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Background: Static nailfold capillary parameters are important parameters that reflect the health of the 
human body. Disease onset or progression is often accompanied by changes in the physiological parameters 
of the nailfold. Hence, the physiological parameters of the nailfold are closely related to the study of disease, 
with their automated and high-precision measurements playing a crucial role in these studies. Currently, 
manually measured values of the nailfold’s parameters are the gold standard; however, they are time 
consuming and labor intensive, making the development of automated measurement methods essential. Most 
automated measurement methods use skeleton lines; however, current skeleton-thinning algorithms have 
non-single pixels and redundant branches that lead to reduced measurement accuracy. This study proposes 
a single-pixel and non-redundant branching-based skeleton line extraction algorithm for nailfold capillaries, 
which is then applied to nailfold static parameter calculations to improve accuracy. 
Methods: The algorithm includes deletion and restoration templates combined with the depth-first search 
method to obtain single-pixel skeleton lines without redundant branches. These lines are applied to the static 
nailfold capillary parameter measurement method based on digital image processing to calculate the blood 
vessel diameter. 
Results: The results show that the proposed method can obtain the single-pixel skeleton line without the 
redundant branches that are required for the parameter calculations and improve the accuracy of the nailfold 
capillary diameter measurement. Experiments showed that the root mean square errors (RMSEs) of the 
labeled apical diameter, arterial limb diameter, and venous limb diameter were 0.794, 0.756, and 0.830 μm, 
respectively, when the calculated results were compared with those of the manual calculations. According 
to the accuracy formula, the accuracy of the method in this study is 90%. We calculated the P values of the 
algorithmic and manual measurements to P<0.001 and found that the difference in the measurements of the 
proposed algorithm is statistically significant. Therefore, the method in this study has high sensitivity and 
specificity for the measurement of normal nailfold capillaries.
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Introduction

Microcirculation accounts for approximately 99% of the 
vasculature in adults, and cutaneous microvascular injury 
is characteristic of systemic diseases, such as connective 
tissue diseases, vasculitis, Raynaud’s phenomenon, 
diabetes mellitus, chronic kidney disease, and arterial  
hypertension (1). Common locations in the human body 
where microcirculation is detected include the nailfolds, 
retina (2), and sublingual microcirculation (3). Among these, 
the detection of nailfold microcirculation is particularly 
important because it can be lesioned in systemic diseases or 
specific skin diseases. The study of nailfold microcirculation 
can aid in preventing, detecting, and treating certain 
diseases as early as possible, which is an important 
direction in clinical microcirculation research (4). Nailfold 
capillary microscopy is often performed manually or semi-
automatically using a computer program (5). Thus, results 
that are obtained via manual calculation are the current 
gold standard for nailfold capillary testing. The static 
nailfold capillary parameters are important parameters that 
reflect the health status of the human body during nailfold 
capillary testing and usually include the apical diameter, 
arterial limb, venous limb, vessel width, vessel height, and 
vessel internal diameter. The measurement of static nailfold 
capillary parameters based on digital image processing is 
mainly performed manually or semi-automatically with 
the aid of computers by manually measuring blood vessel 
images captured via nailfold capillary microscopy. With 
the development of computer science and advancements 
in computer technology, methods based on digital image 
processing and deep learning for the measurement of static 
nailfold capillary parameters have been developed. Among 
these, one method requires skeletonizing vascular images 
and combining the raw image contour information of the 
vascular images for parameter measurement. Corliss et al. (6)  
calculated the microvascular canal diameter of mouse 
retina via skeletonization. More recently, Nirmala et al. 

used Wiener and bilateral filters to enhance the images 
and further employed morphological operations to identify 
and segment the boundaries of capillaries (7), which 
measured the length and width of the nailfold capillary. 
Deep learning image processing methods are trained by 
labeling images, identifying each parameter region of the 
image, and calculating the results. Recently, Tello et al. 
proposed a deep learning and data-driven method that can 
recognize capillary images obtained using a microscope and 
generate automatic measurements for each capillary (8). 
However, this method only calculates the diameter of the 
highest point of the capillary loop and selects the diameter 
of one of the points of the arterial and venous branches 
as the value of the diameter of the entire vessel, which 
may cause errors in the measurement of the static nailfold 
capillary parameters. In contrast, the static nailfold capillary 
parameter measurement method based on digital image 
processing can obtain the diameter values of each part of 
the nailfold capillary. The averaging of these diameter 
values can significantly reduce the resultant error, thereby 
improving the measurement accuracy.

Although there are a number of skeleton line methods 
that are currently being used in clinical practice (9-12), 
none of these methods have been used for vascular vessel 
diameter calculations. Therefore, it is not possible to discuss 
the sensitivity and specificity of these methods for clinical 
calculations of static parameters in the nailfold. However, 
they can effectively obtain the complete skeleton line 
structure, which lays the foundation for us to realize the 
accurate calculation of static nailfold capillary parameters. 
In specific clinical practice, the quality assurance of these 
methods is mainly the responsibility of the individual 
physician. Hence, it is the physician’s personal experience 
that provides the guarantee for clinical testing.

Image thinning (also known as skeletonization) is a key 
step in the method of calculating static nailfold capillary 
parameters. Image thinning is an algorithmic process 
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that partially eliminates the front sights in a binary image 
according to a predefined rule and finally retains a single-
pixel skeleton algorithm with the topology of the raw 
image. Existing image thinning algorithms include the 
Zhang-Suen fast parallel thinning algorithm (FPTA)  
(13-16) (hereinafter referred to as the Zhang-Suen 
algorithm) and one-pass parallel thinning algorithm (OPTA) 
(17-20). The Zhang-Suen algorithm has higher accuracy 
for pixel points at corners, T-intersections, and straight-
line thinning and offers the advantages of continuity and 
fast thinning speed. However, it exhibits the problems of 
local redundant pixels and a loss of feature information (21).  
In addition, it is affected by edge noise and is prone to 
producing redundant branches, which in turn affects the 
accuracy of the static parameter calculation of the nailfold 
capillary. Although OPTA effectively solves the non-single-
pixel skeleton and skeleton disconnection problems, it may 
lead to excessive erosion problems. In addition to the above 
methods, in 2013, Mou et al. (22) proposed the FPTA, 
which is an improvement of the Zhang-Suen algorithm 
that solves part of the redundant pixel point problem 
that exists in the Zhang-Suen algorithm. In 2021, Ma  
et al. (23) proposed a new fully parallel thinning algorithm 
(NFPSA) that combines the advantages of the Zhang-Suen 
algorithm and OPTA to realize a single-pixel skeleton. 
However, these two algorithms are susceptible to edge 
noise and produce redundant branches when dealing with 
blurrier images. In contrast, FPTA is better than NFPSA 
for corner pixel points and also preserves a more complete 
skeleton structure. FPTA has redundant pixel points only 
at T-intersections, and the algorithm proposed in this study 
aims to remove those redundant pixel points and redundant 
branches. The proposed algorithm adds median filtering to 

eliminate some of the redundant branches caused by vessel 
edge noise, and new deletion and restoration templates are 
included to solve the problem of redundant pixels caused 
by redundant branches. The remaining redundant branches 
are eliminated by retaining the longest capillary skeleton 
line via the depth-first search (DFS) method.

The remainder of this study is organized as follows: 
Section “Methods” describes the experimental setup, source 
of experimental data, and algorithm of this study. The 
application of the algorithm to a digital image processing-
based method for measuring the static nailfold capillary 
parameters is presented in Section “Results”. The results 
are discussed in Section “Discussion”. Finally, Section 
“Conclusions” summarizes the study and outlines its 
development prospects.

Methods

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The nailfold 
study was non-invasive. Thus, the requirement for ethical 
approval for this study was waived by the Ethics Committee 
of Foshan University. Written informed consent was 
provided by each volunteer for all vascular images in the 
study.

Research devices

Figure 1 depicts the experimental setup used in this 
study. The experimental setup mainly consisted of a 
complementary metal-oxide semiconductor (CMOS) camera 
(Mshot-MSX11; Micro-shot Technology, Guangzhou, 
China), an LED light source, and a finger holder. The 
camera had a resolution of 5,280×3,956 pixels, a pixel size 
of 3.3×3.3 μm, a field of view of up to 17.42×13.05 mm,  
and a magnification of 5.5×. The LED light source had 
a power of 3 W, color temperature of 10,000 K, and cool 
blue-white luminous effect.

Research participants

We selected 30 healthy volunteers aged between 18 and  
26 years, and we performed nailfold capillary image 
acquisition on 10 of their fingers. Prior to image 
acquisition, the volunteers were required to sit still for 
10–20 min in a room with a temperature of 22–24 ℃ and 
avoid strenuous exercise. Thereafter, the volunteer washed 
his/her hands and waited for them to dry naturally. Before 

CMOS camera

LED light source

Focusing knob

Translation knob

Optical system

Finger fixator

Figure 1 Experimental equipment. CMOS, complementary metal-
oxide semiconductor; LED, light emitting diode.
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starting the acquisition, a drop of cedar oil was placed on 
the nailfold area of each volunteer’s finger to improve light  
transmission (24). During the image acquisition process, 
the volunteers were required to remain seated to ensure 
that the heart was flush with the hand (25). Figure 2 shows a 
standard nailfold vessel acquisition image.

Study methods 

Evaluation metrics
In the experiments conducted during this study, we used 
evaluation metrics, such as the root mean square error 
(RMSE) and accuracy. The RMSE is a common metric 
by which to evaluate the performance of a regression 
model, and it is usually employed to measure the difference 
between the value predicted by a model and the actual 
value. Its formula is as follows:

( )2

1

1 ˆn

i
RMSE yi yi

n =
= −∑  [1]

where n is the number of samples, yi is the actual value, 
and ŷi  is the predicted value. Accuracy is used to measure 
the number of samples correctly predicted by the model 
as a proportion of the total number of samples, and it is 
calculated using the following formula:

( ) ( )True Positives TP True Negatives TN
Accuracy

Total Number of Samples
+

=  [2]

where TP denotes true positives (i.e., the number of 
correctly predicted positive categories); TN denotes true 
negatives (i.e., the number of correctly predicted negative 
categories); and Total Number of Samples denotes the total 
number of samples in the dataset.

Basic concepts
In this study, a pixel (or pixel point) is a closed square in a 
plane that has four edges and four vertices. The edges of a 
pixel are parallel to the coordinate axes with a length of one. 
Two pixels are said to be neighboring if they are different 
and share at least one vertex. If a pixel is adjacent to another 
pixel, it is said to be a neighbor of the other pixel (22). A 
pixel in a two-dimensional image has up to eight neighbors. 
The 4-neighbors of pixel P are four adjacent pixels 
that share a common edge with pixel P. The 4-diagonal 
neighbors (D-neighbors) of pixel P consist of four diagonal 
neighbor pixels that share a common vertex with pixel P. 
Figure 3A,3B are the 4-neighbors and 4-diagonal neighbors 
of pixel P, respectively.

In a binarized image, a pixel can have a value of 0 or 1. A 
pixel point with a value of 0 is referred to as a background 
point. Similarly, a pixel point with a value of 1 is known as a 
foreground point. When at least one of the eight neighbors 
of the foreground point is a background point, it is known 
as an edge point. When only one of the eight neighbors 
of the point is a foreground point, it is referred to as an 
endpoint. As shown in Figure 3C, P is an edge point if at 
least one background point exists in its 8-neighborhood, 
whereas Figure 3D shows that P is an endpoint if only one 
neighbor is a foreground point.

Zhang-Suen algorithm
The Zhang-Suen algorithm, which was proposed in 1984, 
is an algorithm that obtains a skeleton line that retains the 
shape of the raw image by pinning the 8-neighborhood 
pixels around each pixel. The 8-neighborhood of an 
arbitrary pixel point P is shown in Figure 3E. The Zhang-
Suen algorithm is fast, maintains the connectivity of the 
thinned skeleton line, and has no blur generation. However, 
its thinned skeleton line cannot be guaranteed to be a single 
pixel. Hence, its thinning is not complete (22).

The Zhang-Suen algorithm is divided into two sub-
iteration processes. In the first sub-iteration process, pixel P 
is removed from the original digital image if it satisfies the 
following conditions:

( )2 6B P≤ ≤  [3]

( ) 1A P =  [4]

1 3 5 0P P P× × =  [5]

3 5 7 0P P P× × =  [6]

Figure 2 Standard nailfold vessel acquisition image.
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In the second sub-iteration, the final two conditions are 
modified as follows:

1 3 7 0P P P× × =  [7]

1 5 7 0P P P× × =  [8]

where A(P) is the number of changes from 0 to 1 in the 
8-neighbors of P in the ordered sets P1, P2, ..., P8, and 
B(P) denotes the sum of the foreground pixel points in the 
8-neighbors:

( ) ( )( )4
2 1 2 2 2 1 mod81 a a a aa

A P P P P P− +=
= × + ×∑  [9]

1 aP P= −  [10]

( ) 8

1 aa
B P P

=
=∑  [11]

FPTA
The Zhang-Suen algorithm produces non-single pixels 
because some of the points that should be deleted do not 
satisfy Eq. [4]. Mou et al. (22) classified these redundant 

points into three categories and constructed 16 deletion 
templates for removing these redundant pixel points. 

They also matched the template by converting it into 
binary encoding with eight bits from P1 to P8. Each bit is 
represented in binary. If the value of the neighboring point 
is 1, the corresponding binary bit is also 1. If the value of the 
neighbor point is 0, the corresponding binary bit is 0 (22),  
as shown in Figure 4A. Hence, the 8-neighborhood of the 
target point P is converted into binary encoding, as shown 
in Figure 4B.

Mou et al. (22) converted the 16 deletion templates 
corresponding to the three types of redundant pixel points 
into binary numbers and then into decimal numbers. To 
ensure that there were no breaks in the skeleton line, 
the 10 points with the best results were selected to form 
the set {65, 5, 20, 80, 13, 22, 52, 133, 141, 54}, which is 
denoted as U. If the 8-neighborhood of the current pixel 
point does not satisfy Eq. [4] after improvement, the 
target point 8-neighborhood binary code is calculated 

via ( ) 8 2
1

2n
na

S P P −
=

= ×∑ , and the target point is deleted if 
S(P)∈U.

P(i−1,j) P(i−1,j−1)

P(i+1,j−1) P(i+1,j−1)

P(i−1,j+1)

P(i+1,j)

P(i,j−1) P(i,j+1)P(i,j) P(i,j)

0 1 1 0 0 0 P8 P1 P2

P6 P5 P4

P7 P P30 P 0

1 0 00 1 1

0 P 1

4-neighborhood D-neighborhood

8-neighborhoodEdge point Endpoint

A B

C D E

Figure 3 Basic terminology demonstration. (A) The 4-neighbors of point P, (B) the 4-diagonal neighbors of point P, (C) an edge point, (D) 
an endpoint, and (E) point P and its 8-neighbors.
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Algorithm of this study
Although NFPSA, FPTA, and the Zhang-Suen algorithm 
achieve a skeleton line without breakpoints, the blurring of 
the image results in segmentation that produces a binary 
image with edge noise or multiple cracks, which leads to 
the creation of branches that are not necessary for the 
calculation of the static nailfold capillary parameters. Ma  
et al. (23) found that the number of redundant branches 
in the skeleton increases with an elevation in the noise 
level and that there may be redundant pixel points in these 
redundant branches. Therefore, the proposed algorithm 
adds new deletion templates to remove redundant pixel 
points and ensure the single-pixel characteristics of the 
skeleton. For the breakpoints caused by the deletion 
templates, restoration templates are used to realize 
reconnection, which ensures the connectivity of the entire 
skeleton line. The longest skeleton line is retained using 
the DFS method, thereby eliminating redundant branches. 
Figure 5 shows the overall flow of the algorithm.

Deletion templates

The Zhang-Suen algorithm and FPTA are prone to 
redundant pixels at the intersection of “T” branches when 
dealing with redundant branches caused by multiple cracks 
or edge noise. Figure 6 shows the redundant pixels as red 
pixels. The removal of redundant pixels does not affect the 
basic structure or shape of the image. 

The proposed algorithm adds 16 new deletion templates 
to remove the redundant pixel points of this type to ensure 
that the entire skeleton is a single-pixel skeleton. Figure 7 
shows the 16 deletion templates. 

The set of the above deletion templates after binary 

encoding and conversion into decimal numbers is {69, 101, 
77, 109, 84, 212, 86, 214, 81, 83, 89, 91, 21, 149, 53, 181}. 

Restoration templates

Following image thinning, some of the skeleton lines 
exhibited broken points. An analysis revealed that this was 
because the Zhang-Suen algorithm and FPTA are parallel 
thinning algorithms. That is, these algorithms process 
multiple pixel points simultaneously. As shown in Figure 8,  
as there is only one pixel point in the branch of the “T” 
branch, the green pixel point in Figure 8A is incorrectly 
considered an edge point and is thus added to the list to 
be deleted. However, because the edge point has not yet 
been deleted, it matches the “T” branch template indicated 
by the yellow dashed boxes in Figure 8A. Therefore, while 
deleting the green pixel point in Figure 8A, the red pixel 
point in Figure 8A is also deleted by mistake, resulting in 
the creation of a breakpoint, as evidenced in Figure 8B.

The generation of breakpoints leads to an inability to 
traverse the pixel points that follow such breakpoints when 
deleting the redundant branches using the DFS method. 
This leads to missed redundant branches, which may affect 
the accuracy of the nailfold capillary diameter measurement. 
Restoration templates are used to repair the breakpoints 
generated by the deletion templates. Figure 9 shows the 12 
restoration templates.

The set of the above restoration templates after binary 
encoding and conversion into decimal numbers is {68, 
72, 66, 132, 36, 17, 33, 9, 136, 144, 34, 18}. With the 
above restoration templates, it is possible to connect all 
breakpoints effectively and ensure the connectivity of the 
overall skeleton line.

1 0 0

1 P 0

0 1 1 1 1 0 1 1 0 0 0

P1 P2 P3 P4 P5 P6 P7 P8

8-neighborhood of point P Convert into the corresponding binary codeA B

Figure 4 8-neighborhood of target point P with binary code conversion.
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Image data

Pre-processing Binarization

Binarization and skeletonization of nailfold capillaries

Single pixel and no redundant branch acquisition

Skeleton thinning process

(a) (b) + (c)

Median filter
(a)

FPTA
(b)

Obtained by nailfold
capillary microscopy

Standard image of the
nailfold taken

Distal vascular
identification

YOLOv5 model U-Net model

Templates
(c)

DFS
(d)

(d)

Figure 5 The overall flowchart of the proposed algorithm. FPTA, fast parallel thinning algorithm; Templates, deletion templates and 
restoration templates; DFS, depth-first search.
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Figure 6 “T” branches (colored red to distinguish redundant pixel 
points).

Figure 7 16 deletion templates.
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Removal of redundant branches

The Zhang-Suen algorithm, NFPSA, and FPTA typically 
produce redundant branches when thinning the target 
image. As shown in Figure 10, the skeleton lines obtained 
via thinning using these algorithms may have one or more 
redundant branches. The red dashed box in Figure 10C is 
one such example. These redundant branches may affect 
the accuracy of the calculation of the static nailfold capillary 
parameters. Thus, they must be removed.

First, the binarized images obtained via segmentation 
do not form exactly the same connected regions owing to 
image blurring and noise. As shown in Figure 11, the raw 
image is blurred, and there is considerable noise. After 
segmenting the raw image of Figure 11A to obtain the 
binarized image in Figure 11B using U-Net (26-29), some 
redundant cracks were generated as a result of noise. These 
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redundant cracks led to redundant branches in the binarized 
image after thinning. Figure 11C shows the skeleton lines 
with redundant branches. To solve this problem, the 
proposed algorithm removes redundant branches, as shown 
in Figure 11C, thereby obtaining the skeleton lines with 

maximum connectivity, as shown in Figure 11D.
Second, in the skeleton line of the maximally connected 

region, part of the redundant branch generation is caused 
by the influence of edge noise. Thus, the image edges 
can be smoothened by filtering to eliminate this noise, 

1 0 0

0 0 0

0 1 0

0 0 0

1 0 1

0 0 0

0 0 0

1 0 0

0 0 1

0 0 1

1 0 0

0 0 0

0 1 0

0 0 0

0 1 0

0 0 0

0 0 1

1 0 0

1 0 0

0 0 1

0 0 0

0 0 1

0 0 0

1 0 0

0 0 1

0 0 0

0 1 0

0 1 0

0 0 0

1 0 0

0 1 0

0 0 0

0 0 1

1 0 0

0 0 0

0 0 1

A B

Eliminate

Breakpoint

Figure 8 The situation of breakpoints (to distinguish the edge of the pixel points, such points are colored green): (A) the yellow dashed 
boxes show the locations of the pixel points that match the “T” template; (B) the light blue dashed box shows the location of a breakpoint.

Figure 9 12 restoration templates.
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thereby suppressing the generation of redundant branches. 
We selected median filtering for this purpose, which is a 
commonly used image processing technique whose main 
function is to remove noise and minor disturbances from 
the image while retaining edge information. Redundant 
branches may be generated after directly skeletonizing the 
binarized image. Adding median filtering to the binarized 

image and performing an image thinning operation can 
effectively remove some of the original redundant branches 
and retain the basic shape of the original figure.

Finally, although some redundant branches can be 
removed by filtering, not all branches can be completely 
eliminated. Edge noise will not be completely eliminated 
after filtering, and anomalous cracks caused by image 

Segmentation

Raw image Binary image
Redundant branch

skeleton line
Maximum

connected skeleton line

Skeletonize Elimination

A B C D

Segmentation

Raw image Binary image Skeleton line

Skeletonize

A B C

Figure 10 Single-pixel skeletal line in the presence of redundant branches: (A) a raw image of a blood vessel; (B) a binarized image in the 
presence of abnormal cracks; (C) a skeleton line with redundant branches. To enhance contrast, the skeleton lines are colored in black to 
represent foreground points and white to represent background points.

Figure 11 Preservation of skeleton lines with maximum connectivity: (A) a raw image with noise in the red box; (B) a binarized image with 
the presence of anomalous cracks found in the red boxes; (C) a skeleton line in the presence of redundant branches found in the red boxes; (D) 
a skeleton line with maximum connectivity. The redundant branches on the skeleton line with maximum connectivity are not removed here 
for demonstration purposes.
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blurring will also produce redundant branches that cannot 
be removed by filtering when the binarized image is 
thinned and segmented. Therefore, we established a plane 
rectangular coordinate system using the obtained skeleton 
line image, with its upper left corner as the origin, to obtain 
the coordinates of each point. Taking the first point in the 
lower right corner of the skeleton line as the starting point, 
each point and all pixel points in its 8-neighborhood are 
traversed in turn. The visited point is denoted as the P-point. 
Each traversal is required to record the number of previous 
points within the 8-neighborhood, mark point P as visited, 
and record the number of points visited. If the number of 
antecedent points within the 8-neighborhood of the P-point 
is 1, the P-point is not a branch point. The next point is 
then visited. If the number of antecedent points within 
the 8-neighborhood of the P-point is 2, the P-point is a 
branch point. The coordinates of the two foreground points 
within the domain of the 8-neighborhood of the P-point 
are recorded. The branches with these two coordinates as 
their starting points are visited recursively, and the length of 
each branch is recorded. At the end of each recursive visit, 
the branch lengths are compared, and the longest branch is 
retained. After skeletonizing the binarized image, a single-
pixel skeleton line with redundant branches is obtained, 
and the redundant branches are eliminated by comparing 
the branch lengths using DFS. A single-pixel skeleton line 
without redundant branches is obtained and then applied to 
the static parameter measurements of the nailfold capillary 
based on digital image processing, thereby effectively 
improving the measurement accuracy.

Results

Datasets

A total of 500 nailfold images were taken of 30 volunteers. 

Among the images, 203 were of high quality and were 
selected for use. These images were used to identify the 
distal blood vessels using the YOLOv5 model (30). Then, 
the identified blood vessels were segmented using the U-Net 
semantic segmentation model. Finally, the segmented 
images were binarized to obtain the target images.

Experimental platform

The experiment was conducted using the PyTorch (https://
pytorch.org/) framework. Table 1 lists the software and 
hardware configuration parameters used.

Comparison experiment of redundant pixel points and 
redundant branches of skeleton line

We performed image thinning operations on 100 binarized 
images of nailfold capillary images to compare the Zhang-
Suen algorithm, NFPSA, FPTA, and proposed algorithms. 
Among the 100 thinned images, we selected four images 
with “T” branches in all four algorithms, and we locally 
reconstructed and enlarged them at the same position, as 
shown in Figure 12.

As can be observed in Figure 12, the four algorithms use 
different skeletonization rules, which leads to differences 
in the reconstructed images of the four algorithms. We 
take the Zhang-Suen algorithm and NFPSA as examples. 
The Zhang-Suen algorithm processes an 8-neighborhood 
of pixels P per execution, whereas NFPSA processes 
a 20-neighborhood of pixels  P.  This leads to the 
aforementioned differences in the skeletonization of the 
two algorithms, as shown in the top regions of the tabs 
in Figure 12, A1,B1. Therefore, when skeletonizing the 
same blood vessel, different skeleton line algorithms have 
different processing steps at the same location. In addition, 
the Zhang-Suen algorithm ignores some details to preserve 
the raw image structure, which leads to the existence of 
redundant pixel points, the problem of excessive diagonal 
erosion (23), and a susceptibility to noise. Although the 
NFPSA eliminates some of the redundant pixel points of 
the Zhang-Suen algorithm and suppresses some of the 
interference of the noise, some of the redundant pixel points 
for the inflections have not yet been eliminated, presenting 
a reason for the differences in their skeleton lines. Therefore, 
the differences in the skeletonization rules used by different 
algorithms lead to differences in their reconstructed images. 
The Zhang-Suen algorithm, NFPSA, and FPTA failed to 
realize the single-pixel skeleton in the thinning process, and 

Table 1 Software and hardware configuration parameters  

Software/hardware Parameter/version

Operating system Windows 11

CPU Intel(R) Core(TM) i9-13900HX 2.20 GHz

GPU NVIDIA® RTX™ 4060 8G

PyTorch 2.1.1

CUDA 12.1

CPU, central processing unit; GPU, graphics processing unit; 
CUDA, compute unified device architecture.

https://pytorch.org/
https://pytorch.org/
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there are redundant pixels in the “T” branches. In addition, 
the Zhang-Suen algorithm and NFPSA created non-single-
pixel skeletons for the redundant pixels at the corners 
to ensure connectivity, as shown in Figure 12, A1,B1. In 
contrast, the proposed algorithm successfully removed 
the redundant pixels at the “T” branches, as shown in  
Figure 12, D1-D4, by adding new deletion and restoration 
templates, handling the corner pixels better, and realizing 

a single-pixel skeleton while guaranteeing connectivity. 
Therefore, our algorithm fulfills the requirement of a 
single-pixel skeleton for nailfold capillary skeleton lines.

Next, we compared the effects of the four algorithms on 
redundant branch processing after the image thinning of the 
nailfold capillary. We selected four representative images of 
100 nailfold capillary binarization images with edge noise 
and abnormal segmentation cracks and used the Zhang-

Zhang-Suen algorithm NFPSA FPTA Proposed algorithmA B C D

A2 B2 C2 D2

A1 B1 C1 D1 A3 B3 C3 D3

A4 B4 C4 D4

Figure 12 The Zhang-Suen algorithm, NFPSA, FPTA, and proposed algorithm. The skeleton lines of the thinning blood vessels are 
differentiated at the “T” branches. (A1-A4), (B1-B4), (C1-C4), and (D1-D4) represent the four algorithms mentioned above for the 
comparison of the reconstructed images of four different blood vessels after thinning, respectively. Pixel enlargement reconstruction images 
were compared at the same location. To reflect the single-pixel difference, the redundant branches were not removed in this comparison, 
and the red dots represent the redundant pixel points. NFPSA, new fully parallel thinning algorithm; FPTA, fast parallel thinning algorithm.
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Suen algorithm, NFPSA, FPTA, and proposed algorithms 
to carry out thinning operations. Figure 13 shows the 
obtained skeleton lines.

As shown in Figure 13 ,  the proposed algorithm 
successfully removed all redundant skeleton lines with 
minimum connectivity, retained the skeleton lines with 
maximum connectivity, and removed the redundant 
branches that were present in the remaining three 
algorithms. In summary, the proposed algorithm can obtain 
a single-pixel and redundant branch-free skeleton line of 
the nailfold capillary, which proves the applicability of 
our algorithm for calculating the static nailfold capillary 
parameters.

Comparison of static parameter measurements

As shown in Figure 12, differences exist in the structures 
of the skeleton lines of the four algorithms, and these 
differences are mainly reflected in the redundant branches 
with redundant pixel points. Applying these skeleton lines 
with redundant branches and redundant pixel points to 

the subsequent pipe diameter calculation will affect its 
calculation accuracy. The results in Table 2 show that the 
accuracy of the nailfold static parameter is lower because of 
the presence of redundant pixels and redundant branches in 
the skeleton lines obtained by the other three algorithms. 
The method employed in this study removes the redundant 
branches and redundant pixel points, and it preserves the 
original structure of the blood vessels, thus improving the 
accuracy of the measurements of the static parameters of 
the nailfold capillaries. Therefore, redundant branches 
and redundant pixel points lead to lower computational 
accuracy. Since the Zhang-Suen algorithm, NFPSA, and 
FPTA have more redundant branches and redundant pixel 
points, they are unable to obtain the slope of the blood 
vessels via skeleton line fitting for subsequent calculations 
under the static parameter measurement methods for 
nailfolds that are based on digital image processing. Hence, 
only the parameter values for 89, 89, and 85 blood vessels 
were successfully calculated, and this was with lower 
measurement accuracy. The static parameter measurement 
method of nailfolds based on digital image processing that 

Zhang-Suen algorithm NFPSA FPTA Proposed algorithmA B C D

A1 A2

A3 A4 B3 B4 C3 C4 D3 D4

B1 B2 C1 C2 D1 D2

Figure 13 Comparison of skeleton lines after vascular thinning by the Zhang-Suen algorithm, NFPSA, FPTA, and proposed algorithm. 
NFPSA, new fully parallel thinning algorithm; FPTA, fast parallel thinning algorithm.
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was employed in this study was able to calculate the static 
parameter values of 100 blood vessels with higher accuracy 
than those of other methods. The RMSE (μm) values of the 
apical, arterial limb, and venous limb were 0.794, 0.756, and 
0.830, respectively, all of which were less than 1.

Discussion

We compared the results of the static parameter calculations 
on 100 binarized nailfold capillary images obtained by the 
proposed algorithm for skeleton lines, combined with a 
digital image processing-based method of static nailfold 
capillary parameter measurements, with those obtained via a 
manual measurement method. That is, the static parameter 
data obtained via the manual method were compared 
with the data calculated using the proposed algorithm. 
A professional nailfold capillary surveyor performed 

two measurements to obtain the average value, and the 
difference data between the two methods were obtained. 
The measurements of the gold standard were obtained by 
semi-automatic labeling by professionals using commercial 
software, for which at least 10 positions of the canal 
diameter were measured and averaged due to the short 
top region of the collaterals, and for the arterial branches 
and venous branches, the canal diameter was labeled and 
averaged at 10–30 positions depending on their length (this 
fetching was carried out on a computer with a 24-inch, 
1,080 P resolution). The interval between each location 
should be the same to ensure the average value). The 
detailed data are presented in the Appendix 1. After taking 
the absolute values of the differences, the error scatter plots 
corresponding to the apical diameter, arterial limb, and 
venous limb were obtained, as shown in Figure 14.

We can observe from Figure 14 that the errors calculated 
for the apical diameter, arterial limb diameter, and venous 
limb diameter were smaller than those of the manually 
measured values. To evaluate the measurement accuracy, we 
calculated the RMSE of the apical diameter, arterial limb 
diameter, and venous limb diameter as 0.794, 0.756, and 
0.830 μm, respectively. Thus, applying our proposed single-
pixel and non-redundant branching skeleton line to the 
measurement of static nailfold capillary parameters based 
on digital image processing can significantly improve the 
measurement accuracy, which is important for the clinical 
measurement of nailfold capillary static parameters.

In addition, the method employed in this study has 
currently been applied only to normal volunteers, and the 
clinical utility of the method is being tested in partner 
hospitals. The nailfold capillary characteristics of the vessels 
provided for measurement by 30 volunteers were reported 
according to the nailfold capillary characterization criteria 
provided by the Scleroderma Clinical Trials Consortium 
(SCTC) and the European League Against Rheumatism 
(EULAR) Rheumatic Disease Microcirculation Study 

Table 2 Comparison of RMSE (μm) values after applying four algorithms to static parameter calculation  

Algorithm Total vessels/successfully calculated vessels Apical RMSE Arterial limb RMSE Venous limb RMSE

Zhang-Suen 100/89 18.077 4.812 10.575

NFPSA 100/89 15.993 7.145 20.525

FPTA 100/85 18.721 5.045 9.198

Proposed 100/100 0.794 0.756 0.830

RMSE, root mean square error; NFPSA, new fully parallel thinning algorithm; FPTA, fast parallel thinning algorithm. 
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Figure 14 Scatter plot of the error of the apical diameter, arterial 
limb diameter, and venous limb diameter obtained by applying 
the proposed algorithm to the static nailfold capillary parameter 
measurement based on digital image processing versus manual 
computation.

https://cdn.amegroups.cn/static/public/QIMS-24-847-Supplementary.pdf
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Group (31). Of the vessels measured manually in this 
study, 59 were normal capillaries, and 41 were dilated 
capillaries. Among the vessels measured using the method 
proposed in this study, 51 were normal capillaries, and 49 
were dilated capillaries. Of these, nine normal capillaries 
were considered dilated capillaries, and one dilated vessel 
was considered a normal capillary. The accuracy of the 
method proposed in this study was calculated to be 90% 
(Eq. [2]). Hence, the proposed method has high sensitivity 
and specificity for the measurement of normal nailfold 
capillaries. In addition, the proposed method is applicable to 
hairpin vessels and malformed vessels of giant, meandering, 
and other (32) types of hairpins, but it is not applicable to 
severely malformed vessels, which presents a direction for 
future research.

The method proposed in this study aims to improve 
the accuracy of the measurement of static parameters of 
nailfold capillaries, but the method is limited to the vessel 
morphology only and not the clinical site. Therefore, 
for different clinical sites, we believe that vessels with 
the required morphology can be calculated with the 
corresponding diameters.

Conclusions

Nailfold capillary static parameters are important for 
analyzing the health of the human body, but the traditional 
manual measurement method is time consuming and 
expensive. A commonly used automated measurement 
method involves calculating them through the skeleton line. 
However, current skeleton thinning algorithms may be non-
single-pixel and have redundant branches, which may lead 
to a reduction in measurement accuracy. Therefore, in this 
study, we have proposed a single-pixel and non-redundant 
branching-based skeleton line extraction algorithm for 
the nailfold capillary. The algorithm obtains a single-pixel 
skeleton line without redundant branches by adding new 
deletion and restoration templates and combining them 
with the DFS method. The static parameter values of the 
nailfold capillary were calculated by combining them with 
the static parameter measurement method based on digital 
image processing. Experiments showed that the RMSE 
of the labeled apical diameter, arterial limb diameter, and 
venous limb diameter were 0.794, 0.756, and 0.830 μm, 
respectively, when the calculated results were compared with 
those of the manual calculations. According to the accuracy 
formula, the accuracy of the method in this study is 90%. 
The P values of the algorithmic and manual measurements 

were calculated to P<0.001, indicating that the difference in 
the measurements of the proposed algorithm is statistically 
significant. Therefore, the method in this study has high 
sensitivity and specificity for the measurement of normal 
nailfold capillaries. In conclusion, the proposed algorithm 
could obtain the single-pixel skeleton line without 
redundant branches, thereby improving the nailfold 
static parameter measurement accuracy. These results 
are important for the clinical measurement of nailfold 
capillary static parameters. In the future, the calculation of 
more malformed vessels will be optimized to improve the 
calculation accuracy further.
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