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Abstract Retinal neurons are highly vulnerable to a diverse
array of neurotoxic stimuli that leads to their degeneration,
which is a major contributor to blindness. This review sum-
marizes the role of epigenetic factors in mediating neuronal
homeostasis and survival to protect against cell death and
neurodegenerative conditions. Studies in human patients and
mouse models implicate numerous chromatin modifications
in neuroprotective processes including histone protein
acetylation and methylation, DNA methylation, and ATP-
dependent nucleosome remodeling. Recent research has be-
gun to uncover specific epigenetic mechanisms invoked by
neurotoxic stimuli. Continued investigation in this area will be
the key to the generation of therapeutic strategies for the
intervention of retinal neurodegenerative diseases.
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Introduction

The development of the nervous system from primordial
structures occurs through a highly organized and intricately

P. S. Lagali * D. J. Picketts
Regenerative Medicine Program,
Ottawa Hospital Research Institute,
501 Smyth Road,

Ottawa, ON, Canada K1H 8L6
e-mail: plagali@ohri.ca

P. S. Lagali - D. J. Picketts (<)

Department of Biochemistry, Microbiology and Immunology,
University of Ottawa,

451 Smyth Road,

Ottawa, ON, Canada K1H 8M5

e-mail: dpicketts@ohri.ca

regulated series of events involving cell proliferation, dif-
ferentiation, migration and maturation, culminating in the
establishment of numerous neuronal cell types that partici-
pate in complex neural circuits and networks. Once fully
differentiated, neurons are required to carry out their func-
tions for the lifespan of the organism as most are considered
irreplaceable if lost. While adult neurogenesis does occur in
select regions of the central nervous system (CNS), the vast
majority of neuronal cell types cannot be regenerated natu-
rally from existing cellular pools. This implies that neurons
are required to remain intact and functional in order for
proper neuronal communication to persist and to avoid
deficits in neural activity that may occur through accumu-
lated losses over time. In order to overcome the wide range
of insults and stressors encountered over a lifetime, neurons
must be able to rapidly react to changing conditions and
appropriately modify gene expression to maintain cellular
integrity and functionality.

To quickly respond to extracellular cues and signals, the
cell relies on epigenetic mechanisms of transcriptional reg-
ulation. Changes in gene expression occur as a result of
alterations in the structure of chromatin that either allow or
restrict access to the regulatory regions that control tran-
scriptional activity. The basic subunit of chromatin is the
nucleosome, consisting of 146 base pairs of DNA wrapped
around an octamer of two copies of each of the core histone
proteins H2A, H2B, H3, and H4 [1]. The linker histone H1
binds to the DNA between nucleosomes to enable further
chromatin compaction. It is through the dynamic reorgani-
zation of nucleosomes and higher-order chromatin structure
that genetic regulatory elements are made accessible to
transcription factors to modify the expression of specific
genes [2—4]. Covalent modifications of DNA and histone
proteins disrupt chromatin compaction and also serve
as landmarks that are recognized by chromatin-binding pro-
teins that initiate downstream genetic processes. The enzymes
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that catalyze DNA and histone modification as well as
the factors that interact with these marks are collectively
termed chromatin remodeling proteins. The finding that
mutations in a growing number of these proteins cause
developmental and neurodegenerative defects is evidence
of their critical function in the CNS from the embryo
right through adulthood.

The development of the retina follows defined genetic
programs that have been extensively characterized [5, 6]. An
increasing number of studies describe interactions between
the transcription factors that control the development of the
retina and various chromatin remodeling proteins that may
contribute to the execution of critical developmental pro-
grams [7]. However, much less attention has focussed on the
epigenetic regulation of retinal neuron maintenance and
homeostasis. This review describes the role of chromatin
remodeling proteins in mediating survival or loss of
neuronal cells in the retina under various conditions,
including during developmental stages, in response to
neurotoxic stimuli, and in heritable retinal degenerations.
Neuroprotective mechanisms and strategies that follow
from these findings may enable the development of nov-
el therapeutics for treating human retinal degenerative
conditions.

Histone modifications impact retinal neuron survival

Histone proteins can be post-translationally modified by a
variety of enzyme activities, resulting in their acetylation, meth-
ylation, phosphorylation, sumoylation, ubiquitination, ADP-
ribosylation, deimination, and (3-N-acetylglucosamination [8].
These covalent modifications can alter the association of
histones with DNA and can also serve as a scaffold for the
recognition and binding of other proteins that ultimately affect
chromatin compaction and transcriptional regulation [9, 10].
Histone acetylation and methylation and the enzymatic activ-
ities that create or remove these marks have been implicated in
the survival of CNS neurons.

Histone acetylation

The transfer of an acetyl group to the lysine side chains of
histone proteins causes the neutralization of the positive
charge on the lysine residues and can therefore disrupt the
interactions between histones and DNA within nucleo-
somes. Acetylation has been described for all of the core
histone proteins and is generally associated with chromatin
relaxation and transcriptional activation, while deacetylation
favors chromatin condensation and transcriptional repression.
The extent of post-translational acetylation is determined by
the enzymatic activities of histone acetyltransferases (HATS)
and histone deacetylases (HDACS). It is the net effect of both
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HAT and HDAC activities that determines the overall acety-
lation level of histones and impacts the transcriptional status
of particular genes.

The acetylation of histones has been the most extensively
studied chromatin modification in the context of neurode-
generative processes. Despite the different pathophysiolo-
gies associated with various neurodegenerative diseases, in
vivo models demonstrate that a common feature of the
degenerative process in the affected neurons is a reduction
in the global levels of histone acetylation [11-13]. Consis-
tent with this observation is the association of reduced or
absent acetyltransferase activity mediated by CREB-binding
protein (CBP)/p300 in these models [11, 12]. In the retina,
the CBP and p300 HATs can form complexes with a variety
of transcription factors that play critical roles in gene ex-
pression programs that direct retinal cell differentiation and
maturation, including Crx, Pax6, Prox1, Mashl, NeuroDI,
Sox9, RXRy, and pRb [7]. Transcriptional activation of
target genes by these factors can in turn be facilitated
through the CBP/p300-mediated acetylation of histones to
create permissive chromatin configurations that promote
gene expression. Indeed, such is the case for the homeodo-
main transcription factor Crx, whose inactivation results in a
retinal degenerative phenotype [ 14]. Moreover, mutations in
Crx target genes also cause retinal degeneration [15]. Crx
binds to the regulatory regions of its target photoreceptor
genes, where it recruits HATs that acetylate histone H3, to
enable chromatin remodeling and subsequent binding of
transcriptional coactivators and RNA polymerase II for
transcription to occur [16]. Since loss of Crx leads to reti-
nopathy, it may follow that loss of the HAT activity and H3
acetylation on its target gene promoters may also result in
photoreceptor degeneration. In Crx knockout mice, binding
of HATs to target promoters and the levels of acetylated
histone H3 on these promoters was reduced [16], and ex-
pression of the target genes was concomitantly reduced [14].

Similar to CBP and p300, the GCN5-HAT component of
the multi-subunit SPT3-TAF9-ADA-GCNS acetyltransfer-
ase (STAGA) transcription coactivator complex can interact
with Crx and is associated with histone H3 acetylation on its
target gene promoters [16]. The interaction of GCN5 and
Crx is mediated by the ataxin-7 protein, another component
of the STAGA complex [17]. Mutation of ataxin-7 results in
inhibition of HAT function, reduced H3 acetylation and
reduced Crx occupancy of target genes [17], and causes
neurodegeneration of the retina and brain [18, 19]. In addi-
tion to altered transcription profiles in photoreceptor cells,
ataxin-7 mutant mice also exhibit dramatic reorganization of
chromatin correlated with reduced expression and abnormal
distribution of the linker histone Hlc in rod photoreceptor
nuclei; however, global histone acetylation levels are un-
changed [20]. It is possible that aberrant ataxin-7 function
leads to altered targeting of HAT complexes, causing
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inappropriate acetylation and activation of otherwise re-
pressed genes, and contributing to the upregulation of some
photoreceptor genes that are observed in these mice [21].
Nevertheless, it appears that the survival of retinal neurons
is impacted by multiple mechanisms involving changes in
histone processing and dynamics.

This is further supported by the important role of HDACs
that has been demonstrated in various mouse models of
retinal neurodegeneration. In the rd/ mouse model of reti-
nitis pigmentosa, reduced histone acetylation levels were
detected in photoreceptors but not other retinal cell types
that do not undergo degeneration [22]. This was related to
elevated HDAC activity predominantly attributed to class I
and II HDACs. Furthermore, protein hypoacetylation and
increased HDAC activity occurred in rdl photoreceptor
cells undergoing apoptosis which could be protected from
cell death by exposure to HDAC I/II inhibitors [22]. HDAC
inhibition was also shown to promote retinal ganglion cell
survival in optic nerve crush-induced neurodegeneration
[23]. However, inhibition of class I/Il HDACs can lead to
broadly distributed apoptotic cell death in wild-type retinas
[24], indicating that disruption of normal levels of protein
acetylation can be cytotoxic, while reduction of HDAC
overactivity occurring in retinal degeneration may result in
the normalization of pathophysiological acetylation levels
and subsequent neuroprotection. Additional studies in
which resting levels of histone acetylation in neuronal cells
under normal conditions are altered by either exposure to
HDAC inhibitors [25, 26] or elevation of HATs [27, 28]
further suggest that hyperacetylation of histones is toxic for
neurons and that disturbing the sensitive balance between
HAT and HDAC activities in either direction can trigger
neuronal cell death.

Class III HDAC:s are also involved in mediating neuronal
survival. A neuroprotective role for the Sirt]l histone deace-
tylase has been demonstrated in various neurodegenerative
disease conditions [29—32]. Consistent with this, Sirtl pro-
tein distribution is altered in degenerating retinas of rd/0
mice, where it co-localizes with apoptotic photoreceptors as
well as pro-apoptotic proteins in the outer nuclear layer of
the retina at the peak of cell death, and after which, its retinal
expression is dramatically reduced [33]. It is hypothesized
that the neuroprotective effects of Sirtl are lost in the rd10
photoreceptors due to its cellular mislocalization and re-
duced level of expression, therefore resulting in the degen-
eration of these cells.

Individual HDACs also appear to function in distinct
neuronal survival pathways. Specific inactivation of
HDACI in post-mitotic primary neurons results in signifi-
cant cell death, while increased HDACI activity is protec-
tive against neurotoxicity in vivo [34]. HDAC4 has a
neuroprotective role in the retina, as overexpression causes
reduced levels of naturally occurring bipolar cell death

during development and also rescues rod and cone photore-
ceptor cell loss in 7d] mice [35]. Accordingly, inhibition of
HDAC4 function in wild-type retinas by RNA interference
induces significant cell loss due to apoptosis, indicating that
HDAC4 is required for retinal neuron survival [35]. In
contrast, HDAC5 or HDAC6 was unable to mediate rescue
of the photoreceptors in the rd mice, despite the ability of
HDACG to rescue neurodegeneration in a Drosophila model
of spinobulbar muscular atrophy [36]. In optic nerve injury-
induced retinal neurodegeneration, apoptotic retinal gangli-
on cells (RGC) exhibit increased HDAC activity, reduced
levels of acetylated histone H4, and downregulation of RGC
marker and survival genes [37]. Only HDAC3 was shown to
translocate to the nuclei of apoptotic RGC and exhibited
increased and sustained expression that was consistent with
the time course of acetylated H4 reduction following optic
nerve crush in these mice [37]. This series of studies dem-
onstrates that the use of broad HDAC inhibitors as potential
therapeutic agents for the impaired histone acetylation levels
and/or reduced HAT activities associated with transcription-
al dysregulation and neuronal death must take into account
the roles of specific HDACs in mediating retinal cell sur-
vival in physiological and pathological contexts.

Histone methylation

Histone methylation is a non-charge neutralizing modifica-
tion that occurs on specific lysine and arginine residues of
histones H3 and H4. Methylation of particular lysine side
chains can act as either permissive (e.g., H3K4, H3K36, and
H3K79) or repressive (e.g., H3K9, H3K27, and H4K20)
marks in the context of transcription. However, the extent
of methylation of these residues can also affect their func-
tion in transcriptional activation or repression, with differ-
ential effects mediated by mono-, di- or trimethylation,
thereby adding another layer of complexity [38, 39].

Similar to histone acetylation, histone methylation
appears to be involved in the maintenance of different
retinal cell types. The Purkinje cell degeneration (pcd)
mouse is characterized by postnatal loss of several neuronal
cell types including retinal photoreceptors [40, 41]. Neuro-
degeneration in these mice is associated with profound
chromatin disorganization, an increase in the levels of tri-
methylated histone H4 at lysine 20, and transcriptional
silencing [42]. While only Purkinje cells were examined in
this study, the mechanisms underlying cell death may be
relevant to the rods and cones of the retina that are also lost
in these mice.

Specific methyltransferase activities are important for
retinal ganglion cell survival, as inhibitors of the Ezh2 and
G9a histone methyltransferases can induce apoptosis of
these neurons in vitro [43]. Other methyltransferases have
also been implicated in neurodegenerative processes. The
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association of the Suv39H1 histone methyltransferase with
p130, the Rb protein family member that is required for the
survival of neurons in vitro, is lost in response to apoptotic
stimuli, and this is accompanied by a substantial reduction
in histone H3 methyltransferase activity [44]. Furthermore,
expression of a pl30 mutant that fails to interact with
Suv39H1, or mutant Suv39H]1 that lacks histone methyl-
transferase activity, leads to death of cultured neuronal cells
[44]. Suv39HI functions as a chromatin-modifying tran-
scriptional silencer and, in this study, was found to cause
derepression of pro-apoptotic genes when its interaction
with p130 on the promoters of these genes was lost. The
mutation underlying adult-onset cerebellar Purkinje cell de-
generation occurring in the robotic mouse mutant lies within
the gene that encodes Af4, a component of a chromatin
remodeling complex which contains the DOT1 histone H3
lysine 79 methyltransferase [45]. The Af4 mutation causes a
gain-of-function resulting in protein stabilization and accu-
mulation, and increased levels of H3K79 methylation were
correspondingly detected in cerebellar homogenates, which
in turn is presumed to lead to transcriptional dysregulation
in Purkinje neurons [46]. Therefore, the specific methylation
of particular histones, as catalyzed by specific enzymes, is
important for directing pro-survival gene expression in the
retina as well as in other regions of the CNS. These studies
also demonstrate that both elevated and reduced levels of
histone methylation can contribute to altered transcription
that leads to neuronal cell death, further underscoring the
importance of tight regulation of histone post-translational
modification.

DNA methylation defects lead to neurodegeneration

DNA methylation is generally associated with transcription-
al repression, either through direct physical inhibition of
transcription factor binding to methylated promoters, or by
the association of methyl-CpG-binding domain (MBD)
protein-containing repressive complexes with gene pro-
moters [47]. Two DNA methyltransferases (Dnmts),
Dnmt3a and Dnmt3b, function to establish de novo DNA
methylation patterns during mammalian embryonic devel-
opment, while a third enzyme, Dnmt1, acts as a maintenance
methyltransferase and preferentially methylates hemi-
methylated DNA generated following DNA replication [48].

A number of studies involving CNS-specific knockouts
of Dnmts implicate altered DNA methylation in neurode-
generative phenotypes. Conditional deletion of Dnmtl in
mouse CNS precursor cells in vivo leads to global DNA
hypomethylation and postnatal death of neurons in multiple
brain regions [49]. Dnmtl deletion targeted to the dorsal
forebrain causes severe and progressive degeneration of
cortical and hippocampal neurons due to hypomethylation-
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induced apoptotic cell death occurring both pre- and post-
natally [50]. This was accompanied by electrophysiological
deficits, neurobehavioural defects in learning and memory,
and deregulation of neuronal gene expression [50, 51].
These studies demonstrate the importance of Dnmtl-
mediated maintenance methylation for proper function and
survival of CNS neurons at multiple developmental stages.
In mice with specific deletion of Drnmt3a in the CNS, global
DNA methylation was unperturbed; however, mutant mice
exhibited loss of hypoglossal motor neurons located in
the brainstem, abnormal neuromuscular junctions, motor
defects, and premature death [52]. This may result from
changes in gene-specific DNA methylation and/or altered
function of Dnmt3a-associated chromatin remodeling pro-
teins that may cause misregulation of target genes that are
critical for motor neuron survival and function. The pheno-
type of these mice was similar to transgenic mouse models
of amyotrophic lateral sclerosis (ALS) [53-57], further im-
plicating Dnmt3a in the pathogenesis of motor neuron de-
generation. Animal models of Dnmt3b loss in the CNS have
not been described to date; however, the identification of
DNMT3b mutations in human mental retardation [58, 59]
indicate the essential function of this protein for proper brain
function which may include the preservation of neuronal
integrity.

These effects of impaired Dnmt activity and resulting
reduction in DNA methylation levels have been extended
to primate models of neurodegeneration. In postmortem
analyses of human brains, the promoter region of the Alz-
heimer’s disease (AD)-causing amyloid precursor protein
(APP) gene was shown to be hypomethylated in older
individuals, suggesting a link between enhanced transcrip-
tional potential of a pathogenic gene and increased suscep-
tibility to neurodegeneration with age [60]. Indeed, reduced
DNA methyltransferase activity as well as decreased cortical
levels of Dnmtl, Dnmt3a, and MeCP2 proteins were asso-
ciated with increased expression of the AD-related genes
APP and beta-site APP cleaving enzyme 1 (BACEI) in aged
monkeys with AD-like neuropathology [61, 62]. Additional
examination of brain tissues from AD patients revealed
global DNA hypomethylation along with diminished immu-
noreactivity for DNMT1 and multiple components of the
MeCP1/MBD2 methylation complex [63, 64], further sup-
porting a neuroprotective role of DNA methylation in AD
etiology.

Increased DNA methyltransferase levels and activity, as
well as consequent hypermethylation of DNA are also as-
sociated with neuronal cell death. Elevated methyltransfer-
ase activity and DNA methylation were detected upon
ischemic brain injury in mice, and either genetic or pharma-
cological inhibition of Dnmt1 was found to be neuroprotec-
tive in this mild stroke model [65]. Similarly, in a motor
neuron degeneration model, Dnmtl and Dnmt3a protein
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levels and total Dnmt enzyme activities were upregulated
and mediated rapid increases in DNA methylation, while
Dnmt inhibition protected neurons against apoptosis [66].
The increased Dnmt protein expression and DNA hyper-
methylation were paralleled in motor neurons of ALS
patients [66]. Therefore, tight regulation of DNA methyla-
tion is also critical for the survival of neurons, as an imbal-
ance to create either a hypo- or hypermethylated genomic
state can cause neurodegeneration. The effects on transcrip-
tion of particular genes is relevant to this finding, as repres-
sion of pro-survival genes and inappropriate activation of
cell death genes could both lead to neuronal loss. Accord-
ingly, altered methylation of genes that may contribute to
ALS pathobiology was observed in human ALS brain-
derived DNA, including both hypo- and hypermethylated
genes [67]. Thus, disturbance of the steady state levels of
DNA covalent modification, as also described above for
histone acetylation and methylation, can contribute to al-
tered chromatin remodeling activity that leads to neurode-
generative processes. This further emphasizes the
importance of strict control of chromatin dynamics for cel-
lular homeostasis and the physical and functional integrity
of neurons.

While examples of dysregulated DNA methylation have
not been documented for neurodegeneration affecting the
retina, a recent study describes the expression of DNA
methyltransferases in mouse retinal progenitors and mature
neurons, highlighting distinct patterns of localization in
different neuronal cell types that may reflect different de-
velopmental requirements for chromatin remodeling and/or
differences in chromatin architecture that underlie cell-
specific properties [68]. The role of specific Dnmts in me-
diating the function and maintenance of retinal neurons
awaits further studies including cell type-specific ablation.

ATP-dependent nucleosome remodelers mediate
survival of specific cell types

ATP-dependent chromatin remodeling proteins function to
non-covalently alter the structure of nucleosomes through
modulation of DNA-histone interactions, thereby regulating
chromatin compaction and DNA accessibility to proteins
involved in diverse cellular processes such as DNA replica-
tion, recombination, repair, and transcription. The energy of
ATP hydrolysis is utilized to disrupt nucleosomes by pro-
moting histone sliding, repositioning, exchange, or eviction
[4]. These nucleosome remodeling factors function as part
of large multi-protein complexes and are recruited to target
genes based on interactions with other subunits of these
complexes that can recognize and bind to specific DNA
sequences and/or histone and DNA modifications [69].

The importance of ATP-dependent chromatin remodeling
proteins in neurodevelopment is demonstrated by the iden-
tification of mutations in the genes that encode these pro-
teins, or proteins with which they interact, in human
developmental disorders associated with intellectual disabil-
ity [70-78]. A number of studies suggest that nucleosome
remodelers also function to maintain cell viability, including
neural tissues. The ATRX protein was one of the first
chromatin remodeling factors associated with human genet-
ic disease, with mutations in the gene causing o—thalassae-
mia mental retardation, X-linked (ATR-X) syndrome [71].
ATR-X syndrome patients exhibit a diverse range of clinical
features including microcephaly and cognitive deficits indi-
cating a critical role for ATRX in proper brain structure and
function. Consistent with the human phenotype, conditional
deletion of Atrx in the developing mouse forebrain resulted
in reduced brain size and a significant loss of neuronal cells
during corticogenesis [79, 80]. Hypocellularity was also
detected at postnatal stages in the hippocampus, with mutant
mice completely lacking a dentate gyrus. The neuronal loss
occurred due to inappropriate apoptosis of neuroproge-
nitors and could be recapitulated in isolated neuropro-
genitor primary cultures derived from the knockout mice,
suggesting the involvement of cell autonomous cell death
mechanisms [79]. In contrast, overexpression of A#rx in trans-
genic mice resulted in the generation of excessive neuropro-
genitors [81], further supporting a role for Atrx in neuronal
homeostasis.

In the mouse retina, loss of Atrx leads to a selective
reduction in amacrine and horizontal cell populations in
the postnatal period [82]. Various amacrine cell subtypes
are affected, including glycinergic, cholinergic, and dopa-
minergic neurons [82]. Atrx is therefore important for the
survival of inhibitory interneurons in both the retina and the
brain, as loss of GABAergic interneurons is also observed in
forebrain-specific knockout mice [80]. However, the surviv-
al of neuroprogenitors is unaffected in the A#rx-knockout
retinas [82], implying differential spatial and temporal neu-
roprotective functions of Atrx. Interestingly, conditional
deletion of Afrx in mouse testis causes prenatal apoptosis
of proliferating Sertoli cells [83]. Physical interaction of
Atrx with the testis-specific androgen receptor was shown
to regulate transcription of tissue-specific target genes [83].
Thus Atrx-mediated maintenance of specific cell types in
different tissues including the retina may result from the
transcriptional regulation of tissue-specific Atrx targets that
impinge on pro-survival pathways.

Epigenetic mechanisms of neurotoxicity

While there is significant documentation of epigenetic fac-
tors associated with neuronal survival, there are few well-
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characterized mechanisms. Several potential triggers of neu-
rotoxicity have been proposed to underlie degeneration of
neurons in the retina and brain. These include oxidative
stress [84], DNA damage [85, 86], mitochondrial dysfunc-
tion [87, 88], lack of neurotrophic support [89], and excito-
toxicity [90]. Chromatin remodeling proteins have been
implicated in mediating survival responses to some of these
neurotoxic stimuli.

Oxidative stress results from the production of cytotoxic
reactive oxygen species derived from cellular metabolism of
oxygen. High metabolic activity, high proportions of poly-
unsaturated fatty acids that undergo lipid peroxidation, and
exposure to visible light that induces photo-oxidation render
the retina particularly susceptible to oxidative damage [91].
The inability of neurons to protect against or repair the
damage caused by reactive oxygen species leads to their
death. Bmil is a member of the Polycomb group family of
chromatin modifiers, and its target genes include those in-
volved in neuronal survival as well as antioxidant defenses
[92]. Mice with Bmil deficiency exhibit retinal defects and
increased neuronal death in the brain accompanied by in-
creased apoptotic gene expression, reduced expression of
antioxidant genes, and elevated levels of reactive oxygen
species [92].

DNA damage is recognized as a significant mediator of
neuronal cell death [85, 86]. Increases in both nuclear and
mitochondrial DNA lesions have been reported for various
neurodegenerative conditions including retinal degeneration
[93-95]. Chromatin remodeling is a fundamental process in
the protection of genomic integrity by DNA repair mecha-
nisms [96], and thus it follows that chromatin remodeling
proteins function in neuroprotective responses to DNA dam-
age. Inhibition of HDAC1 was shown to result in double
strand DNA breaks and neuronal death, while HDAC1 over-
expression protected against DNA damage and neurotoxic-
ity in cultured neurons [34]. In the pcd mouse model,
Purkinje cell degeneration is associated with a large scale
reorganization of chromatin and propagation of histone
modifications that cause gene silencing (via trimethylated
histone H4K20) and that signal DNA damage (phosphory-
lation of the histone variant H2AX) [42]. Defects in the
DNA repair pathway and accumulation of DNA damage in
these mice are presumed to trigger neuronal death.

Mitochondrial dysfunction is associated with various
forms of retinal and brain degeneration, and mutation of
mitochondrial genes can lead to neurodegenerative diseases
[88, 97]. Mitochondria in mouse and human tissues were
found to contain DNA methyltransferases and methylated
mitochondrial DNA [66]. This study further showed that
DNMT3a protein levels were upregulated in motor cortex
mitochondria from ALS patients, suggesting that epigenetic
regulation of mitochondrial genes may contribute to neuro-
degenerative phenotypes.

@ Springer

Neurotrophins are growth factors important for sup-
porting neuronal function and survival and exert their
neurotrophic effects through receptor-mediated intracel-
lular signaling pathways. A number of these factors
have demonstrated roles in neuroprotection of various
retinal cell types in vitro and when administered to
mouse models of retinal degeneration [89, 98]. Brain-
derived neurotrophic factor (BDNF) has been reported
to prevent retinal ganglion and amacrine cell death
[99-101] and can also rescue photoreceptor loss in animal
models of retinal degeneration [102, 103]. BDNF expression
is controlled by a number of epigenetic factors [104] and can
be modulated by DNA methylation and histone modification
[105]. Neurotrophins such as BDNF in turn directly induce
epigenetic changes to regulate the transcription of their target
genes [106, 107]. Given the functional interaction between
BDNF and MeCP2 [108] and the physical interaction of
MeCP2 with Atrx [75], it is tempting to speculate that the
amacrine cell loss observed in Afrx-knockout mouse retinas
may result from misregulation of a common pathway involv-
ing all three factors that functions to promote retinal neuron
survival.

Excitotoxicity is caused by the hyperactivity of glu-
tamate receptors on the cell surface of neurons due to
excessive levels of the excitatory neurotransmitter glu-
tamate, which in turn produces multiple adverse effects
that lead to neuronal cell death. Excitotoxic neuronal
death is a common feature of acute and chronic neuro-
degenerative conditions affecting various regions of the
CNS including the inner retina [90, 109]. Studies are
emerging to implicate epigenetic mechanisms in excito-
toxic processes. Glutamatergic inputs can induce chro-
matin remodeling in neurons, and this is inhibited by
NMDA receptor antagonists [110]. Glutamate receptor
expression is also subject to epigenetic regulation. The
expression of glutamate receptor subunits is regulated
by the transcriptional repressor REST/NRSF, which
requires ATP-dependent chromatin remodeling mediated
by Brgl and histone deacetylation for gene silencing
[111]. Increased REST expression was associated with
suppression of the AMPA receptor subunit GluR2 and
rescue of ischemia-induced neuronal cell death [112, 113].
Brgl-mediated recruitment of HDACI1 to the NMDA
receptor subunit NR2B promoter leads to NR2B repres-
sion [114], while HDAC inhibition increases NR2B ex-
pression and NMDA receptor activity [115]. NR2B
expression was also shown to be regulated by the histone
methyltransferase Setdb1 [116], indicating multiple epigenetic
levels of transcriptional control of glutamate receptors. In
addition, the astroglial glutamate transporter EAAT2/GLT1
prevents glutamate-induced excitotoxicity, and its expression
is regulated by DNA methylation in response to neuronal
stimulation [117].
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Conclusions

Complementing the established role for epigenctic reg-
ulation in neuronal development and function are stud-
ies detailing the importance of chromatin remodeling for
long-term survival. We have summarized the current
knowledge of epigenetic strategies employed by neurons
to withstand a lifetime of genetic and environmental
insults in order to evade death. As these mechanisms
continue to emerge, it is becoming clear that chromatin
regulation of neuroprotection is complex and is impact-
ed by a wide range of neurotoxic stimuli. Failure of
these mechanisms leads to cellular dysfunction and neu-
ronal loss, the key hallmarks of human neurodegenera-
tive diseases.

The development of effective treatments for retinal
degeneration and other neurodegenerative disorders
requires a thorough understanding of the molecular
events that control the survival of neurons and their
demise in these diseases. The finding that changes in
DNA and histone covalent modifications contribute to
altered gene expression that leads to neuronal cell com-
promise can be exploited to generate therapeutic
approaches targeted to chromatin modifying activities.
For example, the association of reduced histone acety-
lation levels with neurodegenerative conditions has led
to the extensive investigation of HDAC inhibitors as well
as the proposal of HAT activators as therapeutics for neuronal
degeneration [13, 118, 119]. However, the finely tuned epige-
netic landscape of neurons, as evidenced by the interplay of
different chromatin remodeling enzymes, poses significant
challenges to the development of effective treatment regimes.
Therapeutic efforts further need to address the differential
temporal and spatial requirements for specific chromatin
modifications or processing, as exemplified by the dis-
parity of Atrx-mediated nucleosome remodeling in the
embryonic forebrain and in the postnatal retina. It will be
necessary to fully characterize the activities of individual
chromatin modifying agents on specific genes in distinct
neuronal cell populations, and in response to diverse neuro-
toxic triggers, to ensure specificity of targeted neuroprotective
strategies and to avoid confounding off-target effects. With a
heightened focus on investigation and discovery into the
epigenetic programs controlling neuron survival and homeo-
stasis in the retina and CNS, the promise of such directed
treatments grows ever closer.
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