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A B S T R A C T   

Rumination is a repetitive and compulsive thinking focusing on oneself, and the nature and consequences of 
distress. It is a core characteristic in psychiatric disorders characterized by affective dysregulation, and emerging 
evidence suggests that rumination is associated with aberrant dynamic functional connectivity and structural 
connectivity. However, the underlying neural mechanisms remain poorly understood. Here, we adopted a 
multimodal approach and tested the hypothesis that white matter connectivity forms the basis of the implications 
of temporal dynamics of functional connectivity in the rumination trait. Fifty-three depressed and ruminative 
individuals and a control group of 47 age- and gender-matched individuals with low levels of rumination un-
derwent resting-state fMRI and diffusion tensor imaging. We found that lower global metastability and higher 
global synchrony of the dynamic functional connectivity were associated with higher levels of rumination. 
Specifically, the altered global synchrony and global metastability mediated the association between white 
matter integrity of the genu of the corpus callosum to rumination. Hence, our findings offered the first line of 
evidence for the intricate role of (sub)optimal transition of functional brain states in the connection of structural 
brain connectivity in ruminative thinking.   

1. Introduction 

Rumination is a pattern of recursive and compulsive thinking 
focusing on one’s symptoms, causes, and consequences of distress 
(Nolen-Hoeksema et al., 2008; Papageorgiou and Siegle, 2003). Rumi-
nators tend to have heightened risk of developing depressive episodes 
(Nolen-Hoeksema, 2000), making rumination a common symptom of 
disorders characterized by affective dysregulation (Kovács et al., 2020; 
Nolen-Hoeksema, 2000). Particularly, although a profile of aberrant 
brain structure and functional network organization has been found in 
mood disorders (for a review, see Bi and He, 2014; Gong and He, 2015; 
Liu et al., 2021), the specific underlying neural mechanisms of 

rumination remains elusive to date. 
Past resting-state fMRI (rs-fMRI) studies mostly assumed brain con-

nectivity to remain stationary over time (Park et al., 2018), which 
overlooks the temporal dynamics of functional alternations (Zhi et al., 
2018), thereby, exploring the dynamics of resting-state functional con-
nectivity could offer a fresh perspective on the neural functional aber-
rations subserving rumination. 

Dynamic functional connectivity serves to measure the overall 
spatiotemporal organization of functional connectivity (Hansen et al., 
2015). Its spatiotemporal structure as reflected by the complex sponta-
neous state-dependent changes in functional connectivity is thought to 
be associated with cognitive activities (Rabinovich et al., 2012). Among 
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different measures of dynamic functional connectivity, particular focus 
has been placed on synchrony and metastability because they capture 
critical aspects of the dynamics building on the temporal patterns of the 
oscillatory activity of constituent brain regions (Cabral et al., 2011; 
Pedersen et al., 2018b). Synchrony is a measure of mean phase coher-
ence over time which underpins information exchange (Fries, 2015; 
Pajevic et al., 2014), while metastability represents the variability in the 
synchronization of network regions over time and is considered 
important for adaptive information processing and cognitive flexibility 
(Alderson et al., 2020; Tognoli and Kelso, 2014). In the present study, we 
studied these two dynamic properties as metrics of dynamic 
connectivity. 

Rumination leads to highly negative thinking and narrows down the 
attention scope, resulting in decreased action repertoires and increased 
likelihood of biased and self-related thoughts (Whitmer and Gotlib, 
2013). This habit of inflexible, sustained attention to self-referential 
information can be reflected by abnormal dynamic connectivity (Kai-
ser et al., 2016; Wise et al., 2017). Theoretically speaking, neural syn-
chrony and affective dysregulation could be closely linked to each other 
(Uhlhaas and Singer, 2006), though, this has yet to be directly tested in 
the framework of rumination. Preliminary evidence has reported that 
reduced metastability is associated with higher self-reported depression 
severity (Kaiser et al., 2016; Martínez et al., 2020), with individuals with 
major depressive disorder (MDD) spending more time in a ruminative 
state compared to controls (Rosenbaum et al., 2017), these findings thus 
warrant the speculation that impaired synchrony and metastability 
could be associated with higher levels of rumination. 

There is a paucity of research examining the association between 
white matter abnormalities and rumination but limited existing findings 
have found support (Borchers et al., 2019; Zuo et al., 2012), with some 
found a strong negative correlation between white matter integrity of 
the corpus callosum and rumination (e.g., Pisner et al., 2018). 
Furthermore, altered structural connectivity in the frontal-limbic- 
subcortical circuitry has been noted among mood disorders (Lisy 
et al., 2011; Lu et al., 2017). For example, greater alteration in the white 
matter circuits connecting the prefrontal lobe, the parietal lobe, and the 
limbic system could be associated with a more ruminative state (Zuo 
et al., 2012), potentially because damaged connectivity in brain struc-
tures may limit the dynamic repository available (Deco and Kringelbach, 
2016). 

Particularly, emerging evidence presenting the constraints structural 
connectivity could impose on the brain functional outcomes, such as 
that of dynamic functional connectivity (Liégeois et al., 2016; Park et al., 
2017); and on behavioral functional outcomes (de Schotten et al., 2020; 
Penke et al., 2012) lends further support to the proposition that struc-
tural connectivity may be a basis of the dynamicity of functional con-
nectivity and thereafter subserving rumination. We were not aware of 
any study examining whether brain metastability is critical to the 
implication of white matter integrity in rumination. Therefore, studies 
interrogating the mediating role of altered repertoire of brain dynamics 
could be important to foster understanding on structural integrity and 
dynamic connectivity subserving rumination. 

To this end, we investigated the implication of structural connec-
tivity and dynamic functional connectivity in rumination in individuals 
with MDD and healthy controls, and assessed how both types of con-
nectivity are related to their rumination via a multimodal approach. 
Rumination is a common feature in disorders categorized by affective 
dysregulation (Kovács et al., 2020), the strong association between 
rumination and depression in particular has thus rendered this MDD 
patient population an ideal sample (Nolen-Hoeksema, 2000; Nolen- 
Hoeksema et al., 2008). We hypothesized that white matter integrity 
captured in diffusion tensor imaging (DTI) data, and the global syn-
chrony and global metastability captured in rs-fMRI data would be 
significantly different between the two groups. We also investigated 
whether brain metastability could explain the statistical prediction of 
structural integrity of white matter on levels of rumination. 

2. Materials and methods 

2.1. Overview 

The analysis protocol was composed of three parts. Briefly, we ob-
tained global synchrony and global metastability values in our partici-
pants from the analytic signals of their rs-fMRI data (Fig. 1A–J). We also 
estimated their white matter integrity with tract-based spatial statistics 
(TBSS) and investigated its association with metastability (Fig. 1K). 
Finally, we investigated the relationships among structural connectivity, 
global synchrony, global metastability, and rumination using a media-
tion model. Analytic signals can be used to investigate neuronal syn-
chronization (Glerean et al., 2012; Pedersen et al., 2018a) with superior 
association with brain structure (Ponce-Alvarez et al., 2015) – the white 
matter integrity under investigation, thereby, they can provide insights 
into the relationship between brain structure and abnormalities in brain 
function – rumination in the present study. Analytic signal-based func-
tional connectivity is one method used to ascertain functional connec-
tivity premised on the band-pass-filtered time series and can be 
employed to characterize unique time-varying connectivity networks 
(Calhoun et al., 2014). Processing of the analytic signals derived from rs- 
fMRI data will be further explained in the following sections. 

2.2. Participants 

The initial sample consisted of 100 right-handed participants 
including 53 individuals with major depressive disorder (MDD) and a 
control group of 47 age- and gender-matched individuals without MDD 
(MDD: 31 female, 22 male; Control: 27 female, 20 male). Participants 
were aged between 19 and 57 years old. Individuals with MDD were 
diagnosed according to the criteria of Diagnostic and Statistical Manual 
of Mental Disorders (DSM-V) (Uher et al., 2014) by their case psychia-
trists. All MDD individuals had 17 or more scores on the Hamilton 
Depression Rating Scale 21-item inventory (HAM-D21; Cusin et al., 
2009; Hamilton, 1986). The exclusion criteria were Axis-I psychiatric 
disorders other than MDD, Axis-II psychiatric disorders, history of 
organic brain disorders, neurological disorders, mental retardation, 
cardiovascular diseases, alcohol or substance abuse, pregnancy, or any 
physical illnesses. No participants received electroconvulsive therapy 
within six months before data collection, and all individuals with MDD 
were on stable antidepressant treatments before MRI scanning (Table 1). 

Control group participants without MDD were recruited through 
local advertisements and screened using the Structured Clinical Inter-
view for DSM-V (Nonpatient Edition) to rule out the presence of current 
or past psychiatric disorders. Further exclusion criteria were any history 
of psychiatric disorders in first-degree relatives, and current or past 
significant medical or neurological illnesses. 

All individuals self-reported as right-handed, and no brain abnor-
malities were found on conventional MRI by an experienced radiologist. 
All participants completed MRI scanning within one week of clinical 
diagnosis and provided written informed consent. They were compen-
sated for their participation (¥150). Ethical approval was obtained from 
the Institutional Review Board of Guangzhou Brain Hospital. All 
experimental procedures were conducted in accordance with the 
Declaration of Helsinki (1975). 

2.3. Behavioral assessment 

Rumination was assessed with the Ruminative Response Scale (RRS; 
Treynor et al. 2003). RRS is a self-reported assessment often used to 
measure rumination. It consists of 22 items with three subcomponents: 
depression, brooding, and reflection rated on a 4-point Likert scale (i.e., 
never, sometimes, often, always). RRS has been shown to be a reliable 
and valid measure of rumination in the Chinese population, α = 0.90 
(Han and Yang, 2009). 
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2.4. Imaging data acquisition and preprocessing 

All neuroimaging data were acquired on a 3.0 Tesla MR imaging 
system (Achieva X-series, Philips Medical Systems, Best, Netherlands) 

with an eight-channel SENSE head coil at the Department of Radiology, 
Guangzhou Brain Hospital, China. Tight but comfortable foam padding 
was used to reduce head motion, and earplugs were used to muffle 
scanner noise. 

Resting-state fMRI images were acquired using a gradient-echo echo- 
planar imaging (GRE-EPI) sequence with repetition time (TR) = 2000 
ms, echo time (TE) = 30 ms, flip angle = 90◦, matrix = 64 × 64, field of 
view (FOV) = 220 mm × 220 mm, slice thickness = 4 mm with interslice 
gap = 0.6 mm, 33 interleaved axial slices, and 240 time points. T1- 

weighted images (MRI) were acquired with an interleaved sequence 
(188 sagittal slices, TR/TE/flip angle = 8.2 ms/3.7 ms/7◦, matrix = 256 
× 256 mm2, FOV = 256 × 256 × 188 mm, voxel size = 1 × 1 × 1 mm3). 
The DTI images were collected with these parameters: 32 diffusion- 
weighted (b = 1000 sec/mm2) and 1 non-diffusion weighted scans; 
TR = 10100 ms; TE = 90 ms, FOV = 256 × 256 mm2, voxel size = 2 × 2 
× 2 mm3. 

The fMRI data were preprocessed using Statistical Parameter Map-
ping (SPM 12, http://www.fil.ion.ucl.ac.uk/spm, Wellcome Trust 
Centre for Neuroimaging, London, UK) and Data Processing & Analysis 
for (Resting-State) Brain Imaging (DPABI, v6.0, http://rfmri.org/dpabi; 
Yan et al., 2016) with a standard pipeline, including correction for slice 
timing and motions, normalization of functional volumes using T1- 
weighted images, resampling to 3-mm isotropic voxels, and smoothing 
with 6-mm kernel. Moreover, we regressed out the Friston-24 parame-
ters of head motion (six head motion parameters, six head motion pa-
rameters at one time point before, and the twelve corresponding squared 
items) (Power et al., 2012; Satterthwaite et al., 2013), as well as signals 
of the white matter and cerebrospinal fluid. 

We obtained global signal by averaging all brain voxels’ time series 
and calculated the number of voxels that negatively correlated with the 
global signal. We then computed Global Negative Index (GNI) with the 
following formula (Chen et al., 2012; Fox and Raichle, 2007):  

GNI was calculated to assess whether global signal regression should 
be performed or not. If the GNI is < 3%, performing global signal 
regression induces less error, therefore, it is highly recommended that 
the global regression should be performed. If GNI is > 3%, performing 
global signal regression induces more errors. In this study, global signal 
regression was not performed after the examination of GNI profiles as all 
participants were found to have a GNI > 3%. 

We also looked at the Power frame displacement (FD). If FD of any 

Fig. 1. Data analysis flowchart. (A) Resting-state fMRI (rs-fMRI) data preprocessing. (B) Group-independent component analysis (ICA). (C) Extracting time series of 
each component and filtering with narrow band (0.04–0.07 Hz). (D) Estimating the static functional connectivity using Pearson correlation. (E, F) Deriving the 
analytic signals of each component and estimating the instantaneous phase coupling at each time point. (G, H) Estimating global metastability and global synchrony. 
(I) Constructing the dynamic functional connectivity using coefficient of variation. (J) Network based statistics (NBS) analysis revealing the inter-component 
connectivity difference. (K) Tract-based spatial statistics analysis (TBSS) in DTI data. 

Table 1 
Demographical and clinical variables.   

MDD 
individuals 

Controls without 
MDD 

t / X2 statistics 

Age 31.90 (9.96) 28.93 (10.88) t = 1.43, p = 0.15 
Sex 31F / 22M 27F / 20M X2 = 0.01, p = 0.92 
Edu 12.88 (3.51) 13.46 (3.16) t = -0.87, p = 0.38 
HAM-D21 33.59 (8.17) 2.10 (3.57) t = 24.43, p <

0.001 
Power FD 0.10 (0.05) 0.11 (0.06) t = -1.48, p = 0.15 
RRS total 57.42 (11.26) 37.53 (9.23) t = 9.61, p < 0.001 
RRS_Depression 30.74 (6.65) 18.95 (5.15) t = 9.84, p < 0.001 
RRS_Brooding 14.59 (3.03) 9.57 (2.66) t = 8.77, p < 0.001 
RRS_Reflection 11.91 (3.04) 9 (2.38) t = 5.27, p < 0.001 

MDD = major depressive disorder; Edu = years of education; HAM-D21 =
Hamilton Depression Rating Scale (21-item); FD = framewise displacement; 
RRS = Ruminative Response Scale ; F = female; M = male. 
Means with standard deviations in parentheses are presented, except for sex 
ratio. 

GNI =
No. of voxels negatively correlated with global signal (p < 0.05, uncorrected)

Total no. of voxels
.
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particular time point of the fMRI data is > 0.5, that time point is 
considered a “bad” time point, and the time points before and after that 
bad time point will be scrubbed using each of the bad time points as a 
regressor (Power et al., 2012). We excluded four participants who had 
displacement ≥ 3 mm in any plane and rotation ≥ 3◦ in any direction in 
their fMRI data. Hence, a total of 51 individuals with MDD and 45 age- 
and gender-matched control individuals without MDD were included in 
the final data analyses. A more detailed description of the preprocessing 
of fMRI data is reported in the Supplementary Information. 

For DTI data, standard preprocessing was applied using the FMRIB’s 
Diffusion Toolbox (FDT, v6.0, https://fsl.fmrib.ox.ac.uk/fsl; Smith et al., 
2004) implemented in FMRIB Software Library (FSL) to obtain the 
fractional anisotropy (FA) diffusion maps. Briefly, the DTI images were 
first corrected for eddy current and the motion between images. The 
gradient directions for rotations were subsequently adjusted, followed 
by the removal of non-brain tissue. Diffusion metrics maps, including FA 
and eigenvector maps were then estimated and inspected visually for 
orientation and image quality. FA diffusion maps were subsequently 
skeletonized and transformed into common space, all FA volumes were 
then warped to the template through FMRIB’s non-linear image regis-
tration. The mean FA images of all individuals were thinned to create a 
mean FA skeleton representing the centers of all white matter tracts, and 
were binarized at FA = 0.3. Individual FA values were then warped onto 
the mean FA skeleton. 

2.5. Independent component analysis and dynamic functional 
connectivity 

We conducted a spatial independent component analysis (ICA) using 
the preprocessed fMRI data in Group ICA of fMRI Toolbox (GIFT 
toolbox, v4.0b, http://mialab.mrn.org/software/gift/; Calhoun et al., 

2001). Spatial ICA decomposed data from each participant into linear 
mixtures of spatially independent components exhibiting a unique time 
course profile. Principal component analysis (PCA) was applied to 
reduce data dimensionality for each participant. Then, reduced data 
from all participants were concatenated and subjected to a second-data 
reduction step using PCA. The number of independent group compo-
nents was set at 23, which was based on the minimum description length 
criterion. The reliability of the independent component decomposition 
was tested by running Infomax 20 times in the Software for Investigating 
the Reliability of ICA Estimates by Clustering and Visualization (Icasso 
package, v1.22, https://research.ics.aalto.fi/ica/icasso/abouthttps:// 
research.ics.aalto.fi/ica/icasso/; Himberg et al., 2004). Finally, indi-
vidual subject components for each participant were reconstructed back 
from the group components using the group ICA approach, during which 
the aggregated components and results from the data reduction step 
were utilized to compute individual subject components. 

Subject-specific spatial map and time series of each participant were 
processed further with the following steps. First, we obtained one 
sample t-test maps for each spatial map across all participants and 
merged these maps to obtain regions of peak activation clusters for that 
component using SPM12, p < 0.01, cluster size > 100 voxels, and family- 
wise error correction. An average of blood-oxygen-level-dependent 
(BOLD) signals was computed across each component. Thus, a series 
of components represented intrinsic connectivity networks when their 
peak activation clusters fell on the gray matter. Theydemonstrated 
minimal overlap with known vascular, susceptibility, ventricular, and 
edge regions that corresponded to head motion. Following the recom-
mendation of Kelly et al. (2010), two components were removed after 
visual screening, thereby resulting in 21 ICs’ time-series data in the final 
analyses (Fig. 2). 

Fig. 2. Identified components by independent component analysis (ICA). 10 networks derived from 21 ICs’ time-series data.  
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2.6. Functional connectivity construction 

The subject-specific time series corresponding to the ICs for each 
participant were extracted and band-pass filtered between 0.04 and 
0.07 Hz into analytic signals using the Hilbert transformation (Glerean 
et al., 2012) for subsequent static and phase-based dynamic functional 
connectivity estimation and analyses. This narrow frequency range has 
been found to be reliable and optimal for examining BOLD analytic 
signal patterns (Pedersen et al., 2018a). The static functional connec-
tivity was defined as the Pearson correlation coefficient (r) between time 
series of each component and the coefficients were approximated as a 
normal distribution. 

The analytic signals derived from the 21 ICs’ time-series data can be 
understood as the product of two properties: instantaneous phase and 
instantaneous envelope (Glerean et al., 2012; Lachaux et al., 1999). 
Accordingly, functional connectivity profiles can be constructed using 
an analytic representation by means of the instantaneous phases. This 
phase-based method provides an alternative way to characterize dy-
namic functional connectivity with higher temporal resolution given the 
short duration of a resting-state fMRI session (Glerean et al., 2012). 
Ponce-Alvarez et al. (2015) has illustrated the use of this method to 
detect community structures and compared it with well-established 
methods such as the ICA. Moreover, the functional connectivity pro-
files derived from this approach has been found to be a reliable finger-
print for identifying individuals more than two years after (Zhang et al., 
2019). 

Briefly, the analytical signals were computed according to previous 
work (Glerean et al., 2012; Zhang et al., 2019) and its formula can be 
expressed as follows, with H[.] as the Hilbert transformation, i as the 
imaginary unit, and the new signal xa(t) has the identical Fourier 
transformations x(t) , despite being defined only for positive 
frequencies: 

xa(t) = x(t) + iH[x(t)]

Similarly, let x(t) be expressed as an amplitude signal a(t) with car-
rier frequency ∅(t) , thus: 

x(t) = a(t)cos[∅(t)].

Then Hilbert transformed analytic signal can be written as the 
product of two meaningful components: 

xa(t)=a(t)ei∅(t),

where |a(t)| represents the instantaneous envelope and ∅(t) is the 
instantaneous phase. 

Pairwise instantaneous phase differences at each time point among 
components were computed to reflect instantaneous phase coupling of 
the dynamic functional connectivity. Pairwise estimates of dynamic 
phase (de)coupling were estimated as follows, for each time instance t, 
the pairwise difference in phase between the time-series i and time series 
j was computed as: 

Δ∅ij =

{⃒
⃒∅i(t) − ∅j(t)

⃒
⃒, if

⃒
⃒∅i(t) − ∅j(t)

⃒
⃒ ≤ π

2π −
⃒
⃒∅i(t) − ∅j(t)

⃒
⃒, otherwise

.

Then, instantaneous coupling matrices, C(t) were constructed using 
phase differences normalized between 0 and 1, thereby respectively 
representing perfect anti-synchronization and perfect synchronization, 
such that: 

Cij(t) = 1 −
Δ∅ij(t)

π .

The coefficient of variation (variance/mean) of each element Cij(t)
across all time points is the final pairwise metric of phase coupling/de- 
coupling. 

This approach has been proven to be a stable and reliable dynamic 
functional fingerprint for identifying individuals with a high success rate 

of 86% (p < 0.001), indicating that instantaneous phase as an analytic 
signal may serve as a contemporary and promising tool for the study of 
dynamic functional connectivity. For details, refer to our previous work 
(Zhang et al., 2019). 

2.7. Dynamic functional connectivity 

We used two metrics, global synchrony and global metastability, to 
capture the dynamic properties of functional connectivity. The biolog-
ical mechanisms supporting these network properties occur at multiple 
timescales, including the slow frequencies measured with fMRI (Ponce- 
Alvarez et al., 2015). 

2.7.1. Global synchrony 
Global synchrony was calculated using binarized instantaneous 

coupling matrices (ICMs) (i.e., binary connectivity matrices (Cb(t)) 
composed of phase differences between components < π/8 , a bench-
mark for determining binary connectivity): 

Cb(t) =

⎡

⎣
Cb

ij(t) = 1, if Δφij < π
/

8

Cb
ij(t) = 0, otherwise

⎤

⎦.

The final matrix of dynamic functional connectivity consisted of an 
ICM at each time point, wherein the percentage of existing connections 
at each binary ICM (as each time point yielded a percentage of syn-
chronized pairs) was determined as global synchrony, a measure of 
general coherence of instantaneous phases. The coefficient of variation 
of each matrix across all time points is the final pairwise metric of phase 
coupling/de-coupling. N represents the number of components in the 
formula provided below: 

G(t) = 100

⎛

⎜
⎜
⎝

∑
i,j∈N Cb

ij(t)
N!

(N− 2)!2!

⎞

⎟
⎟
⎠.

The average global synchrony (G) across all time points was subse-
quently computed for each participant (detailed formula and explana-
tions were given in a former work [Demirtaş et al., 2016]). A high G 
indicates that the participant tends to linger in a state where the overall 
phase-coupling among oscillators is persistently high. 

2.7.2. Global metastability 
Global metastability was computed as the standard deviation of the 

Kuramoto order parameter (a proxy for instantaneous whole-brain 
synchrony) R(t), shown as follows: 

R(t) =
1
N

∑N

k=1
ei∅k (t),

where k = [1…, N] stands for the oscillators (here, N = 21 ICA- 
derived components), and ∅k(t) is the instantaneous phase of the k-th 
oscillator (time-series) at time t. Metastability provides a measure 
indicating the global level of synchrony of oscillating signals. 

2.7.3. Network-based statistic (NBS) analysis 
In addition to global measures of dynamic functional connectivity, to 

evaluate measures of network dynamics, we also looked into edge-wise 
level of dynamic that focuses on time-series clustering which are known 
to have time and spatial correlations (Harrington et al., 2015). NBS aims 
to identify connected components in brain graph by transforming time 
series from time-space domain to topographical domain, and to find 
groups of time series that are similar within a cluster (intra-cluster 
similarity) but are comparatively different from that of other clusters 
(inter-cluster similarity) to form network representations (Ferreira and 
Zhao, 2016). Group comparisons in functional connectivity between 
individuals with MDD and healthy controls using this approach were not 
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the focus of this study and more details are reported in Supplementary 
Information (Fig. S2). In brief, we calculated the variability (variance/ 
mean) of the phase coupling between each binary pair (0 and 1) across 
time, indexed as the variability of instantaneous phase coupling, and 
computed separate mean synchrony and metastability measures for the 
phase time series of components within the 10 networks defined. Con-
nectivity matrices were entered as between-subject dependent variables 
into the NBS toolbox to identify functional connections (Zalesky et al., 
2010), including the static and dynamic functional connectivity that 
showed group differences. Across the groups, the components identified 
using this method were extracted as components of interest. The primary 
threshold of individual-connection level was set at p < 0.01 with extent- 
based correction for multiple comparisons, 5,000 permutations, and an 
overall corrected α < 0.05. Age and gender were regressed out as 
covariates. 

2.8. Surrogate time series 

Surrogate time series under linearity and stationarity assumption 
were estimated to check whether the observed measures were due to 
dynamics (Prichard and Theiler, 1994). They were produced before 
band-pass filtering using the constrained phase randomization 
approach. Overall, 100 surrogates were generated for each participant, 
which mimicked the autocorrelations of each variable (time series) and 
the cross-correlations among all variables. The correlation coefficients, 
mean, and variance of the phase coupling values between components 
were preserved in the surrogate signals. Group averages for G and 
metastability were estimated using 1,000 values that were randomly 
sampled from the surrogates, and the p-value was calculated as the 
probability of the observed test statistic under this estimated null dis-
tribution. Therefore, the null hypothesis would be rejected when the p- 
value was < 0.05. The observed statistic was defined as the t-value for 
group comparisons. 

2.9. Relationship between white matter integrity and dynamic functional 
connectivity 

Since neural activity synchrony among different brain areas provides 
a flexible switch for different routes of effective communication while 
maintaining the fixed skeleton of structural connections (Deco and 
Kringelbach, 2016), we investigated the structural connectivity basis of 
aberrant dynamic connectivity. White matter integrity, as indexed by FA 
values, characterizes the strength of structural connectivity under study. 

2.10. Relationship between dynamic functional connectivity and clinical 
variables 

We examined the relationships between dynamic properties showing 
significant between-group differences and clinical variables, including 
HAM-D21 scores, age of onset of depression, duration of depression, and 
rumination scores. 

2.11. Mediation analyses 

We performed mediation analyses to gain insight into the extent to 
which alterations in dynamic functional connectivity could explain the 
association between structural connectivity alterations and rumination 
in individuals. Specifically, we tested whether global synchrony and 
global metastability would mediate the relationship between white 
matter integrity and rumination. 

3. Statistical analyses 

3.1. Group comparison in white matter integrity 

Voxel-wise TBSS with permutation tests on the final FA skeleton was 
conducted to identify differences in white matter integrity between in-
dividuals with MDD and the control group using the FSL/RANDOMISE 
tool (5,000 permutations), controlling for age, gender, and age × gender 
interaction. We included these covariates in our analyses due to the 
large age range of our participants and because previous studies sug-
gested that age and gender should be controlled for in functional con-
nectivity studies (Sie et al., 2019; C. Zhang et al., 2016). 

3.2. Group comparison in dynamic functional connectivity 

A non-parametric permutation test was employed to assess the sta-
tistical significance of between-group differences (i.e., MDD individuals 
vs. control group). Randomization with 5,000 permutations was per-
formed for global synchrony and global metastability, and the corre-
sponding distribution of the t-statistics was obtained. Age, gender, and 
age × gender interaction terms were included as covariates. 

3.3. Relationship between white matter integrity and dynamic functional 
connectivity 

We first extracted FA values from the TBSS-derived white matter 
skeleton which showed significant group differences. As no group × FA 
effects on the dynamic properties were observed, we then estimated the 
Pearson correlation between FA values and dynamic properties to 
evaluate whether alterations in white matter integrity of specific areas 
was related to the aberrant dynamic connectivity observed. Age, gender, 
and age × gender interaction terms were included as covariates. Instead 
of Pearson’s r, t-values were reported as an alternative statistic charting 
the association between the independent variable and dependent vari-
able, i.e., the white matter integrity and dynamic functional 
connectivity. 

3.4. Relationship between dynamic functional connectivity and clinical 
variables 

For global synchrony and global metastability showing significant 
between-group differences, we further performed multiple linear 
regression analyses to examine the relationships between these and 
clinical variables, controlling for age, gender, and age × gender inter-
action. Similarly, t-values were reported as an alternative statistic 
charting the association between dynamic functional connectivity and 
clinical variables. 

3.5. Mediation analyses 

The mediation analyses were conducted in R (v3.5.3) using the script 
written by Tingley et al. (2014), where prefrontal white matter integrity 
(FA value), metrics of dynamic connectivity (global synchrony and 
global metastability), and rumination (RRS) were defined as the inde-
pendent variable, the proposed mediator, and the dependent variable, 
respectively. To test whether paths in the mediation model fit well, 
bootstrapping with 5,000 samples was performed, if 0 did not fall within 
the 95% confidence interval of estimated coefficients (i.e., a is the path 
coefficient of independent variable to mediator, b is the path coefficient 
of mediator to dependent variable controlling for the effect of inde-
pendent variable, c’ is the direct effect of independent variable to 
dependent variable controlling for the effect of mediator, and c is the 
total effect from independent to dependent variable), the estimate was 
deemed statistically significant. Of note, group (MDD individuals vs. 
control group), age, gender, and age × gender interaction terms were 
included as covariates. T-values were also reported as an alternative 
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statistic charting the association between global synchrony and rumi-
nation, as well as between global metastability and rumination. 

3.6. Data and code availability 

The datasets reported in this manuscript are not publicly available 
due to the lack of informed consent from participants and ethical 
approval for public data sharing. Custom code that supports the findings 
of this study is available upon reasonable request from the corre-
sponding authors. 

4. Results 

4.1. Demographic and clinical variables 

There were no significant differences between two groups in age, 
gender, or years of education (p > 0.05), confirming that individuals 
with MDD and control group individuals were matched on de-
mographics. As expected, individuals with MDD showed significantly 
higher scores than the control group in all administered clinical as-
sessments, including rumination (i.e., HAM-D21, RRS; p < 0.05; 
Table 1). 

4.2. White matter integrity alterations 

Standard TBSS analysis was performed to compare individuals with 
MDD to the control group on white matter integrity as indexed by FA 
values, with age, gender, age × gender as covariates of no interest. 
Compared to the control group, widespread reduction in FA was found 
across the white matter skeleton in individuals with MDD (p < 0.05, 
threshold-free cluster enhancement [TFCE] corrected; Fig. 4A, Table 2). 
In particular, FA reduction was the largest in the corpus callosum, the 

tracts within the bilateral superior longitudinal fasciculus, and the 
anterior and posterior limbs of the internal capsule. A significant 
reduction in FA was also observed in the posterior and anterior parts of 
the corona radiata. However, brain clusters with increased FA values 
were not evident in individuals with MDD when compared to control 
group individuals (p > 0.05). 

4.3. Aberrant dynamic functional connectivity 

Global synchrony increased significantly in individuals with MDD 
compared to the control group (t = 2.22, p = 0.024; Fig. 3A). Further-
more, a significant difference was also found between the means of 
global metastability, with lower metastability found among those with 
MDD than in control group participants (t = 2.14, p = 0.019; Fig. 3B). 
Further analysis on the network level revealed no significant difference 
between the two groups at the subnetwork level (p > 0.05). These results 
suggested less flexibility and substantial stability of dynamic functional 
connectivity in depressed individuals with high levels of rumination 
(Demirtaş et al., 2016). 

4.4. Surrogate time series 

Next, we tested the hypothesis that the group averages of dynamic 
connectivity were linear and stationary. The null hypotheses were 
rejected both for global synchrony (p < 0.001; Fig. 3C) and global 
metastability (p = 0.001; Fig. 3D). 

4.5. Association between white matter integrity alterations and aberrant 
dynamic functional connectivity 

We further investigated whether differences in white matter integrity 
were related to global synchrony and global metastability. We calcu-
lated mean FA values across the white matter skeleton and within the 
white matter mask which revealed group differences in global syn-
chrony and global metastability. We found significant associations be-
tween FA values and global synchrony (t = –2.08, p = 0.040), and 
between FA values and global metastability (t = 2.36, p = 0.020; Fig. 4B) 
after controlling for group differences. Separately within each group, we 
also performed a voxel-wise regression of global synchrony and global 
metastability on FA to address the relationships at the voxel-wise level 
(p < 0.05, TFCE corrected). A significant positive association was 
observed between global metastability and integrity of the white matter 
skeleton, largely within the white matter linking the bilateral prefrontal 
lobe and the genu of the corpus callosum (Fig. 4C, D). 

4.6. Association between aberrant dynamic functional connectivity and 
rumination 

We examined whether global synchrony and global metastability 
would be related to rumination (i.e., total RRS and subscale scores), 
controlling for group, age, gender, and age × gender interaction. Group 
was further included as a covariate to control for group differences in 
global synchrony, global metastability, FA values, and voxel-wise 
regression of global synchrony and global metastability on FA. Global 
synchrony presented a significantly positive relationship (t = 2.71, p =
0.008; Fig. 5A), whereas global metastability exhibited a significantly 
negative relationship with total RRS scores (t = -2.33, p = 0.022; 
Fig. 5B). However, no significant associations were detected between 
global synchrony or global metastability and depression severity (ps >

0.05). 

4.7. Aberrant dynamic functional connectivity mediated the association 
between prefrontal white matter integrity and rumination 

First, we found that FA value demonstrated a significant effect in its 
prediction of rumination when group is being controlled for (c =

Table 2 
The anatomical areas that showed significantly reduced fractional anisotropy 
(FA) values in MDD individuals compared to controls (threshold-free cluster 
enhancement [TFCE] corrected, p < 0.05).  

Cluster Cluster 
size 

Anatomical region 
(proportiona) 

MNI t- 
value X Y Z 

1 9213 Genu of corpus callosum 
(26%); Anterior corona 
radiate. R (17%); Anterior 
corona radiate. L (17%) 

− 18 27 13  4.87 

2 3483 Superior longitudinal 
fasciculus. R (78%); 
Posterior corona radiate. R 
(21%) 

25 − 56 29  3.89 

3 3366 Splenium of corpus 
callosum (38%); Body of 
corpus callosum (32%); 
Posterior corona radiate. L 
(14%) 

− 32 − 41 34  3.59 

4 3287 Posterior thalamic 
radiation. R (38%); 
Retrolenticular part of 
internal capsule. R (19%) 

34 − 21 − 8  4.06 

5 2079 Superior longitudinal 
fasciculus. L (68%); 
Superior corona radiate. R 
(28%) 

− 32 − 14 38  4.70 

6 660 External capsule. L (33%); 
Retrolenticular part of 
internal capsule. L (22%) 

− 33 − 14 − 12  4.01 

7 216 Retrolenticular part of 
internal capsule. L (33%) 

− 46 − 38 − 3  2.87 

L/R = left/right hemisphere. 
Anatomical regions were defined by Johns Hopkins University DTI-based White 
Matter Atlas. 

a Proportion represents the relative distribution of voxels if the clusters map 
into atlas. 
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-356.02, t = -5.05, p < 0.001). We then further examined whether dy-
namic connectivity played a role in the relationship between white 
matter integrity and rumination using a mediation model, with group 
being controlled for. We used the bootstrapping method to test the in-
direct effects of global synchrony (ab = -46.52, 95%CI [-113.67, -3.52], 
p = 0.026) and global metastability (ab = -37.08, 95%CI [-94.7, -0.91], 
p = 0.042) (Fig. 5C). Results revealed that bilateral prefrontal white 
matter integrity had significant indirect effects on rumination via global 
synchrony and global metastability, with the indirect effects of global 
synchrony and global metastability respectively accounting for 
approximately 13.7% and 10.4% in the mediation. Mediation results of 
the RRS subscales are presented in Table S2. 

5. Discussion 

To the best of our knowledge, this study is the first to investigate the 
role of dynamic functional connectivity in mediating the association 
between structural connectivity and rumination. Studying global syn-
chrony and global metastability as two dynamic properties of resting- 
state functional connectivity, we found that individuals with MDD, 
characterized by higher rumination, have high global synchrony and 
low global metastability, and this was related to altered white matter 

integrity of the genu of the corpus callosum interconnecting bilateral 
prefrontal regions. Specifically, the dynamic connectivity mediated the 
close association between structural integrity in white matter of the 
bilateral prefrontal cortex and rumination. Our findings offered the first 
line of evidence that brain metastability is associated with rumination, 
which has its basis in altered white matter connectivity. 

5.1. Decreased brain metastability is associated with rumination 

The brain functional connectivity is highly dynamic (Liu et al., 2018; 
Váša et al., 2015). We utilized phase-based dynamic functional con-
nectivity as this approach could improve temporal resolution using each 
time point as a unit (Glerean et al., 2012), and allow us to measure 
metastability as an essential property of neural activity (Deco and 
Kringelbach, 2016). In addition, dynamical functional connectivity 
derived from phases could address a significant proportion of the asso-
ciation between brain structure and function (Ponce-Alvarez et al., 
2015), and explain in part the brain deficits in psychopathology (Hellyer 
et al., 2015). 

Metastability accounts for the reasons why the neural population 
could be able to coordinate rapidly (Deco and Kringelbach, 2016). 
Metastability plays a vital role in information-processing, cognitive 

Fig. 3. Analysis of dynamic functional connectivity. (A) Increased global synchrony in individuals with major depressive disorder (MDD) compared to healthy 
controls. (B) Decreased global metastability in individuals with MDD than controls. (C) Global synchrony test statistics calculated using multivariate surrogate data. 
(D) Null distributions of global metastability. Red arrows indicated observed test statistics. 
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flexibility, and memory performance (Deco et al., 2009). When meta-
stability is optimal, the neural system can best explore the dynamic 
repertoire (Kelso, 2012). Kringelbach and Berridge (2017) hypothesized 
that optimal metastability could be a key factor in emotion and cogni-
tion: greater capacity in changing functional configuration in response 
to rapidly changing external inputs is reflected by higher metastability. 
During resting-state, individuals with higher metastability exhibit 

higher information processing speed, better cognitive flexibility, inhib-
itory control performance, and memory recall (Hellyer et al., 2015; Lee 
et al., 2019). Contrarily, functional configurations over longer time 
scales are maintained by lower metastability (Kringelbach and Berridge, 
2017). This is in line with the function of lower metastability when it 
comes to supporting sustained mental operations (Lee et al., 2019; 
Power et al., 2011; Smith et al., 2009). Indeed, we illustrated that 

Fig. 4. Alterations in white matter integrity in MDD. (A) Compared to the healthy control group, individuals with major depressive disorder (MDD) showed 
widespread white matter integrity deficits as indexed by decreased fractional anisotropy (FA; p < 0.05, threshold-free cluster enhancement [TFCE] corrected). (B) 
Average fractional anisotropy (FA) values in white matter integrity deficits were positively correlated with global metastability across all individuals. (C) White 
matter integrity showing positive relationship with global metastability in individuals with MDD (p < 0.05, TFCE corrected). (D) A 3-D illustration of the tracts 
presented in the genu of the corpus callosum cluster. 

Fig. 5. Dynamic functional connectivity mediated the association between prefrontal white matter integrity and rumination. (A) Global synchrony was positively 
correlated with total Ruminative Response Scale (RRS) scores. (B) Global metastability was negatively correlated with the total RRS scores. (C) Global synchrony and 
global metastability respectively mediated the association between prefrontal white matter integrity and rumination. 
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depressed and ruminative individuals have lower metastability. As 
rumination is an internal affective-cognitive state featured by repeated 
thinking of current self-distress and past negative events (Smith and 
Alloy, 2009), the increased global synchronization with decreased 
metastability observed suggest that under a task-free state (i.e., resting 
state), these individuals may linger in a state where the overall phase 
coupling among areas is persistently high (Lee et al., 2019; Power et al., 
2011; Smith et al., 2009), and consequently, fail to transit to other brain 
states flexibly, plunging deeper into a rumination cycle. Functionally 
speaking, ruminators are more prone to experiencing further attentional 
narrowing to self-related information than other-related information 
(Grol et al., 2015). Individuals possessing a narrow attention scope will 
thus hold a restricted range of information in their working memory, 
experience greater difficulty inhibiting or disengaging from specific in-
formation, and lack flexibility to switch to new information (Gable and 
Harmon-Jones, 2012). The aforementioned illuminates the process 
through which abnormal dynamic connectivity characterizes and per-
petuates rumination (Davis and Nolen-Hoeksema, 2000; Joormann 
et al., 2007; Watkins and Brown, 2002). If exacerbated, repetitive 
negative thinking may also prolong and exacerbate depressive episodes, 
increasing the risk for subsequent development of episodes among mood 
disorders (Nolen-Hoeksema et al., 2008). 

To further explain the relationship between decreased metastability 
and rumination, we speculated that the difficulty with transitioning 
between brain states may be a reinforcer of rumination and the culprit of 
the inability to experience hedonic happiness. A factor affecting the 
subjective feeling of happiness is rumination (Eldeleklioğlu, 2015; 
Elliott and Coker, 2008). Kringelbach and Berridge (2017) hypothesized 
that optimal metastability could be a critical element in perceived 
eudaimonia (the life well-lived) and wellbeing. Under this framework, a 
possible correspondence could exist between optimal information flow 
in the pleasure system and the sense of subjective well-being. Rumina-
tion could be derived from anhedonia (Grillo, 2016), thereby, decreased 
metastability may be associated with happiness / pleasure distortions 
(Addis et al., 2007), with rumination heavily implicated in the rela-
tionship but this needs to be further empirically examined. 

With the understanding that rumination plays a significant role in 
the pathology of mood disorders by perpetuating self-focus, negative 
stressors, and negative affect (Moberly and Watkins, 2008; Watkins, 
2008), the association between dynamic functional connectivity and 
rumination may offer more insights into why lingering in a ruminative 
state could contribute to worsening affective and cognitive deficits 
(Demeyer et al., 2012; Joormann et al., 2007; Watkins and Brown, 
2002). This, therefore, corroborates that metastability provides a new 
outlook to understand the brain dynamic processes for psychopatho-
logical behaviors (Kringelbach et al., 2015). 

5.2. Prefrontal white matter integrity deficits are associated with 
rumination 

Networks of anatomical connections are the foundation of dynamic 
functional connectivity because structural connectivity provides a 
scaffold for functional connectivity (Avena-Koenigsberger et al., 2018; 
Deco et al., 2011; Hellyer et al., 2014; Honey et al., 2010; Kelso, 2012). 
We found that lower metastability was accompanied by widespread 
alterations of structural connectivity as implied by deficits in white 
matter integrity, and these deficits were consistent with existing findings 
(Guo et al., 2012; Korgaonkar et al., 2011; Liao et al., 2013). In align-
ment with our expectation, the largest alterations were found in the 
genu of the corpus callosum interconnecting bilateral prefrontal regions, 
consistent with previous evidence that specific structural correlates 
could reflect individual differences in rumination (Joormann et al., 
2007; Vanderhasselt et al., 2011). The corpus callosum is the largest 
fiber bundle connecting the left and right hemispheres which serves to 
integrate cognitive and behavioral functions by enabling the transfer of 
information between hemispheres, and plays a significant role in motor, 

perceptual, cognitive, and affective functions (Bloom and Hynd, 2005; 
Myers, 1956; Wahl et al., 2007). Abnormal reduction in white matter 
volume of the corpus callosum is evident in mood disorders (Price and 
Drevets, 2012), with altered structural integrity in the mood regulating 
circuit correlated with the severity of rumination (Clark et al., 2009; 
Sexton et al., 2009; Zuo et al., 2012). More white matter integrity is 
reflected by higher fractional anisotropy (FA), and is associated with 
better attention control and suppression of irrelevant information, 
whereas, lower FA values in the genu of the corpus callosum is associ-
ated with higher interference and impaired inhibition performance 
(Rizk et al., 2017). Therefore, the differences in rumination observed in 
our sample may be explained by integrity differences in the corpora 
callosa. Ruminators may have greater impairment of cognitive inhibi-
tion and an inability to ignore negative thoughts, this could result in the 
excessive and repetitive rehearsal of their perceived negativity. 

5.3. Aberrant metastability mediates the association between prefrontal 
white matter integrity and rumination 

We demonstrated that metastability mediated the association be-
tween structural integrity of the genu of the corpus callosum and 
rumination. This serves as preliminary evidence for white matter 
integrity as a structural basis in the relationship between the repertoire 
of brain dynamics and rumination. Fibers passing through the genu of 
the corpus callosum bypass areas including the bilateral prefrontal and 
orbitofrontal cortices. These areas are viewed as essential for decision- 
making, executive function, reward processing, and emotional regula-
tion (Mooshagian, 2008; Wahl et al., 2007). The corpus callosum forms 
the largest myelinated inter-hemispheric structure (Kieseppä et al., 
2010), and white matter integrity deficits generally originate from 
myelin or axonal damage (Jones et al., 2013). Demyelination in the genu 
of the corpus callosum leads to a decrease in speed or quantity of inter- 
hemispheric connections (Schulte and Müller-Oehring, 2010; van der 
Knaap and van der Ham, 2011; R. Zhang et al., 2016), which may 
manifest as altered temporal dynamics of the inter-hemispheric func-
tional connectivity. Past studies have demonstrated the dynamic nature 
of inter-hemispheric communications over time (Doron et al., 2012), 
and this was speculated to be associated with connections through the 
corpus callosum (Sperry et al., 1969), wherein its white matter integrity 
is of paramount importance for cognitive inhibition, a key mechanism 
that underlies emotional regulation, the suppression of irrelevant 
negative information, and rumination (Demeyer et al., 2012; Joormann, 
2010). 

The focus of this study is on dynamic functional connectivity, but 
findings from clinical studies have also suggested that structural damage 
to the corpus callosum are connected with alterations in the prefrontal, 
parietal, and limbic regions (Sharp et al., 2011), regions that are largely 
related to the default mode network (DMN). The DMN serves internally 
focused processes, and is significantly involved in the task-free state, 
mind-wandering, and self-referential processing (Raichle, 2015). Such 
an observation may be accounted for by the topographical organization 
of the corpus callosum where its shape could lead to differential effects 
on functionally connected brain areas (Walterfang et al., 2009). There-
fore, prefrontal white matter integrity deficits observed in our rumina-
tors could be related to significant dominance of the DMN, which results 
in impaired representations of the self and internal modes of cognition 
(Buckner et al., 2008), as well as decreased hedonic well-being (Luo 
et al., 2016), cuing high levels of automatic and maladaptive rumination 
(Hamilton et al., 2015; Hamilton et al., 2011). Our findings suggested a 
potential neural mechanism where disruptions to the callosal structure 
could lead to widespread disturbances to connectivity related to func-
tional impairments in the mood regulating path, triggering stronger 
neural activity in related networks during rumination, such as the DMN 
(Cooney et al., 2010). Therefore, we proposed that structural alterations 
in the corpus callosum could be a major biological change in the phe-
nomenon of rumination. Prospective studies are recommended to 
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examine this further in connection with DMN and other related net-
works. Our findings aligned with previous interpretations that structural 
connectivity can restrict the dynamicity of functional connectivity in the 
brain (Liégeois et al., 2016; Park et al., 2017). Hence, investigating 
structural integrity in white matter in addition to the brain dynamical 
repertoire would offer a more integrative understanding on the neural 
basis of rumination. 

It is also important to note that although we have presented findings 
suggesting that (ab)normal transitions between brain states plays an 
essential role in the connection of structural connectivity in ruminative 
thinking, the presence of a causal relationship between metastability 
and rumination could not be determined at the current stage and we 
must await future research to further validate our results. Future studies 
could consider employing non-invasive brain stimulation techniques, 
such as transcranial magnetic stimulation (TMS) and transcranial direct 
current stimulation (tDCS) to establish causality, i.e., whether brain 
stimulation can affect global metastability, and correspondingly the 
severity of rumination via changes in neural mechanisms. Reassuringly, 
studies have found success with brain stimulation when it comes to 
improving brain and behavioral functional outcomes (Kunze et al., 
2016; Shang et al., 2020; Steel et al., 2016; Yu et al., 2015), suggesting 
that improving metastability and rumination with brain stimulation 
could be a promising endeavor. 

5.4. Limitations 

This study is not without limitations. Firstly, for ethical reasons, our 
MDD sample was on antidepressant medication. Antidepressants 
normalize network functional connectivity (Goldstein-Piekarski et al., 
2018; Posner et al., 2013), which could pose potential medication 
confounds. Moreover, the MDD individuals experienced different 
depressive episodes and episode duration which made it difficult to 
ascertain whether neural abnormalities relating to rumination were 
present prior to illness onset, thereby, representing a putative vulnera-
bility factor. Nevertheless, other potential confounding factors should be 
minimized as we only recruited participants who were on stable medi-
cations and did not receive electroconvulsive therapy within a six-month 
period before data collection. However, we encourage future studies to 
recruit only first-episode, treatment-naïve, and medication-free samples 
to target more closely the neural underpinnings of rumination. 

Secondly, it is important to consider the multi-component nature of 
rumination (Raes et al., 2008). Although we utilized the RRS which 
measures three ruminative subcomponents, rumination is a complex 
regime involving affective and cognitive subprocesses (Cooney et al., 
2010), and could be accompanied by maladaptive and adaptive be-
haviors (Joormann et al., 2006). Hence, rumination could be a multi-
factorial set of processes not only limited to depression, brooding, and 
reflection. With this in mind, readers ought to interpret our findings with 
caution as there could be ruminative subcomponents yet to be explored. 

Thirdly, admittedly, we adopted a task-free approach which may 
only offer a narrow perspective on the neural basis of rumination. This is 
because a ruminative state could be triggered by internal (e.g., negative 
affect) or external events that conflict with an individual’s goals (Koster 
et al., 2011). Therefore, our findings warrant careful interpretation. 
That said, studying dynamic functional connectivity in a resting state 
could shed light on task-related spatiotemporal organization in the brain 
as under a resting state, maximal metastability would facilitate task- 
related brain systems configuration (Hellyer et al., 2014), and dys-
functions among different functional systems may reflect core underly-
ing affective and cognitive abnormalities (Kaiser et al., 2015). In light of 
this, it was our intention to investigate the role of dynamic connectivity 
in mediating the association between structural connectivity and 
rumination before the introduction of manipulations, e.g., tasks 
inducing rumination / measuring affective interference / cognitive in-
hibition, and brain stimulation techniques into the study. 

6. Conclusions 

This study offered a new perspective to understand the aberrant 
dynamic functional connectivity associated with structural connectivity 
and rumination. Specifically, global metastability and global synchrony 
forms the basis of the association between connectivity in the genu of the 
corpus callosum to rumination, wherein dynamic connectivity is heavily 
involved in cognitive control and the suppression of irrelevant negative 
information. Our findings provided a framework where optimal func-
tional metastability may be essential for disengaging attention from a 
ruminative state, and presented the first line of evidence for the 
important mediating role abnormal transitions between brain states may 
play in the white matter integrity deficits in ruminative thinking. 
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Váša, F., Shanahan, M., Hellyer, P.J., Scott, G., Cabral, J., Leech, R., 2015. Effects of 
lesions on synchrony and metastability in cortical networks. NeuroImage 118, 
456–467. https://doi.org/10.1016/j.neuroimage.2015.05.042. 

Wahl, M., Lauterbach-Soon, B., Hattingen, E., Jung, P., Singer, O., Volz, S., Klein, J.C., 
Steinmetz, H., Ziemann, U., 2007. Human motor corpus callosum: topography, 
somatotopy, and link between microstructure and function. J. Neurosci. 27 (45), 
12132–12138. https://doi.org/10.1523/JNEUROSCI.2320-07.2007. 

Walterfang, M., Wood, A.G., Barton, S., Velakoulis, D., Chen, J., Reutens, D.C., 
Kempton, M.J., Haldane, M., Pantelis, C., Frangou, S., 2009. Corpus callosum size 
and shape alterations in individuals with bipolar disorder and their first-degree 
relatives. Prog. Neuropsychopharmacol. Biol. Psychiatry 33 (6), 1050–1057. https:// 
doi.org/10.1016/j.pnpbp.2009.05.019. 

Watkins, E., Brown, R., 2002. Rumination and executive function in depression: an 
experimental study. J. Neurol. Neurosurg. Psychiatry 72, 400–402. https://doi.org/ 
10.1136/jnnp.72.3.400. 

Watkins, E.R., 2008. Constructive and unconstructive repetitive thought. Psychol. Bull. 
134, 163–206. https://doi.org/10.1037/0033-2909.134.2.163. 

Whitmer, A.J., Gotlib, I.H., 2013. An attentional scope model of rumination. Psychol. 
Bull. 139, 1036–1061. https://doi.org/10.1037/a0030923. 

Wise, T., Marwood, L., Perkins, A.M., Herane-Vives, A., Joules, R., Lythgoe, D.J., 
Luh, W.-M., Williams, S.C.R., Young, A.H., Cleare, A.J., Arnone, D., 2017. Instability 
of default mode network connectivity in major depression: a two-sample 
confirmation study. Transl. Psychiatry 7 (4), e1105. https://doi.org/10.1038/ 
tp.2017.40. 

Yan, C.-G., Wang, X.-D., Zuo, X.-N., Zang, Y.-F., 2016. DPABI: data processing & analysis 
for (resting-state) brain imaging. Neuroinformatics 14, 339–351. https://doi.org/ 
10.1007/s12021-016-9299-4. 

Yu, J., Tseng, P., Hung, D.L., Wu, S.-W., Juan, C.-H., 2015. Brain stimulation improves 
cognitive control by modulating medial-frontal activity and preSMA-vmPFC 
functional connectivity. Hum. Brain Mapp. 36 (10), 4004–4015. https://doi.org/ 
10.1002/hbm.22893. 

Zalesky, A., Fornito, A., Bullmore, E.T., 2010. Network-based statistic: identifying 
differences in brain networks. NeuroImage 53 (4), 1197–1207. https://doi.org/ 
10.1016/j.neuroimage.2010.06.041. 

Zhang, C., Cahill, N.D., Arbabshirani, M.R., White, T., Baum, S.A., Michael, A.M., 2016. 
Sex and age effects of functional connectivity in early adulthood. Brain Connect. 6 
(9), 700–713. https://doi.org/10.1089/brain.2016.0429. 

Zhang, R., Jiang, G., Tian, J., Qiu, Y., Wen, X., Zalesky, A., Li, M., Ma, X., Wang, J., Li, S., 
Wang, T., Li, C., Huang, R., 2016. Abnormal white matter structural networks 
characterize heroin-dependent individuals: a network analysis. Addict. Biol. 21 (3), 
667–678. https://doi.org/10.1111/adb.12234. 

Zhang, R., Kranz, G.S., Lee, T.M.C., 2019. Functional connectome from phase synchrony 
at resting state is a neural fingerprint. Brain Connect. 9 (7), 519–528. https://doi. 
org/10.1089/brain.2018.0657. 

Zhi, D., Calhoun, V.D., Lv, L., Ma, X., Ke, Q., Fu, Z., Du, Y., Yang, Y., Yang, X., Pan, M., 
Qi, S., Jiang, R., Yu, Q., Sui, J., 2018. Aberrant dynamic functional network 
connectivity and graph properties in major depressive disorder. Front. Psychiatry 9, 
339. https://doi.org/10.3389/fpsyt.2018.00339. 

Zuo, N., Fang, J., Lv, X., Zhou, Y., Hong, Y., Li, T., Tong, H., Wang, X., Wang, W., 
Jiang, T., Soriano-Mas, C., 2012. White matter abnormalities in major depression: a 
tract-based spatial statistics and rumination study. PloS One 7 (5), e37561. https:// 
doi.org/10.1371/journal.pone.0037561. 

Further reading 

Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Essen, D.C.V., Raichle, M.E., 2005. 
The human brain is intrinsically organized into dynamic, anticorrelated functional 
networks. Proc. Natl. Acad. Sci. 102, 9673–9678. https://doi.org/10.1073/ 
pnas.0504136102. 

R. Zhang et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S2213-1582(21)00360-0/h0525
http://refhub.elsevier.com/S2213-1582(21)00360-0/h0525
https://doi.org/10.1016/j.neuron.2013.12.022
https://doi.org/10.1016/j.neuron.2013.12.022
https://doi.org/10.1023/A:1023910315561
https://doi.org/10.1023/A:1023910315561
https://doi.org/10.1002/da.2014.31.issue-610.1002/da.22217
https://doi.org/10.1002/da.2014.31.issue-610.1002/da.22217
https://doi.org/10.1016/j.neuron.2006.09.020
https://doi.org/10.1016/j.neuron.2006.09.020
https://doi.org/10.1016/j.bbr.2011.04.018
https://doi.org/10.1016/j.bbr.2011.04.018
https://doi.org/10.3758/s13415-011-0022-5
https://doi.org/10.3758/s13415-011-0022-5
https://doi.org/10.1016/j.neuroimage.2015.05.042
https://doi.org/10.1523/JNEUROSCI.2320-07.2007
https://doi.org/10.1016/j.pnpbp.2009.05.019
https://doi.org/10.1016/j.pnpbp.2009.05.019
https://doi.org/10.1136/jnnp.72.3.400
https://doi.org/10.1136/jnnp.72.3.400
https://doi.org/10.1037/0033-2909.134.2.163
https://doi.org/10.1037/a0030923
https://doi.org/10.1038/tp.2017.40
https://doi.org/10.1038/tp.2017.40
https://doi.org/10.1007/s12021-016-9299-4
https://doi.org/10.1007/s12021-016-9299-4
https://doi.org/10.1002/hbm.22893
https://doi.org/10.1002/hbm.22893
https://doi.org/10.1016/j.neuroimage.2010.06.041
https://doi.org/10.1016/j.neuroimage.2010.06.041
https://doi.org/10.1089/brain.2016.0429
https://doi.org/10.1111/adb.12234
https://doi.org/10.1089/brain.2018.0657
https://doi.org/10.1089/brain.2018.0657
https://doi.org/10.3389/fpsyt.2018.00339
https://doi.org/10.1371/journal.pone.0037561
https://doi.org/10.1371/journal.pone.0037561
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1073/pnas.0504136102

	Aberrant functional metastability and structural connectivity are associated with rumination in individuals with major depr ...
	1 Introduction
	2 Materials and methods
	2.1 Overview
	2.2 Participants
	2.3 Behavioral assessment
	2.4 Imaging data acquisition and preprocessing
	2.5 Independent component analysis and dynamic functional connectivity
	2.6 Functional connectivity construction
	2.7 Dynamic functional connectivity
	2.7.1 Global synchrony
	2.7.2 Global metastability
	2.7.3 Network-based statistic (NBS) analysis

	2.8 Surrogate time series
	2.9 Relationship between white matter integrity and dynamic functional connectivity
	2.10 Relationship between dynamic functional connectivity and clinical variables
	2.11 Mediation analyses

	3 Statistical analyses
	3.1 Group comparison in white matter integrity
	3.2 Group comparison in dynamic functional connectivity
	3.3 Relationship between white matter integrity and dynamic functional connectivity
	3.4 Relationship between dynamic functional connectivity and clinical variables
	3.5 Mediation analyses
	3.6 Data and code availability

	4 Results
	4.1 Demographic and clinical variables
	4.2 White matter integrity alterations
	4.3 Aberrant dynamic functional connectivity
	4.4 Surrogate time series
	4.5 Association between white matter integrity alterations and aberrant dynamic functional connectivity
	4.6 Association between aberrant dynamic functional connectivity and rumination
	4.7 Aberrant dynamic functional connectivity mediated the association between prefrontal white matter integrity and rumination

	5 Discussion
	5.1 Decreased brain metastability is associated with rumination
	5.2 Prefrontal white matter integrity deficits are associated with rumination
	5.3 Aberrant metastability mediates the association between prefrontal white matter integrity and rumination
	5.4 Limitations

	6 Conclusions
	Funding
	Author contributions
	Declaration of Competing Interest
	Appendix A Supplementary data
	References
	Further reading


