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Abstract

Nuclear morphological features are potent determining factors for clinical diagnostic

approaches adopted by pathologists to analyze the malignant potential of cancer cells. Con-

sidering the structural alteration of the nucleus in cancer cells, various groups have devel-

oped machine learning techniques based on variation in nuclear morphometric information

like nuclear shape, size, nucleus-cytoplasm ratio and various non-parametric methods like

deep learning have also been tested for analyzing immunohistochemistry images of tissue

samples for diagnosing various cancers. We aim to correlate the morphometric features of

the nucleus along with the distribution of nuclear lamin proteins with classical machine learn-

ing to differentiate between normal and ovarian cancer tissues. It has already been eluci-

dated that in ovarian cancer, the extent of alteration in nuclear shape and morphology can

modulate genetic changes and thus can be utilized to predict the outcome of low to a high

form of serous carcinoma. In this work, we have performed exhaustive imaging of ovarian

cancer versus normal tissue and developed a dual pipeline architecture that combines the

matrices of morphometric parameters with deep learning techniques of auto feature extrac-

tion from pre-processed images. This novel Deep Hybrid Learning model, though derived

from classical machine learning algorithms and standard CNN, showed a training and vali-

dation AUC score of 0.99 whereas the test AUC score turned out to be 1.00. The improved

feature engineering enabled us to differentiate between cancerous and non-cancerous sam-

ples successfully from this pilot study.

Introduction

Ovarian malignancy is the 8th leading cause of cancer mortality among women, the 7th lead-

ing cause of cancer diagnosis worldwide, and the 3rd most common women’s cancer in India
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[1]. GLOBOCAN predicts a 56% increase in ovarian cancer incidence worldwide by 2050- and

the majority (75%) of cancers are still diagnosed in late stages [2]. Multiple studies have shed

light on the close association between lamin proteins and different types and classes of ovarian

cancer. Capochichi et al. have elucidated a reduced expression of lamin A protein in epithelial

ovarian carcinoma due to its degradation of the protein by caspase 6 in ovarian cancer cells

[3]. Interestingly enough, contradictory results emerged from comparative proteomic analysis

and immunohistochemistry analyses where lamin A expression was shown to increase in

advanced stages of ovarian carcinoma [4]. Furthermore, the scenario gets even more compli-

cated by the heterogeneous expression of lamin A/C within a population of tumor cells. Mor-

phological hallmarks of ovarian cancer cells with reduced lamin A/C level included gross

nuclear size aberration and onset of aneuploidy [5]. Nuclear lamins are type V intermediate fil-

ament proteins which form a thick meshwork or lamina underneath the inner nuclear mem-

brane (INM) thus imparting proper size, shape, and mechanical rigidity to the nucleus [6].

Lamins also provide a scaffold for the binding of several proteins and chromatin. Lamins are

associated with a wide range of nuclear functions like nuclear stability [7], genome organiza-

tion [8], protein interaction [9], DNA damage repair [10], intracellular signaling [11], and play

vital roles in replication [12], transcription [13], and splicing [14] as well. Lamins are mainly of

A and B types which are coded by LMNA, LMNB1/B2 genes respectively. In many tumor

types, lamin A/C levels are found to be elevated which in turn is associated with their aggres-

sive metastatic potential, which cannot be explained by retro-differentiation [15]. Rather,

increased levels of lamin A/C might play vital roles in tumor progression by helping the cells

overcome the mechanical stress. It may also help in the recruitment of DNA damage repair

proteins and thus resists DNA damage-induced cell cycle arrest. In either case, change in

expression levels of lamin A/C largely remains a reliable prognostic marker for different tumor

types and stages [16]. Being the major architectural protein of animal cell nuclei, lamins must

be playing a vital role in this alteration of size [17]. Loss of lamin or their mutations leading to

deformed nuclear morphology has been widely studied by different groups [6, 18, 19]. Interest-

ingly, the differential expression pattern of lamins in different cancers has also been docu-

mented from research across the world [20].

Recent findings have demonstrated methods to study nuclear morphologies in the light of

fluorescent imaging and deep learning [21]. The application of convolutional neural network

pipelines in cancer diagnosis and detection has already been widely recognized and reported

by different groups utilizing different technical and biological parameters. Currently, the rise

in life expectancy is a global concern that is widely being triggered by an increase in incidences

of age-related gynecological cancers [22]. Detection of cancer from histopathology images and

immunocytochemical staining is widely being implemented worldwide [23, 24]. On the other

hand, alterations in nuclear morphology have been acclaimed as hallmarks in various cancers

and are used majorly in pathology or diagnostic purposes by clinicians to verify the degree of

malignancy [25]. But these verifications based on manual observations are often cumbersome

and sometimes prone to error.Various parametric and non-parametric methods are already in

use for the diagnosis of various cancers [26, 27]. Several groups have reported deep learning

techniques to classify different stages or subtypes of ovarian cancer based on different tech-

niques and biological features [28, 29]. These rely on different classifiers based on differential

features due to a shift from the familiar genomic or proteomic sketch of the non-cancerous

counterpart. There are several methods to study alterations in various nuclear matrix proteins

which are already reported to be used for cancer diagnosis like BLCA4 (Bladder and urothelial

carcinoma protein 4) in bladder cancer [30], AR-V7 (Androgen Receptor splice variant 7) in

prostate cancer [31] and NMP 179 (Nuclear Matrix Protein 179) in cervical cancer [32]. But

these data were essentially non-parametric or in other words, not based on specific
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annotations of prognostic markers. Morphometric studies in the context of cancer have been

thus far evaluated in only a few other carcinomas but not in great detail in ovarian cancer.

Classical supervised machine learning algorithms have proved to produce great results with

many limited data as compared to Deep Neural Network (DNN) based approaches, especially

when we go for techniques like Boosting [33] and Bagging [34]. This assumption led us to

form our intuition that a Deep Hybrid Learner (DHL) will use an Encoder network to extract

low dimensional feature encodings from high dimensional raw images, and these encoded fea-

tures are later used by an ensemble learning-based classical machine learning algorithm to pro-

duce the final classification result. Based on this hypothesis, we have performed a pilot study

where we have utilized lamin-induced morphological changes of the nuclei as an important

input parameter for developing an advanced deep hybrid learning (DHL) architecture. This is

based on the calculated morphometric parameters as well as auto feature extraction from pre-

processed images by deep learning techniques. For the first time, we have introduced the use

of lamin A and B as specific markers for the classification of ovarian cancer. This in turn can

aid in pathological inspections for diagnosing ovarian cancer. Systematic analyses of cancerous

and non-cancerous samples were accomplished by confocal imaging. The images were de-

noised, sharpened, greyscaled, normalized, and augmented by a combination of operations

like rotation, zoom, height shift, horizontal flip, etc. before using as inputs in a 21 layered

CNN. The outputs were flattened and passed to classical machine learning algorithms. Mor-

phometric parameters (Area, Perimeter, Circularity, Eccentricity, Loop Length, Foci Distance,

Maximum Curvature, Normalised Curvature) of cancer and normal nuclei were taken as

inputs in a parallel pipeline feeding into the same architecture. The decision function was gen-

erated based on the maximum probability score between Adaptive boosting and deep learning.

The pattern of Learning curves, loss function, ROC-AUC, AUC-PR curves indicate the robust-

ness of the deep hybrid learning model with very low overfitting.

Materials and methods

Tissue sample collection

Formalin-fixed paraffin-embedded tissues from ovarian cancer patients were obtained during

frontline surgery at Tata Medical Center (TMC), Kolkata. We have obtained written consent

in the form of material transfer and research agreement from Tata Medical Center/Tata Trans-

lational Cancer Research Center Biobank for the Pilot Study on the regulation of lamin pro-

teins in High-Grade Serous Epithelial Ovarian Cancer (HGSC lamin study) IRB Ref No.: EC/

TMC/45/15

Immunohistochemistry

The paraffin-embedded blocks were cut into 4–5 μm sections and affixed onto glass slides. For

removal of paraffin, the slides were immersed in xylene (3�10mins) followed by immersion in

graded ethanol twice for 10 minutes in each (100%,95%,80%,70%), washed in ddH2O twice for

5 minutes each. The tissues were immersed in 10mM sodium citrate buffer (pH 6), placed in a

microwavable container, and heated at full power for 3 minutes and 80% power for the subse-

quent 12 minutes. After which the slide was allowed to cool gradually in the same buffer, fol-

lowed by rinsing with ddH2O twice for 5 minutes each followed by two rounds of wash in PBS

for 5 minutes each. The rest of the immunocytochemistry procedure is mentioned in a previ-

ous article from our lab [35]. Primary antibody dilutions for Rabbit Anti Lamin A antibody

[36, 37] (Sigma Aldrich L1293), Goat Anti Lamin B [38] (Santacruz sc-6217) antibody were

1:100 and 1:50 respectively. Secondary antibodies were conjugated with Alexa Fluor 488

(Green Fluorescence) and used at a dilution of 1:400.
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Image analysis and data presentation

Images were analyzed using ImageJ software (ImageJ bundled with 64-bit Java 1.8.0_112) [39].

Considering each nucleus as an ellipse, the equations used in the referred article [40] were fol-

lowed to derive the values of the morphometric parameters like area, perimeter, loop length,

circularity, eccentricity, foci distance, maximum curvature, normalized maximum curvature.

Histograms were generated using the ROOT data analysis framework (Version 6, Release 6.08/

06-2017-03-02) [41] which is an object-oriented C++ framework for large data storage, presen-

tation, visualization, and statistical analysis. Each field from every tissue sample contained

around 100 nuclei approximately. The length of the major and minor axes of each of the nuclei

was measured manually by ImageJ. Mean, Standard error of mean and Standard deviation for

the analysis of each parameter have been mentioned in the figure legends.

Pre-processing and standard scaling

Upon qualitative visual inspection, we found that the stained cells from the original images are

sometimes blurry due to non-uniform lighting effects. Hence, we hypothesized the need of

having a custom image processing procedure. This would minimize these noisy effects and

help the deep learning models to learn the key features effectively for the final classification.

So, we have analyzed and compared the statistical properties of our dataset and with the Ima-

geNet data. As fundamentally our images are different from ImageNet images, the raw RGB

image quality was evaluated initially before going for pre-processing, to check how the images

are different from ImageNet images (S1 Table). Although Deep Learning algorithms are

believed to apply auto feature extraction methods, we wanted to additionally transform the

raw data and make it easier for the model to unravel key features. Using morphological ellipti-

cal image filters, morphological masks were formed around the nuclei, and then using Gauss-

ian Blur filter and pixel weights addition, the sharpened version of the images were obtained.

Then the images were grey-scaled and normalized before feeding them into the deep learning

model. The morphometric parameters used in this study have different units thus the input

variables are of various scales. So, standardization of the scale is required to avoid generaliza-

tion errors. Standard scaling of the data includes rescaling the distribution values by subtract-

ing the mean and then dividing by standard deviation so that the distribution shifts to a mean

of 0 and a standard deviation of 1 [42].

Details of adaptive boost over morphometric data

Following standard scaling of the morphometric data and splitting the dataset into 75:25 train-

ing: test ratio, three classifiers (Adaptive Boosting Classifier, Random Forest Classifier [43],

and Decision tree Classifier [44]) was used to generate probability scores to predict the data as

cancerous or non-cancerous. Probability scores from the Adaptive Boosting Classifier were

used as final outputs from Pipeline 1 [45].

Controlled data augmentation

We used an image data generator to create millions of augmented images of a high perceptual

quality that combine the properties and appearance of a different image, resulting in increased

overall training efficiency [46]. A combination of rotation, zoom, width shift, height shift, hori-

zontal flip, the vertical flip was implemented to augment the training dataset on the fly during

the training of neural network. This resulted in a robust, reliable, generalized outcome. To fur-

ther minimize any effect of overfitting due to our small dataset, we have applied controlled

data augmentation techniques like slight rotation by 40 degrees, minimal zooming by 0.2%,
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slight width, and height shift by a factor of 0.2, horizontal and vertical mirroring. This essen-

tially helped us to virtually expand our training dataset and further reduce overfitting effects.

The controlled data augmentation is applied for all the experimentation approaches

mentioned.

Deep hybrid learning model architecture

The entire Deep Hybrid Learning architecture used for this research work started with the

pre-processing layer, and then the pre-processed images were passed through the model input

layer. Deep Hybrid Learner utilized a Deep Convolutional Neural Network Layer for feature

extraction. In our research, we have used a 21 Layered CNN which was inspired from Incep-

tion Net v3 [47] architecture. The CNN part consisted of a series of Incept layers and Squeeze

Layers which are similar to grouped convolution layers with specific hyper-parameters and the

nested Conv2D layer as illustrated in Fig 1. Input from image morphometric parameters are

fed into the classifier through pipeline 1 as discussed previously. Details of each layer are illus-

trated in the network diagram provided in S1 Fig. The overall scheme of the architecture used

in this project is depicted in Fig 1.

Comparison of DHL with other deep learning approaches

In this research work, we have compared the efficacy of Deep Hybrid Learning with both

XGBoost [33] and Random Forest variant [43], with a conventional Deep Neural Network

(without transfer learning and having the same 21 layered CNN as DHL), DenseNet201 [48]

Fig 1. The overall scheme of the algorithm.

https://doi.org/10.1371/journal.pone.0261181.g001
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with transfer learning [49], InceptionNet v3 [47] with transfer learning [49], ResNet50 [50]

with transfer learning [49] and VGG16 [51] with transfer learning [49].

Decision function based on stacking of deep hybrid network and adaptive

boosting

Probability scores from adaptive Boosting and Machine Learning classifiers were derived and

the Decision function was based on the Maximum probability score of cancerous nuclei pre-

dicted correctly using Adaptive Boosting and that of cancerous nuclei predicted correctly

using deep learning.

Decision = Max (Prob (Cancerous nuclei Predicted Correctly using Adaptive Boosting),

Prob (Cancerous nuclei Predicted Correctly using Deep Learning))

Results and discussion

Distinct nuclear morphology of ovarian cancer tissues

FFPE blocks of normal and diseased (ovarian cancer) tissues were obtained from Tata Medical

Center following the ethical guidelines. One part of the tissue samples were classified by the

pathologists to be cancerous and non-cancerous by independent, unbiased methods and regu-

lar standards. Another part was stained with lamin A, and lamin B following proper antigen

retrieval technique and imaged under the confocal microscope. One representative image

from each of the tissue types has been shown in Fig 2. A visibly prominent enlargement of the

cancer nuclei was observed with respect to the normal nuclei in both lamin A and lamin B-

stained tissues.

Morphometric classification, standard scaling, and adaptive boosting

Careful investigation revealed that the hallmark of the diseased tissues was characterized by

prominent nuclear enlargement as reported earlier [52]. We quantified these changes as men-

tioned previously. With these sets of images, a gross morphometric analysis was performed

based on the distribution of lamin A and lamin B proteins in the nucleus. Histograms were

generated for each of the parameters using the ROOT data analysis framework [41] where the

X-axis denotes the normalized number of nuclei with respect to the total number of nuclei cal-

culated corresponding to the defined parameter and Y-axis denotes the measure of the param-

eter. It was evident from the plots (Fig 3), that the perimeter of most of the cancer nuclei from

the total population exhibited an increase of 55–62% compared to most of the normal nuclei

for both lamin A and lamin B-stained tissues (Fig 3A and 3B). A similar phenomenon was

observed while measuring the area, where the area of most of the cancer nuclei was more than

twice the area of most of the normal nuclei in the population (Fig 3C and 3D). Both the obser-

vations indicated an increase in the size of the cancerous nuclei. However, in the cancer nuclei,

around 3% and 12% shifts from the normal were observed in the circularity and eccentricity

values respectively which was not that significant denoting no prominent change in the shape

(S2A1, S2A2, S2B1, S2B2 Fig). Eccentricity is a focal length (Distance from the center to one

focus) and semi-major axis dependent variable. Still, to further validate, foci distance (2�Focal

length) was also measured where the shift associated with eccentricity was supposed to get

doubled according to the formulae. We could find a small increase in the Foci distance values

of the cancer nuclei in comparison to the normal nuclei, which denotes an increase in the dis-

tance between the foci thereby approaching an elliptical nature (S2C1 and S2C2 Fig). Another

common parameter in ellipse geometry is loop length, which is a focal length dependent vari-

able, hence a rise was evident in the loop length of cancer nuclei denoting an increase in size
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once again (S2D1 and S2D2 Fig). Next, to study the change in the surface architecture, maxi-

mum curvature and normalized curvature were measured; but no significant shift was

observed to deduce a conclusion (S2E1, S2E2, S2F1, S2F2 Fig). As we all know, that tumor

microenvironment harbors a heterogeneous cell population including cells at different stages

of malignancy and some normal cells too, so the analysis spanned a large range of parametric

measures to account for all the nuclei in the population. Overall, these measurements con-

firmed prominent alteration in morphology in the cancer nuclei or the nuclei approaching

malignancy with respect to the normal nuclei and gave a gross idea regarding the direction of

change. This experiment concluded that morphometric alteration in form of altered distribu-

tion of lamins in nuclei could potentially be used as signatures to classify cancer and normal

nuclei or to study the progress towards malignancy.

Each parameter from the morphometric dataset of cancer and normal lamin A and lamin

B-stained nuclei have been concatenated and plotted as histograms to evaluate the distribution

pattern. A normal distribution is obtained upon Standard Scaling. Each of the morphometric

Fig 2. Representative images of confocal micrographs showing the distribution of lamin A and lamin B in tissues from Ovarian cancer and Normal Ovary.

Images of Ovarian Cancer and Normal ovarian tissue nuclei have been marked in their respective columns. Propidium Iodide staining of the nuclei is shown in the

first panel containing red channel images. Lamin A and lamin B distributions respectively have been shown in the second panel of green channel images. Merged

images of both channels have been shown in the third panel. Magnification: 63X. Scale Bar: 35 μm.

https://doi.org/10.1371/journal.pone.0261181.g002
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parameters used in the study is following approximate normal distribution (S3 Fig). As the

area was the most important feature among the eight morphometric parameters as determined

by the gini index, it was chosen to be the output variable. A Correlation Matrix was generated

to analyze how the output variable is correlated with the other parameters. In order to better

represent the data on the cells with multidimensional attributes, we used PCA (Principal com-

ponent analysis) [53] such that the correlated dimensions are automatically removed (S4 Fig).

Three classifiers (Adaptive Boosting Classifier, Random Forest Classifier, and Decision tree

Classifier) with 5-fold cross-validation were used to generate probability scores. Accuracy

from AdaBoost, Decision Tree, and Random Forest classifiers were 90%, 80%, and close to

90% respectively. Probability scores from the Adaptive Boosting Classifier were used as final

outputs from Pipeline 1.

Data augmentation and pre-processing

We started our experiment with around 50,000 ovarian cancer and normal nuclei. The pre-

processing algorithm consisted of two parts–applying a segmentation mask based on the key

visual properties like area, perimeter, circularity, eccentricity, foci distance, loop length,

Fig 3. Histograms showing distributions of the normal and ovarian cancer nuclei based on different morphometric parameters obtained from

lamin A and B stained tissue sample images. The X-axis denotes the normalized number of nuclei with respect to the total number of nuclei

calculated. Y-axis denotes the measure of the parameter. (a) Comparative distribution of the number of normal (Mean±Std error of mean:17.82±
0.3032) (Std Dev:5.574±0.2144) and ovarian cancer (Mean±Std error of mean:27.59± 0.333) (Std Dev:6.626±0.2354) nuclei based on Perimeter

values acquired from lamin A-stained tissues. (b) Comparative distribution of the number of normal (Mean±Std error of mean:16.11± 0.1259) (Std

Dev:3.352±0.08) and ovarian cancer (Mean±Std error of mean:26.21± 0.3628) (Std Dev:7.814±0.2565) nuclei based on Perimeter values acquired

from lamin B-stained tissues. (c) Comparative distribution of the number of normal (Mean±Std error of mean:23.47± 0.7129) (Std Dev:13.11

±0.0541) and ovarian cancer (Mean±Std error of mean:51.62±1.153) (Std Dev:22.86±0.8153) nuclei based on Area values acquired from lamin A-

stained tissues. (d) Comparative distribution of the number of normal (Mean±Std error of mean:19.94± 0.316) (Std Dev:8.414±0.2234) and diseased

(Mean±Std error of mean:49.31± 1.234) (Std Dev:26.35±0.8725) nuclei based on Area values acquired from lamin B-stained tissues.

https://doi.org/10.1371/journal.pone.0261181.g003
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maximum curvature, and normalized curvature of the nuclei followed by image sharpening

techniques. In the first part, based on the Image Hue Saturation Value (HSV) and using a sen-

sitivity factor, the segmentation mask was created, which was subsequently made prominent

by the application of morphological closing operation with an elliptical kernel. The elliptical

kernel was used to adapt to the shape of the nuclei and capture the maximum possible relevant

information. The rectangular kernel was previously tested and it got no more than 93% accu-

racy. In the second phase, using Gaussian Blur and adding weights to the blurred image, we

ensured uniform sharpening of the pre-processed images with the segmentation masks and

converted the pre-processed images into a grey-scaled form so that the key visual features were

rendered more prominent and easier for the Deep Learning algorithm to unravel features.

Information from the background was completely removed to emphasize the morphological

properties of the nuclei. (Fig 4) The significance of pre-processing is highlighted by the fact

that the raw images used as training dataset resulted in only 71% accuracy which significantly

improved upon pre-processing.

Training a deep hybrid learner and validation

After the pre-processed images were acquired, we had to split the data into a training set and

validation set with a split ratio of 75:25. The training set was used to train the supervised binary

classification model and the validation set (Using 5-folds cross-validation techniques) was used

for hyper-parameter tuning to make sure that the model was not over-fitting on the training set

and remained generalized. For training a Deep Hybrid Learner, we first trained the 21 Layered

CNN which was used to extract features. We trained it for 250 epochs with a learning rate of

0.00025 and a batch size of 32. We have used Adam [54] as the optimizer and cross-entropy loss

as the loss function. We have elucidated the Model accuracy score, Model PR score, Model

AUC-ROC score, and Precision score recall score as the matrices for determining the fitness of

the algorithm (Fig 5A–5F). We observed from the learning curves that the training and valida-

tion AUC Scores gradually increased with training iterations or epochs and the maximum train-

ing score after 250 epochs were obtained as 0.998 and the validation score was obtained as

0.997. The model loss curve for the training and validation set gradually decreased with an

increase in epoch (Fig 5F), which was an indication that the model was learning gradually with

more training iterations. The absence of any statistically significant variance between training

Fig 4. Sequence of operations followed for pre-processing of the dataset. In the first part, a segmentation mask was applied based on the morphometric properties

followed by image sharpening to have the key features more visually prominent. In the second part, the sharpened image, which was obtained using Gaussian Blurring

and weight addition, was transformed to its greyscale version to improve the computational time of the model.

https://doi.org/10.1371/journal.pone.0261181.g004
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and validation loss indicated the absence of any over-fitting issues with very minimal false posi-

tives and false negatives shown in AUC-ROC and AUC–PR plots (Fig 6A–6D)

Model evaluation on test data

We compared performances of deep hybrid learning models with other models as mentioned

previously in the material and method section. In the transfer learning models, we used pre-

Fig 5. Model evaluation matrices: a. Model accuracy learning curve. b. Model AUC-PR learning curve c. Model AUC-ROC learning curve. d. Model precision

learning curve. e. Model recall learning curve f. Model Loss curve.

https://doi.org/10.1371/journal.pone.0261181.g005
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trained weights from ImageNet. The training, validation, and test dataset were the same for all

the approaches and epoch numbers, batch size was also consistent for all the approaches. Test

images were unknown to the model and the clinical details were not revealed to the person

performing the tests to ensure an unbiased validation and impartial selection of the accurate

model based on performance. Deep hybrid learners were found to be the best working models

for this specific problem (Figs 7 and 8). For this research work, the choice of the ideal model

architecture depended on two main criteria: Generalization and Efficiency. From the above

results we could see that the Deep Hybrid Learners (both Random Forest and XGBoost vari-

ant) showed almost consistent results for training, validation and testing phases. Also, we

found that the model was extremely efficient with low variance, as we observed that the AUC

scores on training validation and test dataset were 0.99, 0.99, and 1.0 respectively (Fig 8). The

conventional deep learning model trained from scratch without transfer learning seemed to

have high training scores, but it showed high variance on validation and test datasets as the

scores were much lower on validation and test set. Therefore, it indicated that the model was

overfitting on the training data, and it was not generalized, hence performing poorly on the

testing and validation dataset. This behavior of the model could be explained by our previous

hypothesis that the dataset used for this research work was not favorable for a conventional

deep learning approach, as it would require more training samples for the conventional model

to learn and improve generalization. Hence, more sophisticated and novel approaches like

Deep Hybrid Learning which uses CNN for feature extraction and classical machine learning

Fig 6. a. ROC-PR curve on Training set b. AUC-ROC curve on the Training set. c. AUC-ROC curve on the validation set. d. AUC-PR curve on the validation set.

https://doi.org/10.1371/journal.pone.0261181.g006
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Fig 7. Confusion matrices. In this research work we have compared the Deep Hybrid Learning with both XGBoost and Random Forest variant, with a conventional

Deep Neural Network (without transfer learning and having the same 21 layered CNN as DHL), DenseNet201 with transfer learning, InceptionNet v3 with transfer

learning, ResNet50 with transfer learning and VGG16 with transfer learning. ‘Normal’ and ‘Cancer’ has been denoted as 0 and 1 respectively in the confusion matrices.

1. Deep Hybrid Learning with Random Forest 2. Deep Hybrid Learning with XGBoost 3. Conventional Deep Neural Network Model 4. DenseNet201 with transfer

learning 5. ResNet50 with transfer learning 6. InceptionNetv3 with transfer learning 7. VGG16 with transfer learning.

https://doi.org/10.1371/journal.pone.0261181.g007

Fig 8. Comparison of model evaluation matrices.

https://doi.org/10.1371/journal.pone.0261181.g008
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algorithms for the final classification, were more efficient and robust for this type of micro-

scopic image dataset. We have even applied Transfer Learning [49] with more sophisticated

Deep Learning architectures like DenseNet201 [48], ResNet50, InceptionNetv3, VGG16 [51],

but the results obtained showed the presence of over-fitting, lack of generalization, and much

lower model efficiency than the Deep Hybrid Learners. One plausible reason could be that

these transfer learning models were trained using pre-trained weights from ImageNet images,

which were significantly different and might have a significant statistical difference from

microscopic images, making the transfer learning approach ineffective in this case. Thus we

can conclude that our Deep Hybrid learning approach was successful and much better per-

forming than other deep learning algorithms with these types of microscopic image datasets

for automated detection of ovarian cancer.

Deep hybrid learning

The trained and hyper-parameter tuned model performance on the test set proved how well

the model was generalized and did not have any unwanted bias. Now, as an imbalanced dataset

is not suitable for classical deep learning models for building supervised classifiers with high

accuracy and generalization, we came up with the Deep Hybrid Learning (DHL) algorithm,

which utilized Deep Convolutional Neural Network to extract features from the pre-processed

samples and uses the extracted feature vector with classical Machine Learning algorithms like

Random Forest [55] and XGBoost [33] to build the final classifier. Of late Ensemble learning

techniques like Boosting algorithms are known to work well with high dimensional data, as

boosting techniques are known to combine weak learners to identify the “hard” data points

and combine the weak learners to form a very strong and efficient classifier [56]. Similarly,

Ensemble methods like Random Forests work very well on smaller but high dimensional data-

sets for solving binary classification problems and have been known to produce generalized

results [55]. The results obtained using the Deep Hybrid Learning approach turned out to be

extremely promising (Fig 8) and so far, have performed much better than any other conven-

tional approaches and are comparable to or even better than human-level performance for this

classification problem.

Summary and conclusion

We have demonstrated nuclear A and B-type lamins as diagnostic markers for ovarian cancer

thereby modulating nuclear morphology. In other words, their altered expression or distribu-

tion acts as a function of nuclear shape and size and has been used as a tool to detect and diag-

nose malignancy in the context of ovarian cancer. Confocal images of tissue samples

elucidated a significant increase in area and perimeter in the ovarian cancer nuclei which is in

good agreement with the fact that the cell nuclei in the ovarian tumor tissues are mostly associ-

ated with an enlargement in size compared to the cell nuclei of normal tissues. Progressively,

we increased the sample size and attempted to evaluate the possibility of quantitative feature

extraction of nuclei and characterization by projecting nuclear morphology as a potential tool

to distinguish normal and ovarian cancer tissues by introducing a novel deep hybrid learning

network. We first focussed on extracting the pattern of the images and then moving a step fur-

ther, noise reduction was performed so that it becomes convenient for the model to distinguish

between cancer and normal tissue images. Pre-processing the images using various advanced

mathematical and morphological techniques, like sharpening, masking, smoothening, etc.

enhanced the differentiating pattern of the images so that the neural model could easily iden-

tify them with utmost precision. This was followed by advanced techniques of data augmenta-

tion to create all sorts of simulated practical tests by training the deep neural network model
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over the microscopic image dataset, using the Deep Hybrid learning approach, resulting in a

much more reliable system than standard CNN.

Findings and significance

But, it’s a challenging problem to custom tailor the process of feature extraction to classify can-

cer from microscopic image datasets with fastness and precision. On the other hand, modern

techniques of deep learning have already proven their superiority to perform image classifica-

tion with minimal pre-processing and in many cases, it has outperformed domain experts in

classifying images. Thus, we decided to use Deep Learning approaches based on CNN (Convo-

lutional neural network) for our study. For this specific problem, we propose that the distribu-

tion of lamins and size of the nucleus are important factors to classify images with cancer and

normal nuclei. Hence, we trained a deep learning network specifically crafted denovo for the

particular challenge of classifying ovarian cancer. Different types of augmentation bring

almost all possible kinds of representation of the images resulting in a much higher possibility

that a real-time test image would be very similar if not the same and would be having a greater

probability to be classified with perfection in real-time. Also, the dropout used here was 0.20

which is a regularization technique used for preventing the overfitting of models. We have

introduced a combination of classical machine learning algorithms (XGBoost, SVM, Random

Forest) with standard CNN and designed a state-of-the-art deep hybrid network. We created a

completely automated pipeline architecture consisting of pipelines 1 and 2 where processing

images to predicting cancer or non-cancer would be performed within seconds. The strength

of our method lies in the fact that the model showed 99.8% training accuracy and 99.7% valida-

tion accuracy in distinguishing normal and ovarian cancer cell nuclei and with our feedback

mechanism the network could be retrained with wrong predictions made to further improve

the accuracy. The novelty of this method is the stringency of prediction, which is magnified

due to the incorporation of morphometric parameters of the nuclei along with random pre-

processed images. It is emphasized that our model outperformed other transfer learning mod-

els like ResNet50, AlexNet, VGG-16, DenseNet. Furthermore, the metric scores obtained were

much better than other state-of-the-art Deep Learning architectures like DenseNet201 and

even when the approach of transfer learning failed. One of the main reasons for Deep Hybrid

Learning to be successful is because we had replaced the final fully-connected layers with a

machine learning (typically ensemble learning) algorithm, which made the overall model effi-

cient and generalized.

Limitations

Nonetheless, we were restricted to limited sample size as a part of the pilot project. Furthermore,

the samples were collected from one institution catering to the specific demography of patients.

Although it sufficed our purpose, it would be desirable to increase the sample size as well as to

adopt a multi-institutional approach for diversity in the future. Also, for the initial feature extrac-

tion, we had used a custom CNN. But based on the results obtained from the conducted experi-

ments, we can conclude that our framework is robust and efficient and worked perfectly well

within the tenets of the pilot project. So, it is certain that with sufficient images in the future this

would outperform other models and will be able to classify not only between normal and cancer

nuclei but will also be able to predict the degree of risks of benign nuclei to become cancerous.

Current status

The strength and future research direction for using AI for cancer prediction and early diagno-

sis should be concentrated on cancers that currently do not have a clear natural history
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identified and therefore a screening strategy. We plan to extend our work in larger datasets

and especially in diverse chemotherapy response categories; especially supplementing chemo-

therapy response score (CRS) after neoadjuvant chemotherapy and interval debulking surgery,

where the CRS2 score is the grey zone and requires better biomarkers for prognostic stratifica-

tion. We predict a large scope for our approach of interpreting alterations in cellular architec-

ture in the early detection and screening strategies in ovarian cancer. The majority of HGS

(High grade serous) ovarian cancers arise from fallopian tubes; many women undergo fim-

briectomy for sterilization purposes as well as a prophylactic measure for prevention of ovarian

cancer in high-risk individuals i.e., BRCA mutations. It would be interesting to study whether

alteration in the nuclear architecture in the fimbriae/ovary could be one of the early predictors

for developing cancer. More importantly, this may be used as a prognostic marker in addition

to the standard immunohistochemistry and histology in ovarian cancer if a clinical correlation

can be shown in future studies and that remains one of our target research strategies in the

future including application in other women cancers. A lot of studies are trying to detect pre-

cursor lesion signatures like STIC (serous tubal intraepithelial cancer) and p53 signature in

ovarian/tubal cancer.

Future scope

As a future scope, we would try to test the framework on larger sample size and in a multi-

institutional setting. The ultimate goal would be to replace the custom CNN with custom

transformer architecture to obtain more contextual information from the data and evaluate if

the custom transformer architecture version is giving better results.

Supporting information

S1 Fig. Network diagram. For the Incept Layer, it utilized the number of filters for the

Conv2D sub-layer and another hyper-parameter for the number of filters for the Left and

Right Conv2D sub-layer as input. In both the Conv2D sub-layers, after tuning, a learning rate

of 0.1 and an activation function of Leaky ReLu were used to learn the non-linear relationships

in the underlying high dimensional data. For the initial Conv2D layer, we have used a filter

dimension of 5x5 and strided convolution with stride as 2. For Left Conv2D a filter size of 3x3

was used and for the Right Conv2D, a filter size of 5x5 was used. Finally, both the left and right

conv2d sub-layers were concatenated and passed to the next layer. The Squeeze layer followed

the same structure as Incept Layer. The learning rates and the activation function used in the

sub-layers were the same, the only difference being with the filter dimensions. For the initial

Conv2D sub-layer, the dimension was (1x1) with stride 1 while for Left Conv2D & Right

Conv2D the filter dimensions were (1x1) and (3x3) respectively. Like the Incept layer, the Left

and the Right Sub-layers were concatenated and passed to the next layers. After a series of

Incept and Squeeze layers we used another Conv2D layer with 64 filters and each filter was of

dimension 3x3, with an activation function of Leaky ReLu with a learning rate of 0.1. A combi-

nation of dropout and L2 regularization was used to reduce the chances of overfitting. Finally,

after all the convolution layers which were used to extract the features, we flattened the output

and passed the flattened output to classical Machine Learning algorithms like XGBoost and

Random Forest for the final classification part.

(DOCX)

S2 Fig. Histograms showing distributions of the normal and ovarian cancer nuclei based

on different morphometric parameters obtained from lamin A and B stained tissue sample

images before and after pre-processing. The X-axis denotes the normalized number of nuclei
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with respect to the total number of nuclei calculated. Y-axis denotes the measure of the param-

eter. A. 1. Comparative distribution of the number of normal (Mean±Std error of mean:0.8796

± 0.005994) (Std Dev:0.1285±0.00495) and ovarian cancer (Mean±Std error of mean:0.8452±
0.006767) (Std Dev:0.1347±0.004785) nuclei based on Circularity values acquired from lamin

A stained tissues. A. 2. Comparative distribution of the number of normal (Mean±Std error of

mean:0.9309± 0.003013) (Std Dev:0.8024±0.002131) and ovarian cancer (Mean±Std error of

mean:0.8974± 0.005269) (Std Dev:0.1135±0.003726) nuclei based on Circularity values

acquired from lamin B stained tissues. B. 1. Comparative distribution of the number of normal

(Mean±Std error of mean:0.7067± 0.01169) (Std Dev:0.2144±0.008269) and ovarian cancer

(Mean±Std error of mean:0.7885± 0.008241) (StdDev:0.164±0.005827) nuclei based on Eccen-

tricity values acquired from lamin A stained tissues. B. 2. Comparative distribution of the

number of normal (Mean±Std error of mean:0.6348± 0.008105) (Std Dev:0.2147±0.005731)

and diseased (Mean±Std error of mean:0.7076± 0.008841) (Std Dev:0.19±0.006252)nuclei

based on Eccentricity values acquired from lamin B stained tissues. C. 1. Comparative distribu-

tion of the number of normal (Mean±Std error of mean:5.204± 0.1648) (Std Dev:3.03±0.1165)

and ovarian cancer (Mean±Std error of mean:8.942± 0.1729) (Std Dev:3.441±0.1223) nuclei

based on Foci Distance values acquired from lamin A stained tissues. C. 2. Comparative distri-

bution of the number of normal (Mean±Std error of mean:3.934± 0.07391) (Std Dev:1.968

±0.05226) and diseased (Mean±Std error of mean:7.414± 0.1738) (Std Dev:3.744±0.1229)

nuclei based on Foci Distance values acquired from lamin B stained tissues. D. 1. Comparative

distribution of the number of normal (Mean±Std error of mean:12.17± 0.3004) (Std Dev:5.523

±0.2124) and ovarian cancer (Mean±Std error of mean:20.01± 0.3152) (Std Dev:6.282±0.2232)

nuclei based on Loop Length values acquired from lamin A stained tissues. D. 2. Comparative

distribution of the number of normal (Mean±Std error of mean:9.869± 0.1275) (Std Dev:3.396

±0.09018)and diseased (Mean±Std error of mean:17.5± 0.3255) (Std Dev:7.011±0.2302)nuclei

based on Loop Length values acquired from lamin B stained tissues. E. 1. Comparative distri-

bution of the number of normal (Mean±Std error of mean:1.1015± 0.03876) (Std Dev:0.7105

±0.02741) and ovarian cancer (Mean±Std error of mean:0.7776± 0.02854) (Std Dev:0.5651

±0.02018) nuclei based on Maximum Curvature values acquired from lamin A stained tissues.

E. 2. Comparative distribution of the number of normal (Mean±Std error of mean:0.797±
0.01755) (Std Dev:0.4672±0.01241)and diseased (Mean±Std error of mean:0.6361± 0.0222)

(Std Dev:0.4782±0.01571)nuclei based on Maximum Curvature values acquired from lamin B

stained tissues. F. 1. Comparative distribution of the number of normal (Mean±Std error of

mean:0.5354± 0.01359) (Std Dev:0.2496±0.009609) and ovarian cancer (Mean±Std error of

mean:0.4402± 0.01048) (Std Dev:0.2086±0.007414nuclei based on Normalized Curvature val-

ues acquired from lamin A stained tissues. F. 2. Comparative distribution of the number of

normal (Mean±Std error of mean:0.6323± 0.008435) (Std Dev:0.2246±0.005964)and diseased

(Mean±Std error of mean:0.5489± 0.01401) (Std Dev:0.2243±0.007362) nuclei based on Nor-

malized Curvature values acquired from lamin B stained tissues.

(DOCX)

S3 Fig. All parameters are showing Gaussian distribution: Eight parameters from the mor-

phometry dataset of the lamin A and B stained ovarian cancer and normal nuclei have

been concatenated and plotted as histograms and all of them are showing approximate

Gaussian distribution.

(DOCX)

S4 Fig. Correlation matrix: Correlation matrix to analyze how the output variable is corre-

lated with the other parameters. PCA was used further to minimize correlation.

(DOCX)
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S1 Table. Fundamental image quality analysis.
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S2 Table. Model layers and dimensions.
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