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Abstract
The relationship between genetic and environmental risk is complex and for many traits, estimates of genetic effects may be 
inflated by passive gene-environment correlation. This arises because biological offspring inherit both their genotypes and 
rearing environment from their parents. We tested for passive gene-environment correlation in adult body composition traits 
using the ‘natural experiment’ of childhood adoption, which removes passive gene-environment correlation within fami-
lies. Specifically, we compared 6165 adoptees with propensity score matched non-adoptees in the UK Biobank. We also tested 
whether passive gene-environment correlation inflates the association between psychiatric genetic risk and body composition. 
We found no evidence for inflation of heritability or polygenic scores in non-adoptees compared to adoptees for a range of 
body composition traits. Furthermore, polygenic risk scores for anorexia nervosa, attention-deficit/hyperactivity disorder 
and schizophrenia did not differ in their influence on body composition traits in adoptees and non-adoptees. These findings 
suggest that passive gene-environment correlation does not inflate genetic effects for body composition, or the influence of 
psychiatric disorder genetic risk on body composition. Our design does not look at passive gene-environment correlation in 
childhood, and does not test for ‘pure’ environmental effects or the effects of active and evocative gene-environment correla-
tions, where child genetics directly influences home environment. However, these findings suggest that genetic influences 
identified for body composition in this adult sample are direct, and not confounded by the family environment provided by 
biological relatives.

Keywords  Genomics · Psychiatric disorders · Body composition · Polygenic scores · Heritability · Passive gene-
environment correlation · Adoption

Introduction

Body composition traits are highly heritable (Schousboe 
et al. 2004; Hanisch et al. 2004; Tarnoki et al. 2014). For 
example, in a study of 380 adult twins (230 monozygotic 
and 150 dizygotic pairs; male:female ratio, 68:32; age range 
18–82), heritability estimates were 82% for weight, 79% for 
body mass index (BMI), and 74% for body fat percentage 
and fat-free mass, using bioelectrical impedance analysis 
(Tarnoki et al. 2014). Genome-wide analyses have also 
revealed single nucleotide polymorphism (SNP) heritabil-
ity estimates of 13% for BMI (Locke et al. 2015), 10% for 
body fat percentage (Lu et al. 2016), 40% for fat-free mass 
(Medina-Gomez et al. 2017) and 10% for waist-to-hip ratio 
(Shungin et al. 2015). In addition, advances in polygenic 
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scores have shown that common genetic variants account for 
>20% of the variance in BMI (Locke et al. 2015).

Estimates of genetic influence can be confounded by pas-
sive gene-environment correlation which refers to the asso-
ciation between the genotype an individual inherits from 
their parents and the environment in which they are raised 
(Kong et al. 2018). This association arises because parents 
not only pass genetic factors to their offspring, but also the 
home environment they provide. The latter is also influenced 
by within family genetic factors (Knafo and Jaffee 2013). 
Thus, both transmitted and non-transmitted parental genes 
may influence offspring by impacting how parents nurture 
their children (Kong et al. 2018). For example, children who 
inherit genetic variants associated with a higher BMI will, 
on average, have parents with a higher BMI with associated 
altered parental and family behaviours relating to food and 
activity levels. Therefore, the contribution of genetic factors 
to body composition may be overestimated because of gene-
environment correlations.

Twin studies show that the home environment plays an 
important role in explaining the variation in BMI (Dubois 
et al. 2012; Schrempft et al. 2018). For example, obesity-
related genes are more strongly associated with BMI in 
home environments characterised by poor eating and exer-
cise habits at age 4 (Schrempft et al. 2018). However, these 
studies do not inform us about other body composition char-
acteristics and were not designed to test whether parental 
genes contribute to the covariation between the home envi-
ronment and offspring BMI. In addition, no studies have 
investigated whether polygenic effects on body composition 
are mediated through the home environment.

The adoption design provides a ‘natural experiment’ free 
of passive gene-environment correlation, and therefore can 
help elucidate whether genetic influences identified for body 
composition are confounded by the home environment. This 
is because adopted children are reared in families where 
they are genetically unrelated to their adoptive parents, thus 
genetic variance estimated for their traits result from solely 
direct genetic effects. In contrast, non-adopted individuals 
are reared by their biological parents, and therefore their 
traits are not only directly influenced by their own genetics, 
but also by passive gene-environment correlation (Plomin 
et al. 1985). Notably, gene-environment interaction and 
other forms of gene–environment correlation (evocative and 
active) are still present in adoptees which contribute to direct 
genetic effects (Plomin et al. 1977).

In UK Biobank there are a large number of individuals 
who were adopted in childhood (n = 7342). We previously 
explored genetic influences on educational attainment in 

adult adoptees and non-adoptees in the UK Biobank, and 
found roughly half of the predictive power of polygenic 
scores for educational attainment comes from passive 
gene–environment correlation (Cheesman et al. 2019). 
Similar findings have been reported for childhood edu-
cational attainment (Bates et al. 2018; Kong et al. 2018). 
Taken together, these findings suggested that genetic influ-
ences on educational attainment are inflated by effects of 
genetic variation in parents, through the home environ-
ment, and this inflation persists into adulthood. Given 
that childhood obesity is a strong predictor of obesity in 
adulthood (Simmonds et al. 2016) and that food prefer-
ences formed in childhood can carry on into adulthood (De 
Cosmi et al. 2017), it is plausible that important gene-envi-
ronment correlations regarding body composition traits 
that emerge in childhood persist into adulthood.

We describe the first study to test for passive gene envi-
ronment correlation on body composition traits. We also 
explore whether passive gene-environment correlation 
mediates the association between psychiatric genetic risk 
and body composition. This is because psychiatric disor-
ders often present with changes in body weight and com-
position (Cortese et al. 2008; Fanoe et al. 2014; Lasserre 
et al. 2014; Manu et al. 2015; Cortese and Tessari 2017; 
Milaneschi et al. 2017; Bowling et al. 2018); and psychiat-
ric symptoms are more commonly reported by individuals 
at the extremes of body composition (Luppino et al. 2010; 
Mond et al. 2011; Janney et al. 2013; Preiss et al. 2013). 
In addition, new research by our group has revealed that 
anorexia nervosa, attention-deficit/hyperactivity disorder 
(ADHD) and schizophrenia are genetically correlated and 
have significant Mendelian randomisation relations with 
BMI and associated body composition characteristics 
(Hübel et al. 2019). Thus, parental genetic variation effects 
on the home environment might also inflate the association 
between psychiatric genetic risk and body composition.

In summary, to test for passive gene-environment 
correlation on body composition traits, our goal was to 
compare the SNP-based heritability and polygenic predic-
tion of body composition traits in a sample of adoptees 
and non-adoptees from the UK Biobank. Given the link 
between childhood and adulthood obesity, and that early 
food preferences can influence later food choices, we con-
sidered it likely that important passive gene-environment 
correlations that emerge in childhood persist into adult-
hood. Thus, we hypothesised that genetic effects will be 
increased in non-adopted individuals due to their exposure 
to passive gene-environment correlation in childhood. Our 
second goal was to test whether passive gene-environment 
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correlation inf lates associations between psychiat-
ric genetic risk and body composition. Specifically, we 
hypothesised that the proportion of variance in body com-
position explained by polygenic risk scores (PRS) for ano-
rexia nervosa, schizophrenia and ADHD will be increased 
in non-adopted individuals.

Methods

Study Population, Genotype Quality Control 
and Phenotype Definition

The UK Biobank is a large prospective cohort study 
consisting of approximately 500,000 participants aged 
40–69 years when recruited in 2006–2010 (Sudlow et al. 
2015). Participants were asked the item “Were you adopted 
as a child?”, to which 7342 individuals said “yes” and 
492,668 individuals said “no”. Individuals that answered, 
“do not know” or “prefer not to answer”, or responded 
inconsistently, were excluded. Genome-wide genetic 
data came from the full release of the UK Biobank data 
(N = 487,410) and were processed according to the quality 
control pipeline (Bycroft et al. 2018). We restricted our 
analyses to individuals with full baseline phenotypic data, 
who also passed quality control criteria (European ances-
try, unrelated; (Bycroft et al. 2018)). Our cleaned sample 
consisted of 6165 adopted and 370,493 non-adopted indi-
viduals. This is smaller than our previous study using this 
sample (Cheesman et al. 2019) due to requiring samples 
with complete data on more than one phenotype.

Standard genotype quality control criteria were used 
(Coleman et al. 2019). Genetic variants had to have a 
minor allele frequency > 1%, and be directly genotyped 
or imputed with high confidence (IMPUTE INFO met-
ric >0.4; (McCarthy et al. 2016)). We included indi-
viduals with a genotype call rate > 98% who had con-
cordant phenotypic and genetic gender information. 
The latter requiring an X-chromosome homozygosity 
of >0.9 and < 0.5 for phenotypic males and females, 
respectively. We also required individuals to be unre-
lated to others in the dataset using a relatedness cut-off 
of KING r < 0.044. This was equivalent to removing a 
third-degree or closer relative (Manichaikul et al. 2010). 
To minimise the exclusion of adoptees, we performed 
removal of relatives using a “greedy” algorithm (i.e. 
removal of the non-adoptee in a adoptee/non-adoptee 
duo). All analyses were restricted to individuals of 
European ancestry because of insufficient numbers of 
other ancestry groups in the adoptees (Supplementary 
Table 1). This was defined by 4-means clustering on the 
first two genetic principal components provided by the 
UK Biobank (Warren et al. 2017).

We examined height, BMI, body fat percentage (BF%), 
fat mass (FM), fat-free mass (FFM), and waist-to-hip ratio 
(WHR). Weight, BF%, FM and FFM were measured using 
the Tanita BC418MA body composition analyser (Kelly 
and Metcalfe 2012). This was highly standardised and used 
across all assessment centres. Waist and hip circumfer-
ences, and height were measured manually in the assess-
ment centres.

Samples

Propensity Score Matching

Using the R ‘MatchIt’ package (Ho et al. 2007) for propen-
sity score analysis, we selected a matched sub-group of non-
adoptees from the 370,493 non-adopted individuals in the 
UK Biobank. By selecting non-adopted matches for each 
individual adoptee, genetic differences between the groups 
were unlikely to reflect observed differences in phenotype or 
sample size. We used a ratio of 1:1 (i.e. 6165 adoptees and 
6165 matched non-adoptees), matching the groups on age, sex, 
height, BMI, BF%, FM, FFM, WHR, weight altering medica-
tions and diagnoses that affect body composition (e.g. cancer, 
diabetes, Crohn’s disease, anorexia and bulimia nervosa, and 
major depressive disorder) (Hübel et al. 2019). Specifically, we 
used the nearest neighbor matching method which selects the 
best control match for each case one at a time (Ho et al. 2007).

After matching, the remaining 364,328 non-adopted indi-
viduals were stratified into 3 further samples: 1) a random 
sample of 6165 unmatched non-adoptees to see whether 
adoptees and non-adoptees differ in body composition 
characteristics 2) a random sample of 3000 individuals to 
run preliminary PRS analyses to obtain optimal p value 
thresholds for each body composition trait (this sample was 
sufficiently powered) and 3) a large sample of 355,163 indi-
viduals to run genome-wide association studies (GWAS) to 
obtain SNP weights for PRS analyses. These groups have 
been summarised in Fig. 1.

Phenotypic Analyses

Using the adopted and unmatched non-adopted samples 
(groups a and c in Fig. 1), we tested for differences in body 
composition between the two groups. Welsh’s Two-Sample 
T-tests were used to test for mean differences between adop-
tees and non-adoptees for parametric phenotypes (data pre-
sented as mean ± standard deviation [SD]). Wilcoxon rank 
sum tests with continuity correction were used to compare 
median differences between adoptees and non-adoptees for 
non-parametric phenotypes (data presented as median [inter-
quartile range (IQR)]). To determine whether phenotypic 
variances differed between the two groups we used Levene’s 
tests. These analyses were performed in R version 3.5.3.
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Genetic Analyses

Heritability and PRS analyses of body composition traits in 
adoptees, matched non-adoptees and unmatched non-adoptees 
were controlled for age, sex, socio-economic status (SES), 
smoking, alcohol, menopause, pregnancy, weight altering 
medications, diagnoses that affect body composition, ancestral 
principal components 1–6, batch and centre. SES, smoking, 
alcohol, menopause, pregnancy, ancestral principal compo-
nents, batch and centre were not included in propensity score 
matching because these created more heterogeneous samples, 
reducing the ability to closely match the groups as was pos-
sible. Beyond propensity score matching, we controlled for 
age, sex, weight altering medications, and diagnoses that affect 
body composition in adoptees and matched non-adoptees 
because matching does not completely control for the variable.

Heritability of Body Composition in Adoptees 
and Non‑adoptees

To determine the proportion of variance explained by com-
mon variants for height, BMI, BF%, FM, FFM and WHR in 
adoptees, matched non-adoptees and unmatched non-adoptees, 
we used the genome-wide complex trait analysis (GCTA) soft-
ware (v1.90b4 64-bit) to carry out Genomic-RElatedness-
based restricted Maximum-Likelihood (GREML; (Yang et al. 
2011)). GREML estimates heritability in unrelated individuals, 

avoiding the confounding of non-additive genetic and envi-
ronmental effects that can occur in twin studies. The method 
involves creating a matrix of genomic similarity whereby 
genetic similarity across genotyped SNPs is calculated between 
each pair of individuals. This matrix is subsequently compared 
to a matrix of pairwise phenotypic similarity using a random-
effects mixed linear model. This allows the proportion of phe-
notypic variance of a trait to be stratified into its genetic and 
residual variance component, using restricted maximum likeli-
hood. We created three genetic relatedness matrices (adoptees, 
matched non-adoptees and unmatched non-adoptees) each with 
a relatedness cut-off of 0.044, and residualized our body com-
position traits via linear regression modelling. We also looked 
at the linkage disequilibrium (LD) score regression derived 
SNP-heritability of these traits in the large genome-wide analy-
sis sample (group e in Fig. 1) (Bulik-Sullivan et al. 2015).

Polygenic Risk Scoring

PRSs for body composition traits were constructed via 
PRSice version 2.2.1 (Choi and O’Reilly 2019). SNP 
weights were based on the output from GWAS of each body 
composition trait (group e in Fig. 1).

The preliminary PRS sample of 3000 individuals (group 
d in Fig. 1) was used to identify the optimal p value thresh-
old for inclusion of SNPs for each body composition trait. 

Fig. 1   Schematic diagram summarizing the study groups
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The standard set of P-values were tested: 0.001, 0.05, 0.1, 
0.2, 0.3, 0.4, 0.5, 1. Using the optimal p value threshold, we 
ran polygenic prediction models in our adopted, matched 
non-adopted and unmatched non-adopted  samples. To 
compare PRS results between the groups, we obtained 
bootstrapped standard errors (SE) for the R2 statistics using 
the ‘boot’ package in R, with 1000 replications. To decide 
whether or not to reject the null hypothesis of no differ-
ence in variance explained by PRSs in adoptees and non-
adoptees, Z scores were created using the PRS R2 and SE.

PRSs for anorexia nervosa, schizophrenia and ADHD 
were also investigated due to their significant genetic over-
lap with body composition traits (Hübel et al. 2019). In 
addition, we looked at polygenic scores for educational 
attainment, because it has the largest Mendelian randomi-
sation effect on body composition (Hübel et al. 2019), and 
childhood obesity. We used the latest summary statistics for 
anorexia nervosa (16,992 cases and 55,525 controls; (Wat-
son et al. 2019)), schizophrenia (33,610 cases and 43,456 
controls; (Schizophrenia Working Group of the Psychiat-
ric Genomics Consortium 2014)), ADHD (19,099 cases 
and 34,194 controls; (Demontis et al. 2017)) and child-
hood obesity (5530 cases [≥95th percentile of BMI] and 
8318 controls [<50th percentile of BMI]; (Bradfield et al. 
2012)). We also used the largest GWAS summary statistics 
for educational attainment (N = 766,345; (Lee et al. 2018)). 
We excluded UK Biobank participants from these GWAS, 
and used the same procedure described above, except SNP 
weights were based on the output of the relevant trait GWAS.

Power calculations for our PRS analyses were performed 
using the ‘pwr’ package. Calculations were based on a Two 
Sample T-test, presuming an underlying normal distribu-
tion, a 2-sided significance level of 5% or the Bonferroni 
corrected threshold, and a power of 80% or greater.

Correction for Multiple Testing

Stringent multiple testing correction was applied to the herit-
ability and PRS analyses, using matrix decomposition of the 
genetic correlation matrix of all phenotypes studied (height, 
BMI, BF%, FM, FFM, WHR, anorexia nervosa, schizophre-
nia, ADHD, educational attainment, childhood obesity), to 
identify the number of independent tests in order to adjust 
the P value thresholds using Bonferroni correction ((Nyholt 
2004); see Supplementary materials).

Results

Descriptives

Detailed sociodemographic data for each group (adop-
tees, matched non-adoptees and unmatched non-adoptees) 

is provided in Table 1. Briefly, participants showed simi-
lar sociodemographic characteristics for age, sex, average 
total household income before tax, highest qualification, 
proportion of individuals with a diagnosis of anorexia ner-
vosa, schizophrenia and ADHD, and body size at age 10.

Phenotypic Analyses

The findings based on unmatched samples (groups a and c 
in Fig. 1) illustrate that non-adopted individuals had lower 
average BMI, BF%, FM, FFM and WHR than adopted 
individuals (Table 2). Non-adoptees also showed greater 
phenotypic variance than adoptees for BMI (IQR: 21.5–44 
vs 21.6–41.6; P < 0.0001) and FM (IQR: 14.1–60.8 vs 
14.8–53.7; P < 0.001). In contrast, non-adopted individu-
als showed only very slightly greater phenotypic variance 
for BF% (SD: 8.83 vs 8.51; P < 0.001), with significance 
most likely driven by the large sample sizes in this study. 
We compared our random sample of unmatched non-adop-
tees (group c in Fig. 1) to the large GWAS sample (group 
e in Fig. 1) and found no significant phenotypic differences 
(Supplementary Table 2), confirming our random sample of 
6165 non-adoptees was representative of the non-adopted 
population in UK Biobank.

Following propensity score matching, the distributions 
for each body composition trait sufficiently overlapped, 
removing phenotypic differences between adopted and non-
adopted individuals (Table 2). Density curve plots for each 
body composition trait, separately for adoptees, matched 
non-adoptees, unmatched non-adoptees and the full UK 
biobank sample, can be found in Supplementary Fig. 1.

Heritability and Polygenic Prediction of Body Composition 
in Adoptees and Non‑adoptees

Figure 2 shows the variance explained by common SNPs 
for body composition traits and by polygenic scores of each 
body composition trait, separately for adoptees, matched 
non-adoptees and unmatched non-adoptees. We found esti-
mates of GREML-derived SNP-based heritability for height, 
BMI, BF%, FM, FFM and WHR did not differ between 
adopted and non-adopted individuals, irrespective of match-
ing (Fig. 2). We also observed similar results for polygenic 
prediction of these body composition traits in adopted and 
non-adopted individuals. The LD score regression derived 
heritability estimates for these traits are presented in Sup-
plementary Table 3.

Polygenic Association of Body Composition

Figure 3 shows that the phenotypic variance in height, BMI, 
BF%, FM, FFM and WHR explained by PRSs for anorexia 
nervosa, schizophrenia, ADHD, educational attainment and 
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Table 1   Descriptive statistics: age, sex, average total household 
income before tax, highest qualification, number of individuals with 
anorexia nervosa, schizophrenia and ADHD, and body size at age 10, 

separately for adoptees, matched non-adoptees and unmatched non-
adoptees. Body size at age 10 was used as a proxy for childhood obe-
sity

Values are mean and range (min - max) for age, otherwise values are n (%)

Adoptees (n = 6165) Matched non-adoptees 
(n = 6165)

Unmatched 
non-adoptees 
(n = 6165)

Age 56.37 (40–70) 56.36 (40–70) 56.81 (40–71)
Sex Female 3226 (52.33%) 3249 (52.70%) 3339 (54.16%)

Male 2939 (47.67%) 2916 (47.30%) 2826 (45.84%)
Average total household 

income before tax
Greater than 100,000 231 (3.75%) 283 (4.59%) 297 (4.82%)
52,000 to 100,000 932 (15.12%) 1099 (17.83%) 1084 (17.58%)
31,000 to 51,999 1295 (21.01%) 1429 (23.18%) 1456 (23.62%)
18,000, 30,999 1356 (22%) 1298 (21.05%) 1307 (21.20%)
Less than 18,000 1444 (23.42%) 1167 (18.93%) 1187 (19.25%)
Do not know 257 (4.17%) 244 (3.96%) 239 (3.88%)
Prefer not to answer 609 (9.88%) 622 (10.09%) 569 (9.23%)
NA 41 (0.67%) 23 (0.37%) 26 (0.42%)

Highest qualification College or university degree 1740 (28.22%) 1951 (31.65%) 2061 (33.43%)
NVQ or HND or HNC or equivalent 424 (6.88%) 439 (7.12%) 347 (5.63%)
Other professional qualification: e.g. nurs-

ing, teaching
337 (5.47%) 311 (5.04%) 307 (4.98%)

A/AS levels or equivalent 727 (11.79%) 732 (11.87%) 711 (11.53%)
O levels/GCSE or equivalent 2554 (41.43%) 2319 (37.62%) 2341 (37.97%)
CSEs or equivalent 318 (5.16%) 349 (5.66%) 326 (5.29%)
Prefer not to answer 60 (0.97%) 56 (0.91%) 60 (0.97%)
NA 5 (0.08%) 8 (0.13%) 12 (0.19%)

Anorexia Nervosa 33 (0.54%) 24 (0.39%) 20 (0.33%)
Schizophrenia 30 (0.49%) 22 (0.36%) 14 (0.23%)
ADHD 6 (0.10%) 3 (0.05%) 2 (0.03%)
Body size at age 10 Thin 1996 (32.38%) 1972 (31.99%) 1981 (32.13%)

Average 1071 (17.37%) 1097 (17.79%) 996 (16.16%)
Plump 2932 (47.56%) 2976 (48.27%) 3075 (49.88%)
Do not know 162 (2.63%) 120 (1.95%) 112 (1.82%)
Prefer not to answer 4 (0.06%) 0 (0%) 1 (0.02%)

Table 2   Body composition characteristics of adoptees, matched non-adoptees and unmatched non-adoptees

Values are mean ± SD for height, body fat percentage (BF%), fat free mass (FFM) and waist-to-hip ratio (WHR)
Values are median (IQ25 - IQ75) for body mass index (BMI) and fat mass (FM)
a values were determined using the Welsh’s Two-Sample T-test
b values were determined using the Wilcoxon rank sum test with continuity correction
Significance codes for Levene’s test: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ns ‘1’
N = 12,330 for each Levene’s test; mean was used for height, BF%, FFM and WHR; median was used for BMI and FM

Adoptees (n = 6165) Matched non-adop-
tees (n = 6165)

P Levene’s Test Unmatched non-
adoptees (n = 6165)

P Levene’s Test

Height 168.6 (9.27) 168.7 (9.14) 0.55a ns 168.6 (9.27) 0.5a ns
BMI 27.3 (21.6–41.6) 27.4 (21.5–51.3) 0.18b ns 26.7 (21.5–44) 2.98 × 10–13 b **
BF% 31.97 (8.83) 32.15 (8.69) 0.27a ns 31.32 (8.51) 2.66 × 1054 a ***
FM 24.3 (14.8–53.7) 24.5 (14.8–52.9) 0.06b ns 23.2 (14.1–60.8) 4.86 × 10–8 b ***
FFM 54.09 (11.61) 53.47 (11.56) 0.72a ns 53.35 (11.5) 2.97 × 103 a ns
WHR 0.88 (0.09) 0.88 (0.09) 0.61a ns 0.87 (0.09) 7.4 × 10–11 a ns
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Fig. 2   Estimates of the variance explained by common SNPs for 
body composition traits and by polygenic scores of each body com-
position trait, separately for adoptees, matched non-adoptees and 
unmatched non-adoptees. Error bars show standard errors. Sample 
sizes for polygenic-prediction analyses were 6165 for each sample; 
sample sizes for genomic-relatedness-based restricted-maximum-
likelihood (GREML) heritability analyses were lower (6142 for adop-
tees, 6121 for matched non-adoptees, and 6114 for unmatched non-
adoptees) due to GREML’s more strict relatedness standard. Standard 

errors for polygenic risk scores were obtained by bootstrapping with 
1000 replications. P value thresholds for SNP heritability and poly-
genic prediction analyses after correction for multiple comparisons 
by matrix decomposition and Bonferroni correction were 4.16 × 10−3 
(.05/10) and 6.94 × 10−3 (.05/16), respectively. None of the differ-
ences were significant. BMI = body mass index, BF% = body fat per-
centage, FM = fat mass, FFM = fat-free mass, WHR = waist-to-hip 
ratio

Fig. 3   Polygenic prediction of body composition traits in adoptees, 
matched non-adoptees and unmatched non-adoptees, plus stand-
ard errors (bars). R-squared have been multiplied by the direction of 
the coefficient value. Standard errors for polygenic risk scores were 
obtained by bootstrapping with 1000 replications. P value thresh-

old after correction for multiple comparisons by matrix decompo-
sition and Bonferroni correction =  3.13  ×  10−3 (.05/16). None of 
these findings were statistically significant. BMI = body mass index, 
BF% = body fat percentage, FM = fat mass, FFM =  fat-free mass, 
WHR = waist-to-hip ratio
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childhood obesity were minimal and did not significantly 
differ between adopted and non-adopted individuals, irre-
spective of matching. We found PRSs for childhood obesity 
and ADHD were positively associated with BMI, BF%, FM, 
FFM, and WHR. In contrast, higher polygenic propensity for 
educational attainment was negatively associated with BMI, 
BF%, FM, and WHR. We found schizophrenia and anorexia 
nervosa PRSs showed the weakest associations across all 
body composition traits, the latter possibly due to low sta-
tistical power of the anorexia nervosa GWAS. Finally, PRSs 
for anorexia nervosa, schizophrenia, ADHD and childhood 
obesity were poorly associated with height, while higher 
polygenic propensity for educational attainment was associ-
ated with being taller. Our power calculations show that, at 
the sample size examined and presuming an underlying nor-
mal distribution of these body composition traits, we were 
sufficiently powered to detect significant differences between 
the groups, with an effect size of 0.05, a power of 80%, and a 
significance level of 0.05 (Supplementary Table 4).

Discussion

We describe the first study to test for passive gene-environ-
ment correlations in adult body composition traits and their 
association with psychiatric disorders, using the adoption 
design. We found no significant differences in variance in 
body composition explained by common genetic variants 
or polygenic scores in adopted as compared to non-adopted 
individuals. We also show, for the first time, no evidence 
of significant differences in variance in body composition 
explained by PRSs for anorexia nervosa, schizophrenia and 
ADHD in adopted and non-adopted individuals. Our find-
ings suggest that genetic influences on adult body composi-
tion are not magnified when individuals are reared by their 
close genetic relatives, with whom they share both genes 
and environments.

There are two potential explanations for this: i) the 
association between the home environment and body 
composition is ‘purely’ environmental i.e. does not origi-
nate in parental genotypes, or ii) parents’ genes act on 
offspring traits through the home environment, but these 
effects largely deteriorate with increasing age. Existing 
literature suggests that shared environmental factors that 
affect BMI are important in childhood but their effects 
largely disappear by adolescence (Silventoinen et al. 2016) 
and adulthood (Silventoinen et al. 2017). Similar findings 
were previously reported by Stunkard et al. who found 
the family environment has no apparent effect on being 
overweight in adult adoptees (Stunkard et al. 1986). These 
findings support the observations of our study.

A recent study revealed robust genetic correlations 
between childhood and adulthood BMI, with variants asso-
ciated with adulthood BMI acting as early as age 4 (Couto 
Alves et al. 2019). However, they reported completely dis-
tinct genetics for BMI during infancy (Couto Alves et al. 
2019). These findings suggest genetic influences on BMI 
and potentially other body composition characteristics 
may not be stable as differing sets of genomic variants 
underlie these traits in infancy versus childhood/adulthood 
(i.e. genetic innovation; (Silventoinen et al. 2017)). This 
implies that, whilst genetic variants for BMI or obesity in 
infancy might be affected by passive gene-environment 
correlation, genetic variants affecting these traits during 
childhood and adulthood might not be. Future research 
should explore passive gene-environment correlation in 
infancy (<4 years) and/or childhood (4–11 years).

We also observed that PRSs for anorexia nervosa, schizo-
phrenia and ADHD did not differ in their influence on body 
composition traits in adoptees and non-adoptees. These 
findings suggest that influences of parental behaviours on 
offspring do not inflate the influence of psychiatric disorder 
genetic risk on body composition. However, whilst these 
PRSs were constructed from the largest available GWASs, 
these phenotypes still have relatively small sample sizes. 
Thus, it is difficult to meaningfully interpret these findings 
due to their potential lack of statistical power. These analy-
ses should be repeated when sample sizes have increased.

There are several important caveats that need to be 
addressed when interpreting these findings. First, the UK 
Biobank has limited information on adoption circumstances. 
Data on age at adoption, adoptive parents and contact with 
biological parents were not collected. This information 
would have been valuable for the exclusion of adoptees 
not raised solely by their adoptive parents, thereby ena-
bling a more accurate comparison between adopted and 
non-adopted individuals. Secondly, our design does not test 
for ‘pure’ environmental effects or the effects of active and 
evocative gene-environment correlations, where child genet-
ics directly influences home environment. Thirdly, the UK 
Biobank has no information on childhood body composi-
tion, obesity or psychiatric health. Thus, we were unable 
to inform about passive gene environment correlation on 
childhood body composition traits and their associations 
with psychiatric disorders. We note that participants were 
retrospectively asked about their body size at age 10, how-
ever this is unlikely to be an accurate representation of child-
hood body composition. Fourthly, significant passive gene-
environment correlations during prenatal development are 
possible. For example, maternal smoking during pregnancy 
(a prenatal risk factor linked to adverse changes in birth 
weight) is genetically-influenced, indicating the potential 
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role of passive gene-environment correlation (Marceau et al. 
2016). Future research should seek to replicate these current 
findings in pregnancy and birth cohorts using other designs, 
particularly those involving parental genotype data, to allow 
explicit estimation of parental effects. Finally, these analyses 
may be influenced by the ‘healthy and wealthy’ volunteer 
self-selection of European-ancestry individuals in the UK 
Biobank (Keyes and Westreich 2019), which makes it dif-
ficult to generalise our findings to the general population.

Nonetheless, our study has several advantages including 
the utilisation of a large sample size of adopted individuals 
for heritability and PRS analyses and a method that does 
not require intergenerational data. Moreover, we adjusted 
for multiple relevant conditions and traits. This is a unique 
and important feature of our investigation and substantially 
reduced possible confounding of our analyses. Finally, 
despite the caveats linked to the UK Biobank, it remains the 
most appropriate cohort for our investigation because no 
other dataset comprises sufficient phenotypic and genetic 
data on adopted and non-adopted individuals.

Conclusion

The evidence presented in this study of middle-aged adults 
highlights that passive gene-environment correlation does 
not inflate overall genetic effects for, or the influence of psy-
chiatric disorder genetic risk on, body composition. Future 
research should seek to replicate these findings in pregnancy 
and birth cohorts, and estimate the role of passive gene envi-
ronment correlation on childhood body composition. If these 
studies also utilise parental genotype data, explicit estimates 
of parental effects could be calculated. Likewise, longitudi-
nal data could help to determine if the absence of passive 
gene-environment correlation in adulthood results from its 
deterioration when offsprings’ environments are no longer 
influenced by their genetic relatives and if partially differing 
sets of genomic variants underlie these traits in childhood 
versus adulthood.
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