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Abstract

Diseases of the respiratory system are known to negatively impact the profitability of the pig industry, worldwide.
Considering the relatively short lifespan of pigs, lesions can be still evident at slaughter, where they can be usefully
recorded and scored. Therefore, the slaughterhouse represents a key check-point to assess the health status of pigs,
providing unique and valuable feedback to the farm, as well as an important source of data for epidemiological
studies. Although relevant, scoring lesions in slaughtered pigs represents a very time-consuming and costly activ-

ity, thus making difficult their systematic recording. The present study has been carried out to train a convolutional
neural network-based system to automatically score pleurisy in slaughtered pigs. The automation of such a process
would be extremely helpful to enable a systematic examination of all slaughtered livestock. Overall, our data indicate
that the proposed system is well able to differentiate half carcasses affected with pleurisy from healthy ones, with an
overall accuracy of 85.5%. The system was better able to recognize severely affected half carcasses as compared with
those showing less severe lesions. The training of convolutional neural networks to identify and score pneumonia,

on the one hand, and the achievement of trials in large capacity slaughterhouses, on the other, represent the natural
pursuance of the present study. As a result, convolutional neural network-based technologies could provide a fast and
cheap tool to systematically record lesions in slaughtered pigs, thus supplying an enormous amount of useful data to

all stakeholders in the pig industry.

Introduction

Diseases of the respiratory system are among the leading
causes of economic loss in farm animal breeding, due to
increased mortality, decreased daily weight gain and the
cost of veterinary care. The impact of respiratory dis-
eases is particularly relevant in growing/finishing pigs
raised indoors with high stock density [1]. The aetiol-
ogy of porcine respiratory diseases is usually multifacto-
rial, an important role being played by infectious agents,
which often act together to cause the so-called “porcine
respiratory disease complex” (PRDC). The severity and
outcomes of PRDC are greatly influenced by the immune
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status of the animals, by environmental factors impairing
the efficacy of the mucociliary barrier of the airways (e.g.
the level of ammonia and dust), as well as by a number
of managerial factors (e.g. overcrowding, pigs’ flow, bios-
ecurity strategies), which can increase the infectious load
and break the balance between herd immunity and the
pathogens [2, 3].

Mycoplasma hyopneumoniae (M. hyopneumoniae) and
Actinobacillus pleuropneumoniae (A. pleuropneumoniae)
are among the most important respiratory pathogens in
intensively bred pigs, causing enzootic pneumonia (EP)
and porcine pleuropneumonia, respectively [4-7]. Act-
inobacillus pleuropneumoniae can cause severe, rapidly
fatal fibrinous-hemorrhagic and necrotizing pleuro-
pneumonia in pigs; in survivors, necrotic sequestra and
chronic adhesive pleuritis can persist as sequelae [6, 7].
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Considering the lifespan of pigs (usually lasting
between 5 and 10 months), M. hyopneumoniae and A.
pleuropneumoniae related lesions can still be evident at
slaughter, where they can be usefully recorded and scored
with very high prevalence values [8, 9]. Therefore, the
slaughterhouse represents a key check-point to assess
the health status of pigs, in addition to data collected in
the herds (e.g. necropsy findings) or resulting from labo-
ratory tests (e.g. serological surveys). The registration of
lesions at the abattoir provides unique and valuable feed-
back to the farm, as well as an important source of data
for epidemiological studies [9-11].

Several scoring methods have been developed over the
last decades, in order to estimate the impact of diseases in
slaughtered pigs, a special emphasis having been placed
upon EP-like lesions [12] and pleurisy [13]. As far as pleu-
risy is concerned, the “slaughterhouse pleurisy evaluation
system” (SPES) grid is widely used to quantify the impact
of A. pleuropneumoniae infection. According to the SPES
grid, a higher score is given to pleurisy of the diaphrag-
matic lung lobes [14], which are typically affected in the
course of porcine pleuropneumonia [6]. Considering that
pleurisy usually affects both pleural sheets, a new scor-
ing method (“pleurisy evaluation of the parietal pleura’,
PEPP) has been recently developed, based on the inspec-
tion of the parietal pleura. Similarly to the SPES grid, the
PEPP method also attributes a higher score to the lesions
affecting the caudal portion of the chest wall. The SPES
and PEPP methods demonstrated to provide well-match-
ing results, the PEPP method being also effectively appli-
cable on digital images [15].

Generally, the ideal scoring method should be simple,
fast, easily standardisable, providing suitable data for
statistical analysis. Overall, methods currently available
to score EP-like lesions and pleurisy at slaughter well fit
such requirements. Notwithstanding this, scoring lesions
in slaughtered pigs represents a very time-consuming and
costly activity, thus making difficult, if not impossible,
their systematic recording. Furthermore, abattoir-related
and inter-observer variations should also be considered,
highlighting the need to standardise all the operative pro-
cedures [9, 11].

In this respect, artificial intelligence (AI) based tech-
nologies could offer very promising opportunities.
Artificial intelligence is a discipline aiming to develop
intelligent agents, i.e. machines that can perceive the
environment and take action to maximise their success
regarding a defined target [16]. Several approaches have
been pursued from the beginning of the Al research era
to create machines that can simulate human intelligence.
At present, the statistical learning approach appears as
the dominant methodology, thanks to the success of
deep learning (DL), especially in the field of visual object
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recognition [17]. Deep learning is a subset of machine
learning and is based on networks of highly intercon-
nected computer processors (so-called “neurons”),
capable of performing parallel computations for data
processing and knowledge representation [18].

Over the last few decades, several attempts have been
made to apply DL to human health and medicine [19, 20],
mostly in the field of diagnostic imaging [21-23]. To the
best of our knowledge, AI has never been applied to the
identification and quantification of gross lesions in ani-
mals. The present study has been carried out to train an
Al-based system, aiming to automatically score pleurisy
in slaughtered pigs. The automation of lesion scoring
would be extremely helpful to enable a systematic exami-
nation of all slaughtered livestock, positively influencing
herd management, animal welfare and profitability.

Materials and methods

Animals

A total of 5902 porcine half-carcasses were included in
the present study, between November 2017 and April
2019. Pigs (9-11 months of age; 150—-180 kg) were reg-
ularly slaughtered in abattoirs located in Central and
Northern Italy, under different field conditions (i.e. light-
ing, background, speed and features of the slaughter
chain, etc.).

Photo acquisition of half-carcasses, pleurisy scoring

and data recording

The inner surface of all half-carcasses, including the
chest wall, was photographed using different smartphone
cameras, under routine field conditions. In particular,
pictures were taken along the slaughter line with the
half-carcasses hanging upside down, after the removal of
viscera and showering. Such pictures were then carefully
evaluated by two skilled veterinarians and pleurisy scored
through the evaluation of the parietal pleura. In order to
obtain a suitable number of pictures per each score, the
PEPP method was simplified as follows:

« Absence of pleurisy =0 points (class I);

« Pleurisy affecting the cranial chest wall, from the 1%
to the 5™ intercostal space=1 point (class II);

« Dleurisy affecting the caudal chest wall, from the 6
to the last intercostal space =2 points (class III);

+ DPleurisy affecting both the cranial and caudal chest
walls =3 points (class IV).

Explanatory pictures are shown in Figure 1. All the
scores were agreed upon by the two veterinarians and
recorded on a Microsoft Excel spreadsheet.
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Figure 1 Scoring pleurisy according to the simplified PEPP method. A In healthy half-carcass, the parietal pleura appears smooth, wet
and transparent, the intercostal spaces being easily appreciated. B A small fragment of lung adheres to the parietal pleura, at the level of the 4
intercostal space (score =1 point). C Pleurisy affects the caudal intercostal spaces; at this level, the parietal pleura appears greyish-to-reddish and

rough (score =2 points). The entire parietal pleura is affected by pleurisy, lung fragments adhering to the chest wall (score =3 points).

(from the 1° to the 5 intercostal space), caudal chest
wall (from the 6 to the last intercostal space), artefacts
(i.e. presence of blood, portions of blood vessels, kid-
ney, liver or fat partially covering the chest wall), pleu-

Photo annotation
The same two veterinarians annotated all the above

pictures with segmentation masks, using a dedicated
open-source image annotation tool [24]. In particular,
the following districts were annotated for the task: half-  ral lesions (Figure 2).
carcass, vertebral bodies, diaphragm, cranial chest wall
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Figure 2 Segmentation mask using a suitable annotation tool: an example. In this picture, the following features have been annotated, along
with the entire silhouette of the half carcass: diaphragm (A), vertebral bodies (B), cranial chest wall (C), caudal chest wall (D), artefact (i.e. a portion of

diaphragm covering the chest wall; E), pleurisy straddling both areas of the chest wall (F).
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DL-based method employed

The architecture of the DL method employed herein is
graphically shown in Figure 3. It is based on so called
“convolutional neural networks” (CNNs) and stems from
a network, called “U-Net’, the latter being a convolutional
network architecture for fast and precise segmentation of
images [25].

Convolutional neural networks represent the state of
the art for data driven applications and consist of stack-
ing convolutional layers. More in detail, the present CNN
is composed of two sub-modules: namely, an encoder
and a decoder.

The encoder has been heavily modified, replacing the
U-Net standard with convolutional layers derived from
the ResNet-34 model [26]. This allows pre-training on
vast classification datasets, permitting to transfer part of
that knowledge into our task, by means of simply replac-
ing the encoder layers with ones from a network trained
on one such dataset.

The decoder is composed of four convolutional blocks,
each one with the same number of channels as the cor-
responding ResNet-34 layer in the encoder path. Using
this approach, we can include paths between the so called
“skip-connections” The name refers to the fact that these
are shortcuts between the encoder and the decoder,
which promote the flow of information. Intuitively, infor-
mation such as the general shape can immediately “jump”
between the input and output of the CNN, without being
processed by every layer.

The network receives as input one RGB (red, green
and blue) image and produces segmentation layers as
output. Each layer represents one of the anatomical
districts of interest and consists of binary values. It is
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important to refer the final result to the original image,
meaning that the first has the same spatial resolution
as the latter. If a pixel has a value of 0, then the cor-
responding anatomical structure is not present in that
location. On the contrary, a value of 1 determines the
presence of the structure for that location. It is worth
mentioning that even if a structure is partially covered
by another one in the input image (e.g. a lesion cover-
ing one of the chest wall), the network is trained to pro-
duce a full structure, instead of one presenting holes.
This is necessary for the second stage of our pipeline,
i.e. the rule-based classifier.

During the training stage, annotated images were for-
warded to the network and the output segmentations
were compared with those provided by the veterinar-
ians (“ground-truth annotation”), in a layer-wise fashion
(Figure 4). The network was trained for 100 epochs (each
epoch includes all the train dataset examples). Data aug-
mentation, including random translations and rotations,
was also performed on each input. During the inference
phase, the image is simply forwarded to the network, but
no ground-truth comparison is performed.

Dataset

To train and fairly evaluate the performances of the
DL-based method proposed herein, the dataset was
split between train and test sets. The former (training
set) consisted of 5702 images and was employed during
the training stage. The test set consisted of 200 images
(i.e. 50 images for each scoring class) and was shown to
the network only during the inference stage, when no
weight in the network could be altered.

Skip-connections
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Encoder

Input
Image

T

Convolutional
Decoder

Figure 3 Overview of the model architecture. The input image is presented on the left. The CNN has been divided into two components to
enhance readability. The convolutional encoder (green) translates the image into a compressed features vector. Then, the convolutional decoder
(blue) converts this vector into the final segmentation layers, which can be compared with the ones annotated by the experts. The rule-based
classifier is depicted on the right. Given the predicted segmentation layers, this module casts them to one of the 4 classes of interest.
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Half-carcass (A) Vertebral bodies (B) Diaphragm (C) Cranial chest wall (D) Caudal chest wall (E) Artefact (F) Pleural lesions (G)

Figure 4 Layer-wise annotation process: an example. The DL-based method converted the original image into 7 layers, each one
corresponding to an annotated district: half-carcass (A), diaphragm (B), vertebral bodies (C), cranial chest wall (D), caudal chest wall (E), artefact (F),
pleurisy (G).

Scoring the segmentation masks using a rule-based caudal chest wall) were analysed by the rule-based clas-
classifier sifier. Lesions were isolated in the correspondent layer
A rule-based classifier was employed to convert the using a connected components algorithm. Then, each
segmentation masks, as provided by the trained DL- lesion was compared with the two chest wall layers, in
based method, into scores. Three out of the 7 segmen-  order to check whether there was an overlap (Figure 5).
tation layers (i.e. pleural lesions, cranial chest wall and

AY 4
D 4

Figure 5 Scoring through a rule-based classifier: an example. The rule-based classifier selected 3 layers of the segmented picture, namely
caudal chest wall (A), cranial chest wall (B) and pleural lesions (C). Thereafter, the same classifier checked the overlapping among such districts, in
order to assign the score: (D) the pleural lesion (red color) partially overlaps with the cranial chest wall (dark blue color); (E) the pleural lesion (red
color) partially overlaps with the caudal chest wall (light blue color). Total score =3.
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Finally, the rule-based classifier assigned a score,
according to the simplified PEPP method, as follows:

+ Lesion overlapping with cranial chest wall=1 point;

+ Lesion overlapping with caudal chest wall =2 points;

+ Lesions overlapping with both cranial and caudal
chest walls =3 points.

No further analysis was required in absence of lesions.

Statistical analysis

The DL-based methods were evaluated in terms of accu-
racy rates, i.e. calculating the ratio of the number of cor-
rect predictions to the total number of input samples.
The ability to discriminate between healthy and diseased
half carcasses, regardless of the score given, was also cal-
culated as specificity and sensitivity, respectively.

Results

Pleurisy scoring provided by the veterinarians

on the entire dataset

Pleurisy was detected in 2483 out of 5902 pictures
(42.07%), while the remaining 3419 were considered
healthy (57.93%). More in detail, according to the cho-
sen simplified PEPP method, 516 half-carcasses scored 1
point (8.74%), 656 half-carcasses scored 2 points (11.11%)
and 1311 half-carcasses scored 3 points (22.21%).

Pleurisy scoring provided by the trained DL-based method

As shown in Table 1, the overall accuracy of the ad hoc
trained DL-based method on the independent test set
(200 images) was 85.5%. This method proved to be very
effective at recognizing healthy (accuracy rate =96%) and
diseased half carcasses. More in detail, it was well able to
score pleurisy affecting both the cranial and caudal chest
wall areas (class IV; accuracy rate=92%) or affecting
only the caudal chest wall (class III; accuracy rate = 84%),

Table 1 Data is shown regarding the accuracy rates of
both baseline and ad hoc trained methods.

Method Accuracy rates (%)
Healthy Lesions Lesions Lesions Average
half class Il classlll classlV value
carcasses
(class 1)
BaselineDL 92 70 62 68 73
method
Ad hoc 96 70 84 92 855
trained
DL-based
method

Accuracy values clearly indicate that the segmentation-based approach
provides better results, the only exception being represented by class II.
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lower values being provided for class II lesions (accu-
racy rate=70%). The same data is shown in a confusion
matrix (Figure 6).

Table 2 shows the specificity and sensitivity values.
Obviously, in this case the specificity coincides with the
accuracy rate. The overall sensitivity, i.e. the ability to
identify diseased half carcasses regardless of the score
given, was 92%, and proved to be extremely high for class
IIT and IV lesions (98 and 100%, respectively).

The ad hoc trained DL-based method was further com-
pared with a “baseline method’; the latter consisting of
the same CNN structure combined with a four-class clas-
sifier. The baseline method employed only input images
and output scores, suffering from the lack of segmenta-
tion data (i.e. annotated pictures) even when the entire
training set was provided. As shown in Tables 1 and 2,
the baseline method was less well performing; in particu-
lar, the lowest accuracy rates were obtained for classes III
and IV lesions (62.0% and 68.0%, respectively), while the
lowest sensitivity values were gained for classes II and III
(84% and 86%, respectively).

Discussion

Artificial intelligence-based technologies are very topi-
cal, intriguing and virtually able to revolutionize most
human activities. It is widely accepted that AI will radi-
cally reshape the competitive dynamics of many indus-
tries, greatly impacting the economic development of
countries, as well as the nature of human work [27]. The
application of Al technologies in the field of biomedi-
cal sciences is particularly lively and promising. In this
respect, it should be remarked that over 18 000 articles
are currently available in the US National Library of
Medicine National Institutes of Health by typing “artifi-
cial intelligence” and “medicine” as keywords, covering
most of the disciplines of human medicine, including
pathology [28]. On the contrary, very few papers have yet
been published regarding the application of Al to veteri-
nary pathology [29-32]. Interestingly, Sanchez-Vazquez
et al. [31] applied a machine learning methodology to
identify associations among different disease conditions
in slaughtered pigs, the scoring carried out by swine
veterinarians acting as their data source. Very recently,
McKenna et al. [32] applied machine learning to detect
pericarditis and hepatis parasitic lesions at post-mortem
inspection in pigs.

The SPES grid clearly distinguishes between cranio-
ventral and dorsocaudal pleural lesions, as the latter
are worldwide recognized as indicative of previous A.
pleuropneumoniae infections. A large body of evidence
indicates that the A. pleuropneumoniae index (APPI),
a parameter provided by the SPES grid and which spe-
cifically considers dorsocaudal pleurisy, closely relates to
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Ground-truth annotations

| [l [l v

Data predicted by the baseline DL method

Ground-truth annotations

I Il [ v

Data predicted by the ad hoc trained DL method

Figure 6 Test set. Confusion matrix. Tables compare data provided by the veterinarians (‘ground-truth annotation”) with those provided by the
baseline DL method (A) and by the ad hoc trained DL method (B). The diagonal elements represent the correct prediction; the darker the blue
color, the more correct the prediction of the DL-based method. The ad hoc trained method (B) correctly predicted a very high number of healthy
(48/50), class IV (46/50) and class IIl (42/50) half carcasses. The prediction was less effective for class Il lesions (35/50). Overall, the ad hoc trained
Dl-based method provided better results as compared with those given by the baseline DL method.

Table2 Data is shown regarding the specificity and
sensitivity of both the baseline and ad hoc trained
methods.

Class Baseline DL method Ad hoc trained
DL-based
method

Specificity (%)
92 96
Sensitivity (%)

Il 84 78

Il 86 98

vV 96 100

411V 88.6 92

The value of specificity was very high for both methods. The ad hoc trained
method showed very high values of sensitivity for class Ill and IV, while such
value was lower for class II, due to the presence of small lesions which remained
overlooked. Also in this case, the ad hoc trained method provided better results,
the only exception being represented by class II.

the presence and severity of porcine pleuropneumonia in
the herd of origin [9, 14]. Although following a different
approach, the PEPP method demonstrated to strongly
correlate with SPES, thus representing an alternative tool
to score pleurisy, also applicable on digital images [15].
To the best of our knowledge, the present study rep-
resents the first application of Al technologies to detect
and quantify lesions in slaughtered pigs. Overall, our

data indicates that the trained CNN is able to discrimi-
nate healthy from diseased pleural surfaces. In particu-
lar, data provided by the CNN almost fully overlap with
those resulting from the application of the gold standard
method (i.e. the scoring carried out by swine veterinar-
ians), where healthy and severely affected half-carcasses
are concerned. The trained CNN showed lower accuracy
values for intermediate scores (classes II and III), reason-
ably due to the following main factors:

a. The lower number of half-carcasses scoring 1 and 2
compared with those scoring 0 and 3 that were used
to train the Al system. We consider that this issue
could be properly solved by increasing the number
of observations, considering that the CNN can “feed
itself’, thus progressively improving its performance;

b. The presence of small lesions straddling the 5" inter-
costal space, not easily interpreted even by veterinar-
ians. In this respect, we consider that CNNs could
represent an added value, providing more standard-
ized results and thus cutting out the natural inter-
operator variability, which is among the most rel-
evant concern of the current scoring methods.

The training of CNNs to identify and score other
pathological conditions (EP-like lesions, in primis), on
the one hand, and the achievement of trials in large
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capacity slaughterhouses, on the other, represent the
natural pursuance of the present study. Preliminary
data, obtained after the training with 3200 pictures,
indicate that the ad hoc developed CNN already shows
a high accuracy rate (92%) in discriminating between
healthy and diseased lungs. However, such values are
much lower if we consider the DL-based method’s abil-
ity to correctly predict the dimension of pneumonia
(accuracy rates ranging between 29.75 and 80.57%) and
must be improved for a suitable score of EP-like lesions.

As a result, Al-based technologies could provide a
fast and cheap tool to systematically record lesions in
slaughtered pigs, thus supplying an enormous amount
of useful data to all stakeholders in the pig industry.
In particular, such data would represent a useful feed-
back for the farmers, as well as an effective stimulus to
improve herd management, as suggested by the avail-
able scientific literature [31]. We consider that the
development and application of Al-based technologies
will deeply modify the professional life of veterinar-
ians, without affecting their key role to suitably inter-
pret data and to implement the best disease control
strategies. Moreover, the massive body of data obtained
through Al-based technologies could be used for epi-
demiological investigations, on a regional, national or
international scale, resolutely moving toward evidence-
based medicine [11].

In conclusion, our data indicate that CNNs can be
effectively trained to diagnose and score lesions in
slaughtered pigs. This would allow the systematic collec-
tion of data at slaughter, making available an enormous
amount of data, useful for better health management of
livestock. We consider that we are very close to the ump-
teenth, epochal revolution in the field of veterinary medi-
cine. Veterinarians should be able to face such challenges,
using new technologies, to improve their professional
activity.
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