-2,”9 surprisingly does not include the label
“antiviral” in the Category field in the DrugBank, although
associated information does design it as such (it was
manually added). Some compounds are annotated as
antivirals even though this may not be their first indication
— the antimalarial Artesunate (but not chloroquine, not
listed as “antiviral” in DrugBank), the toxin Podofilox (used
in dermatology to cure warts of potentially viral origin).

Since UMs define a common frame to project a vast
number of compounds, it is thus possible to replace the
landscape in Figure 3 by any other projection of compound
libraries, all while keeping the frame of annotations. In this
way, it is possible to instantly read out what zones
inhabited by reference antivirals are addressed by a
compound library, and which are ignored.

This annotation frame can also be helpful in high-
lighting, for example, the nature of the binders to the SARS-
CoV 3CL proteinase (Figure 4). This small subset of 25
actives was projected (blue) next to the entire DrugBank
(red), and three relevant overlap zones were detected (the
other spots of intermediate color represent “mixing” of low-
responsibility zones). Representative structures were high-
lighted for each zone - with the active SARS-CoV protein
inhibitor left versus matching DrugBank compound, right.
Expectedly, peptidomimetics (south-west) are present in
both sets, albeit they are structurally rather different. There
is an intriguing match in the nucleotide/nucleoside-like
area, with an undeniable chemical similarity between the
active SARS-CoV protein inhibiting thioester and Ribavirin -
both featuring a triazole moiety connected to some oxy-
gen-containing heterocycle. However, this global similarity
of pharmacophore patterns may be, in this particular case,
irrelevant: protease inhibition activity may stem from the
specific thioester function (covalent inhibition?). There is no
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compelling reason to assume that nucleoside mimics act on
proteases.

Eventually, the match between Umifenovir (alias Arbi-
dol) and protease-inhibiting benzindole carboxylic acid
esters is also intriguing. Umifenovir (a benzindole carboxylic
acid ester, albeit of slightly different connectivity) is not
approved by the FDA, but in use in Russia and Asian
countries and currently tested against SARS-CoV-2.”% This
study suggests that it might act on the 3CL proteinase, a
hypothesis not considered so far amongst the considered
mechanisms of Umifenovir?” — albeit this prediction is to be
considered with caution: the structures share common, but
also divergent features.

Last but not least, in silico-predicted”” binders to the
SARS-CoV-2 3CL proteinase (red) were mapped against the
entire pool of compounds targeted at the SARS-CoV (blue),
with results shown in Figure 5. Globally, the overlap of the
two sets is rather low - partly due to the fact that not all
compounds tested on SARS-CoV were protease inhibitor-
like. Most overlap is, interestingly, observed in the central-
eastern realm of the “simpler” peptidomimetics - whereas
docking returns no hits at all from the “twin” south-western
area. This could be tentatively explained that molecules of
the complexity of Lopinavir represent some upper limit of
(a) what is commercially available in ZINC and/or (b) what
can be meaningfully docked in high-throughput mode by a
commercial tool. Otherwise, the docking protocol does visit
a significant area of chemical space that was never explored
against SARS-CoV - for example, the south-south-west
including references such as Raltegravir (however, an
integrase, not a protease inhibitor). Only the experimental
follow-up of this prospective screening will show whether
this progress into unchartered territories will trigger some
interesting discoveries, or whether it is due to docking
artefacts.

3.4 In Silico Profiling of CoV Molecules

As expected, most CoV-tested compounds match the
protease ligand chemotype - thus, unsurprisingly, many of
them were predicted to interact with the protease subpanel
within the set of 618 targets supported by the profiling
tool. Further on, the chemical space of CoV compounds is
rendered, in highlighting (blue) the compounds predicted
to hit one or several of the profile targets below (Table 2).
Targets associated to a same geographic zone on the UM#
1 are listed together (a maximum of four maps being
shown) along with representatives of the structures in the
highlighted zone. Albeit the display is limited to map nr. 1,
prediction of virtual hit status relied on a consensus vote of
all the seven UMs. This analysis implicitly allows to highlight
more of the characteristic chemotypes among CoV com-
pounds.

It is the south-western peptidomimetic area (Figure 6),
which unsurprisingly harbors most of the virtual hits
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Figure 4. Projection (UM#1) of active (<10 uM) inhibitors of SARS-CoV 3CL proteinase (blue) against the background of DrugBank
compounds. Representative structures (protease inhibitor: left/DrugBank reference: right) are shown next to the key map zones with

overlap.

associated to protease targets (calpains, thrombin, cas-
pases). Intriguingly, this is also the area where — by the
author’s knowledge unexpected - interference with the
histone deacetylase and respectively the signal transducer
and activator of transcription 3 (STAT3) is expected to
occur. An a posteriori literature search performed in order to
learn more about this class of enzymes and their potential
antiviral role revealed, however,?® that inhibition of SIRT1,
an NAD-dependent histone deacetylase, appeared to sig-
nificantly slow down replication of the Middle East respira-
tory syndrome virus. STAT3 is also cited® in the context of
antiviral research - however, its role is not yet fully
understood. Herewith, even though UM-based in silico
profiling is a simple, binary “active/inactive” predictor, in
this case it was helpful to highlight otherwise unexpected
hypotheses linking some of the CoV-assessed compounds
to putative action mechanisms.
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Matrix metalloproteases and caspase 3 also tend to
accept some few “south-western” peptidomimetics as
virtual hits but (Figure 7) draw the majority of predicted
binders from within the sulfonamide derivatives in the
north-eastern corner.

Some CoV-assessed compounds (Figure 8) display the
typical aromatic-spacer-cation pharmacophore of bioactive
amines - these were associated to GPCRs, but also calpain 1
and acetylcholinesterase. These chemotypes were observed
in inhibitors of the papain-like viral protease, but they are
of concern because they signal real risks of potential side
effects in mammals.

Last, some CoV compounds of rather diverse chemo-
types were predicted to inhibit monoamine oxidase B (MAO
B) and are illustrated in Figure 9 below. While MAO B is per
se not associated to any antiviral role, the key structural
element common to all highlighted species is the 1,2-
dicarbonyl fragment appearing in both isatin derivatives
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Figure 5. Pool of 1000 compounds predicted to inhibit the 3CL proteinase of the novel SARS-CoV-2, (red) mapped against the SARS-CoV

compounds (blue), within the DrugBank reference frame.

Table 2. List of in silico profiling targets for which at least 40 representatives of the CoV-assessed molecules were predicted to be active
“virtual hits”, sorted by this number of virtual hits as given in the first column.

#Hits Target ID Target description

117 CHEMBL2581 Cathepsin D: Homo sapiens

115 CHEMBL4801 Caspase-1: Homo sapiens

109 CHEMBL3776 Caspase-8: Homo sapiens

102 CHEMBL2334 Caspase-3: Homo sapiens

96 CHEMBL204 Thrombin: Homo sapiens

20 CHEMBL3198 Acetylcholinesterase: Mus musculus

64 CHEMBL5800 Falcipain 2: Plasmodium falciparum

54 CHEMBL333 Matrix metalloproteinase-2: Homo sapiens

52 CHEMBL268 Cathepsin K: Homo sapiens

51 CHEMBL3891 Calpain 1: Homo sapiens

49 CHEMBL4026 Signal transducer and activator of transcription 3: Homo sapiens
48 CHEMBL233 W opioid receptor: Homo sapiens

47 CHEMBL2039 Monoamine oxidase B: Homo sapiens

46 CHEMBL325 Histone deacetylase 1: Homo sapiens

46 CHEMBL321 Matrix metalloproteinase 9: Homo sapiens

46 CHEMBL1741219 Short transient receptor potential channel 4: Mus musculus

44 CHEMBL4662 Proteasome Macropain subunit MB1: Homo sapiens

42 CHEMBL320 Muscarinic acetylcholine receptor M3: Rattus norvegicus

(top left structure) and ortho-quinones, whereas the in silico profiler to matrix metalloproteases). lsatins,*”

central-southern zone features coumarones and curcumin-
like acyclic polycarbonyl compounds (enol form preferred
here). Isatin derivatives are actually validated MAO inhib-
itors, so that the prediction concerning these are highly
likely correct (note that the isatin scaffold is also often
found in the north-eastern sulfonamides connected by the
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[31] [32]

curcuminoids®"” and chromanones*® are known for anti-
bacterial, antifungal, antimalarial® activities - all while
likely inhibiting MAOs - but to our knowledge there is no
causal link between these activities. The observation may
be purely anecdotical, but it has the merit to evidence the
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Figure 6. Chemical space zone (UM# 1) hosting most virtual hits against protease targets (not limited to the four cited above), and some

representative structures thereof.

presence of these putatively redox-active compounds
among the so far tested CoV libraries.

3.5 Quantitative Structure-Activity Class Relationships
Supported by Chemography

Projection of the small set of active and inactive binders to
SARS-CoV 3CL proteinase leads, irrespective of the used
UM, to rather clear-cut, discriminant landscapes where
actives and inactives tend to occupy distinct spots. This
separation is achieved “spontaneously”, by simple projec-
tion on the NB-compliant UMs. This is interesting, since
these “structure-activity” sets are highly problematic. First, it
is unclear to what extent the different dose-dependent
activity measures (K, 1C5;) compiled from different sources
into ChEMBL are directly comparable - to the point of
imposing a common cutoff of 10 uM as activity threshold.
But - if they were not comparable, the already small set
would have to be broken down into even smaller subsets,
no longer useful for landscape construction. Allowing for a
less rigorous definition of activity classes is the required
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price to pay for obtention of some sizeable structure-
activity class data set.

Cross-validation success may however depend on the
used map: as already shown,"®* each of these is based on
different initial molecular descriptors and hence incarnate
different points of view on NB. The 3CL proteinase has a
marked preference for map nr. 6 (0.72+0.02), the worst
being map nr. 5 (0.58 +£0.06). Thus, it can be concluded that
UMs are, unsurprisingly, Neighborhood Behavior-compliant
with respect to the activity of this viral enzyme, but
unfortunately, the very limited amount of data does not, at
this point, support the construction of robust QSAR models.
There is a clearly marked difference between separation of
classes achieved when projecting the entire set on the map
(corresponding to BA>0.85, in all cases, Figure 10) and the
rather modest cross-validation performances. It reflects that
many compounds are singletons: often unique of their kind
in their chemical space zone. Thus, when left out during
cross-validation, there are no relevant analogues in the 4/5
serving to train the landscape: the compound will be
projected in a blank spot, and its activity will be inferred on
hand of landscape nodes that are too remote to return an
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Figure 7. Chemical space zone (UM#1) of sulfonamide derivatives predicted to bind matrix metalloproteases and caspase 3, respectively.

meaningful prediction. There is no point in trying to
develop machine-learned structure-activity models on such
datasets - they would only achieve an overfit (learning
individual items “by heart”).

3.6 Anti-SARS-CoV-2 “Hits” from RP-based Screening of
ZINC

A pool of potentially novel compounds to be tested, in
priority, against SARS-CoV-2 has been extracted from ZINC,
in absence of explicit structure-activity data against the
virus in cellular or in vivo tests, or against any of its proteins.
The above-mentioned SARS-CoV 3CL proteinase set is (a)
too small, (b) uses a not very rigorously defined activity
label and (c) is not necessarily extrapolable to SARS-CoV-2.
Thus, the most rational approach in our opinion was to
extract ZINC compounds characterized by the relevant RPs
selected for each map - a broader scope, bound to include
many inactive compounds, but not at risk of returning only
very close analogs of SARS-CoV compounds that may prove
to be inactive against SARS-CoV-2. Relevant RPs defining
the Relevant Antiviral Space (RAS) on each map included,
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each, between 12 (maps 1 and 4) and 29 (map 5) of RPs
occurring at least four times in the SARS-CoV library, and
between 4 (map 4) and 8 (maps 1, 2 and 5) patterns seen at
least twice in the DrugBank antiviral pool.

The RP string of an “ideal” hit should, for each of the
maps, be among the selected ones. Such hits residing in all
the seven RAS, are robust antiviral candidates, since
consensually “voted” as such by all the seven independent
and complementary maps. At the opposite end, com-
pounds systematically outside of the RAS on each map are
void of interest, or else incarnate a fully novel chemotype/
action mechanism that cannot be foreseen on the basis of
the current structure-activity information. Interestingly, only
two ZINC compounds were positioned within the RAS of all
the seven maps, further two were six-fold and two more
were five-fold RAS members. Further 385 compounds were
within the RAS of four maps. This threshold of at least four
RAS memberships out of seven emerges as the natural
cutoff to select the list of anti-SARS “hits” — at 3, the hit list
length would already exceed 50 K. The request for consen-
sual presence in the RAS for as many maps as possible is a
very selective filter of ZINC candidates. Interestingly and
somehow deceivingly - but not unexpectedly - five of the
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Figure 8. Compounds featuring the “bioactive amine-like” pharmacophore are unsurprisingly predicted to interact with GPCRs and cation-

binding enzymes.

six molecules present in 5, 6 and 7 RAS, and six of those
with 4 RAS memberships were actually not new, but
members of the RAS defining pool (SARS-CoV and Drug-
Bank), also available in ZINC. The list of 380 “novel” selected
ZINC structures, together with associated ZINC ID codes, is
provided as Supplementary Material, together with the list
of the eleven “rediscovered” chemical entities.

Chemical space occupancy of the entire anti-SARS “hit”
list of 391 compounds (red) is depicted in the left-hand plot
of Figure 11, on UM#1, against the background (blue) of the
RAS-defining compound pool, whilst the right-hand land-
scape therein features the ZINC docking hits"” in red,
against the same background. There are 240 out of the 391
compounds in the RAS of map nr. 1 - by definition, these
will overlap with RAS-defining background compounds. The
remaining, out of the RAS of map 1, may or may not
overlap with the RAS-defining compounds (the RAS is
defined only by the recurrent RPs within the blue
population). Thus, it is expected to observe a significant
degree of overlap of the hits with the current patrimony of
SARS-CoV and DrugBank compounds, to a much higher
degree than the one achieved by docking hits. It is unclear
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how much of the discrepancy is driven by the peculiarities
of the recently crystallized SARS-CoV-2 proteinase — an
information not available to RP-driven virtual screening. The
latter is obliged to rely on the hypothesis that anti-SARS-
CoV-like and DrugBank reference-like molecules have so-far
the best chances to reveal themselves actives against SARS-
CoV-2. Docked compounds clearly outside the background
chemical space are perhaps riskier, but potentially more
rewarding: if active, they might open the way to novel
antiviral compound series. Nevertheless, the ZINC “hits”
highlighted in the Figure 11 below are quite diverse, albeit
some of the previously mentioned chemotypes can indeed
be observed: bioactive amine-like compounds, sulfona-
mides. The ZINC hit collection is however relatively poor in
terms of compounds of the complexity of peptidomimetics
- perhaps because (a) these are rather sparsely represented
in ZINC and (b) because, given the complexity of these
molecules spanning a significant part of the map, they tend
to have rather distributed and unique responsibility
patterns - which therefore were not occurring often
enough to enter the RAS definition. Pending experimental
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Figure 10. Activity class landscapes for SARS-CoV 3CL proteinase (obtained by projecting the full sets), shown on three out of seven UMs.

validation will likely highlight the pros and cons of these
very different approaches.

A dedicated web page (http://infochim.u-strasbg.fr/
onlineGTM/projectcoronahome.php) was designed to host
the seven interactive UM landscapes of the joint compound
pool combining SARS-CoV-tested molecules from ChEMBL
with the antiviral species from DrugBank. Alternatively,
external users may predict whether their molecules of
interest reside in the RAS of these seven maps, by accessing
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the QSAR property prediction menu of http://infochim.u-
strasbg.fr/webserv/VSEngine.html, and selecting “Corona-
ChemSpace” as property to predict (link also available from
the maps homepage above). Unfortunately, for technical
reasons it is not (yet) possible to plot user-supplied,
predicted compounds on interactive maps.
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Figure 11. Left, the entire anti-SARS-CoV “hit” list of 391 compounds (red) is depicted on UM# 1, against the background (blue) of the RAS-
defining compound pool (SARS-CoV + DrugBank), with some representative ZINC hits linked to their residence areas. The right-hand
landscape features the ZINC docking hits in red, against the same background.

4 Conclusions and Future Directions

The actual emergency in the context of the SARS-CoV-2
crisis is successful drug repurposing,®¥ for ab initio drug
discovery and its lengthy phases will take 10+ years and
cannot contribute to a rapid jugulation of the current
outbreak - vaccine development being the rational alter-
native. Drug repurposing of known antivirals does (unfortu-
nately) not require high-throughput calculations or screen-
ing... because approved antivirals are preciously few.?
Clearly, mankind allotted sufficient research resources only
against threatening, widely spread and persistent viruses.
Until 2020, coronaviruses did not reunite all the three
conditions. For example, the Middle-East Respiratory Syn-
drome (MERS) did not vanish but has no pandemic
potential as it only spreads from camel to human: it is de
facto a neglected disease, which at only 70 entries in
ChEMBL did not even make it into the pool of herein
studied chemical spaces. If the long and costly drug
discovery campaign would have been pursued at high
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priority, although the SARS threat disappeared and MERS is
confined to remote rural regions of the world, we would
have certainly been in a better situation to address SARS-
CoV-2 on the basis of a larger and better suited portfolio of
repurposeable antivirals. Following long-time goals, not
driven by immediate danger but by the rational decision to
anticipate further threats, has never been a strength of
Homo sapiens - although it is the only mammal as
successful in spreading over Terra as viruses and bacteria.
However, chemography, particularly when based on
extremely polyvalent Generative Topographic Maps, is a
powerful method to highlight structure-activity relation-
ships and to intuitively get acquainted to compound
libraries, even while confronted with sparse experimental
data. In the present work, it served to get a grasp of the
medicinal chemistry so far directed at CoVs. The sketchy
exploration of CoV chemical space as witnessed by this
study will take a lot of time to reach the depth of
exploration of the antiviral space of persistent threatening
species (HIV, hepatitis B & C viruses, flu viruses, etc.).
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Nevertheless, some important insights originated from this
study.

So far, compounds tested against coronaviruses are, in
vast majority, either protease inhibitor-like or nucleotide/
nucleoside-like molecules. However, other chemotypes and
pharmacophores are also represented: bioactive amines
featuring the GPCR-specific aromatic ring-basic amino
group, potentially redox-active conjugated (poly)carbonyl
compounds (quinones, isatins, chromans) and small frag-
ment-like esters (likely covalent protease inhibitors) could
also be highlighted by this chemographic study.

Subsets of compounds associated to various viral genera
and species show rather distinct “signatures” concerning
the occupancy of chemical space, as monitored in terms of
cumulated responsibilities. CoV chemical space is seen to
be a subset of the much vaster chemical spaces explored
against lethal and persistent viruses.

The list of approved or pending compounds associated
to an antiviral effect in DrugBank helped annotating the
maps, and fixing specific residence areas of these special
compounds, some of which are currently under clinical
testing against SARS-CoV-2. This framework, combined to
the reference density distribution of CoV compounds,
helped to highlight some potentially interesting and some
purely coincidental structural relatedness between com-
pounds of different categories. Whereas the similarity of
Ribavirin (nucleoside mimic) to SARS-CoV 3CL-inhibiting
thioesters is probably coincidental, the similarity between
Umifenovir and SARS-CoV 3CL-inhibiting indole esters
raised the so-far never considered hypothesis that Umifeno-
vir might also act on viral proteases.

In silico profiling of CoV compounds against reference
biological targets with well-established structure-activity
landscapes on the UMs was helpful to highlight once more
the dominant protease inhibitor-like molecules - predicted
to interfere with the proteases amongst the reference
targets. Also, the less often occurring chemotypes (bioactive
amines, potentially redox-active compounds) were specifi-
cally highlighted by profiling results, as they were predicted
to “hit” targets (GPCRs, acetylcholinesterase, monoaminox-
idase B) which are not related to antiviral activity but might
signal in vivo side effect in mammals. However, profiling
unexpectedly suggested that some of these compounds
might be histone deacetylase inhibitors — a target that
seems to be associated to antiviral activity.

Unfortunately, at the current moment in time, the
existing data are insufficient to support robust predictive
structure-activity models for quick virtual screening of
electronic databases. This is true even for the SARS-CoV
strains of 2003. So far, a clear separation of actives from
inactives by simple cartography is observed for the SARS-
CoV 3CL proteinase, albeit the rigor of activity label
assignment had to be compromised in order to gather
enough data for quantitative activity landscape construc-
tion. Even so, modest set sizes render cross-validation
difficult and suggest that prospective predictions of such a
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landscape would not be quite effective, because of its
restrained applicability domain and the somehow fuzzy
definition of the “active” classes.

However, GTMs are an extremely efficient tool for
capturing structure-activity relationship, since they do not
need extensive data for model fitting. The ability to “host”
predictive activity landscapes of the herein used UMs for
hundreds of targets - including many reference proteases -
was already demonstrated. Therefore, even though quanti-
tative structure-activity data against CoV is so-far rather
sketchy, cartography could nevertheless be used as a fast
neighborhood-based filter to pinpoint chemical space
zones privileged by CoV compounds and quickly retrieve
in-there residing external molecules for testing. A set of 391
ZINC compounds were selected because they reside within
the responsibility pattern-based “Relevant Antiviral Spaces”
of four or more of the seven UMs. Unsurprisingly, the top
most consensual amongst them are already tested SARS-
CoV and/or DrugBank compounds, but the remaining 380
include quite diverse molecules. Interactive landscapes
visualizing the RAS on each map, together with the under-
lying reference molecules were rendered publicly accessible
at  http://infochim.u-strasbg.fr/onlineGTM/projectcoronal.
php, while prediction of whether user-submitted molecules
fall within the RAS of these maps can be achieved on the
public virtual screening server http://infochim.u-strasbg.fr/
webserv/VSEngine.html, by selecting CoronaChemSpace as
property to predict in the QSAR property predictor tool.

This could be an admittedly imperfect, but nevertheless
effective and very fast way to (pre)screen for anti-SARS-CoV
agents, or more broadly, antiviral agents. Implicitly, anti-
SARS-CoV compounds are the so-far best working hypoth-
esis to define an anti-SARS-CoV-2 compound library. The
only alternative to this is docking into homology-modeled
sites or protein-protein interfaces,®™ albeit 3D structure
elucidation of novel viral proteins is ongoing.?® Cartogra-
phy showed that recently published ZINC molecules
prioritized by docking"” according to their affinity score for
SARS-CoV-2 3CL proteinase are interestingly only partially
matching so-far tested CoV chemical space. This implies the
promise of paradigm-breaking discoveries (novel actives of
radically new chemotypes) but also a high degree of failure
in screening.
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Supplementary Material

A .tar file archiving SMILES and various information for all
publicly available subsets discussed here is provided. Upon
unpacking, it will create six directories: “spec”, "gen”,
“DrugBank”, “ZINCVS” and eventually “SARS_coronavirus_
3 C-like_proteinase” corresponding to the SARS protein
subset. In the latter, file “ref.smi_pos_act” relies compound
SMILES to a local identifier in column 2 and the activity
label in column 3 (1 - inactive, 2 - active). In the former
two, subsets by species and genus respectively are provided
— sets pertaining to coronaviruses are separately stored in
subdirectories spec/corona and gen/corona. In “DrugBank”
the file “ref.std.smi_name_id_app_org” contains SMILES,
name, a local ID, approval status and organism name for
the 130 DrugBank antivirals. “ZINCVS” contains the “novel”
and “rediscovered” hits retrieved by the RP-based virtual
screen.

Last but not least, additional information and statistics
about the text mining of ChEMBL records are provided in a
separate PDF file.
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