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Abstract

Granulomatous inflammation causes severe tissue damage in mycobacterial infection while

redox status was reported to be crucial in the granulomatous inflammation. Here, we used a

NADPH oxidase 2 (NOX2)-deficient mice (Ncf1-/-) to investigate the role of leukocyte-pro-

duced reactive oxygen species (ROS) in mycobacterium-induced granulomatous inflamma-

tion. We found poorly controlled mycobacterial proliferation, significant body weight loss,

and a high mortality rate after M. marinum infection in Ncf1-/- mice. Moreover, we noticed

loose and neutrophilic granulomas and higher levels of interleukin (IL)-1β and neutrophil

chemokines in Ncf1-/- mice when compared with those in wild type mice. The lack of ROS

led to reduced production of IL-1β in macrophages, whereas neutrophil elastase (NE), an

abundant product of neutrophils, may potentially exert increased inflammasome-indepen-

dent protease activity and lead to higher IL-1β production. Moreover, we showed that the

abundant NE and IL-1β were present in the caseous granulomatous inflammation of human

TB infection. Importantly, blocking of IL-1β with either a specific antibody or a recombinant

IL-1 receptor ameliorated the pulmonary inflammation. These findings revealed a novel

role of ROS in the early pathogenesis of neutrophilic granulomatous inflammation and sug-

gested a potential role of IL-1 blocking in the treatment of mycobacterial infection in the lung.

Introduction

Mycobacterium tuberculosis (M. tb) infection remains one of leading health problems in the

world, with 10.4 million new tuberculosis (TB) cases in 2015 [1]. Tissue responses to M. tb
infection are characterized by caseous granulomatous inflammation, consisting of not only
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macrophages and lymphocytes but also neutrophils [2, 3]. Furthermore, a non-resolving

inflammation induced by the complex survival strategies of M. tb may lead to a dysregulated

and host-detrimental inflammation resulting in severe tissue damage, including the formation

of pulmonary cavities [4].

Neutrophils are one of the predominant cell types in the airways of patients with active

TB [3]. It has been postulated that neutrophils play a pathogenic, rather than protective, role

which leads to host-detrimental inflammation [5]. Additionally, pulmonary epithelial cells,

the first-line pulmonary cells to be exposed to M. tb in TB infection, were recently found to

secrete CXCL5, a potent neutrophil chemokine, in mycobacterial infections [6]. Moreover,

reactive oxygen species, mainly produced through NADPH oxidase 2 (NOX2) by neutrophils

in inflammatory tissues, were recently reported to be important for the organization of granu-

lomas [7]. Our previous studies implicated that abnormal ROS production by leukocytes may

contribute to the increased severity of mycobacterial infection and lead to more severe pulmo-

nary tuberculosis (TB) in diabetics [8]. These findings implicate a potential role of neutrophils

in the early phase of granulomatous inflammation. Nonetheless, how the early recruited neu-

trophils exert a potentially host-detrimental effect on tissue inflammation through ROS in

mycobacterial infection remains elusive.

IL-1β has been shown to play a pivotal role in the anti-TB inflammatory network given that

IL-1β has been shown to mediate the cross-talk between cytokine and eicosanoid pathways [9–

11]. Our previous studies revealed that ROS regulate the production of IL-1β through modu-

lating the activation of the inflammasome in mycobacterium-infected macrophages [8]. We

also identified ROS as the key regulator of IL-1β production in a serum-induced arthritis

mouse model through an inflammasome-independent pathway [12]. In that model, an early

neutrophilic inflammation was noted in ROS-deficient mice. We therefore postulated that

neutrophils may be involved in the linkage between ROS and IL-1β in mycobacterial infection.

In this study, we aimed to investigate the role ROS in mycobacterium-induced granulomatous

inflammation, focusing on addressing the role of neutrophils and elucidating how ROS regu-

late IL-1β production in pulmonary infection by mycobacteria.

Materials and methods

Mycobacterium marinum preparation

Given that Region of Difference-1 (RD-1) locus plays a critical role in TB virulence, we used

M. marinum in this study, which is an RD-1 containing non-tuberculosis mycobacterium. M.

marinum, obtained from American Type Culture Collection (ATCC), was further confirmed

using chip hybridization and 16S rRNA sequencing.

Mouse experiments

Male WT C57BL/6 (B6) mice and NADPH oxidase deficiency (Ncf1-/-) mice were infected

with 3x107 M. marinum in 20 μl phosphate buffered saline (PBS) via intra-tracheal injection

(i.t.). To minimize the effects of mycobacterial load on cytokines production, we decreased M.

marinum to 3 x106 in experiments studying the effects of ROS on the production of cytokines

and chemokines. p47phox-/- mice with a point mutation in the splice site of exon 8 in Ncf1,

were purchased from The Jackson Laboratory and were maintained in the Laboratory Animal

Center of the National Cheng-Kung University Medical College. For mouse infection, M. mar-
inum grew to logarithmic growth phase in 7H11-broth and were then collected by centrifuga-

tion (2400g, 10 min). Euthanasia of mice was conducted at 7 and 14, days after injection.

Pulmonary tissues were embedded in paraffin wax, and the slides were stained by acid-fast

stain or hematoxylin and eosin stain for histopathological analysis. Animals were sacrificed by
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exsanguination under anesthesia. All studies were conducted in accordance with the National

Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by

the Institutional Animal Care and Use Committee (IACUC) guidelines of the National Cheng

Kung University (No. 102242, 103017, 104156, 105041, and 106029).

Histopathological examinations and immunostaining

A histopathologic analysis of infected organs was performed in each experiment. Lungs were

fixed in 10% formaldehyde and embedded in paraffin for subsequent hematoxylin and eosin

(H&E) staining, Ziehl-Neelsen acid-fast staining, immunohistochemical (IHC) staining of F4/

80, and Immunofluorescent (IF) staining of both F4/80 and NE. A 3-μm section was taken of

the lungs buffered formalin for H&E staining to evaluate airway inflammation and identify

granulomas, and a 5-μm section was used in Ziehl-Neelsen acid-fast staining to visualize

mycobacteria within granulomas. Lung sections were stained with F4/80 antibody (Abcam,

USA), with antigen retrieval of 0.1% trypsin for 120 minutes, to determine locations of macro-

phages within granulomas. To demonstrate the mosaic pattern of neutrophilic granulomas

mixed by neutrophils and macrophages, we used two IF staining in this study, with anti-neu-

trophil elastase antibody for neutrophils and anti-F4/80 antibodies for macrophages. To test

whether abrogation signaling of IL-1β could restore the regulated inflammation, we used rat

anti-mouse monoclonal antibody directed against IL-1β (Biolegend, USA) and IL-1 receptor

antagonist (Anakinra, Kineret1) in this study.

Enumeration of colony forming units (CFU)

Frozen lungs were homogenized in 3 ml DMEM supplemented with 0.1% Triton-X, using an

AHS200 homogenizer, and then was subjected to serial dilutions and plated on 7H10 plates

and a number of bacteria presented as CFUs per ml. Given that M. marinum grows quickly at

low temperature and in the dark, we set the culture condition at 32˚C and covered plates with

foil. The number of viable mycobacteria recovered from frozen lungs was determined after

incubation with 5% CO2 for 12~14 days, and the mycobacterial load is presented as CFUs/

gram tissue.

Flow cytometric analysis of neutrophil counts

Lungs were recovered, weighed, incubated in 2 mg/ml collagenase D and 40 U/ml DNase I

solution, and were dispersed by passage through a 70 mm mesh. After lysis of red blood cells,

viable cells were counted. For immunophenotyping, cells were incubated with fluorescence-

conjugated antibodies. Antibodies (BD Pharmingen, USA, California) used are against

CD11b, F4/80, and Ly6G.

Quantification of infiltrative area

To measure the area of granulomatous inflammation with and without a depletion of IL-1β,

we captured 4 digital images (Leica DM2500) with inflammation along with bronchioles in

each mouse and determined the infiltrative area by Image J software at 20x magnification.

Results were expressed as a percentage of the infiltrative area divided by the total lung area.

Protein analysis and Western blotting

For the detection of pro-IL1β (p34) and mature IL-1β (p17), the blot was probed with 1:1000

rabbit anti-human IL-1β antibody (Santa Cruz Biotechnology, USA, California) and cleaved

IL-1β antibody (Cell Signaling, USA), respectively.
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Cytokine and chemokine measurement

Cytokines and chemokines were determined by ELISA (IL-1β and IL-10, Biolegend, San

Diego, USA; CXCL5, R&D Systems, Minneapolis, USA; CXCL1 and CCL5, PeproTech, Reho-

vot, Israel; IL-6, TNF-α, IFN-γ, and IL-17A, ebioscience, San Diego, USA). NE activity was

measured by Neutrophil Elastase Activity Assay Kit (Cayman, USA).

Cells preparation

We injected 2.5 ml of 3% thioglycollate medium into the peritoneum, and harvest peritoneal

cells at 4 hours as neutrophils and at 72 hours as macrophages. THP-1 cells were treated used

100 nM PMA for 24 hr as differentiation condition into macrophages in this study. Human

granulocytes were isolated through 6% dextran for 2hr for RBCs sedimentation and the centri-

fugation (400g for 20 minutes) in Ficoll-Hypaque (Pharmacia, Uppsala, Sweden)

Statistical analysis

Data were presented as percentages for categorical variables and as means ± standard devia-

tions for continuous variables. Differences between two subgroups were analyzed by the

Mann-Whitney U test. The difference of survival between two groups was determined by Log-

rank test, and the correlation between two continuous variables was analyzed by Spearman’s

rank correlation analysis. Statistical significance was set at P<0.05, two-sided. Data were ana-

lyzed using Prism version 5.0.

Results

Poorly controlled mycobacterial load, significant body weight loss, and

high mortality in M. marinum-infected Ncf1-/- mice

Wild-type BL6 (WT) mice and Ncf1-/- mice, which are deficient in the gene encoding p46phox

of phagocytic NADPH oxidase (NOX2), were first injected with M. marinum (3 x 107 CFU)

via the trachea. WT mice apparently were more resistant to the infection during a 4-week

observation. In contrast, Ncf1-/-mice showed early mortality with an approximate death rate of

60% during the period between the 7th day and 14th day after the M. marinum infection (Fig

1A). The high mortality of Ncf1-/- mice was associated with an abrupt and significant weight

loss after infection while the body weight was stable in WT mice (Fig 1B). To determine the

control of mycobacterial infection in WT and Ncf1-/- mice, we measured the colony-forming

unit (CFU) of M. marinum in the whole lung homogenates and found that WT mice gradually

controlled mycobacterial growth, whereas the mycobacteria continued to grow in Ncf1-/-mice

(Fig 1C). Moreover, we found a high degree of association between percentage of body weight

loss and the mycobacterial load in both species of mice (r = 0.83, P<0.0001) (Fig 1D) (See

detailed individual data in S1 Dataset). Collectively, these results indicated that the immune

defense of Ncf1-/- mice infected with M. marinum is not effective in controlling the growth and

invasion of the mycobacteria in the lung.

Loose cell aggregations with neutrophilic infiltration in Ncf1-/- mice in

comparison with compact and organized granulomas in WT mice

To characterize the role of ROS in mycobacterium-induced granulomatous inflammation, we

then went on to examine the pulmonary inflammation in response to M. marinum infection.

The gross appearance of the infected lungs showed a markedly increased pulmonary inflam-

mation in Ncf1-/- mice. The histological examination of the whole lung cross-section samples

ROS in mycobacterial infection
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further demonstrated an extensive pulmonary infiltration spreading to the whole lung on day

14 in Ncf1-/- mice, whereas the inflammation appeared tobe localized to the tissues close to the

airways in the lungs of WT mice (Fig 2A). The acid-fast stain (AFS), used to stain mycolic acid

of mycobacteria, clearly demonstrated the presence of AFS-positive bacilli in the lungs (Fig

2B). Consistent with the data of CFU counts (Fig 1C), AFS-positive bacilli were apparently

more abundant in Ncf1-/-mice when compared with the sparse AFS-positive bacilli in WT

mice.

To characterize the differences in granulomatous inflammation between Ncf1-/- mice and

WT mice, we used immunohistochemical stain to identify macrophages (F4/80 staining) given

that macrophages are the essential cells of mycobacterium-induced granulomas. Contrary to

the compact aggregation of macrophages in WT mice, macrophages in Ncf1-/- mice were less

aggregated, with macrophages scattered within the inflammatory area (Fig 3A). Based on the

previous reports that neutrophils were found to be the predominant cells in both human and

mouse mycobacterial infection [3, 13], we also investigated the infiltration of neutrophils in

the infected lungs. Using immunofluorescent staining (F4/80 for macrophages: red; NE for

neutrophils: green), we showed that NE-positive neutrophils interspersed among macrophages

in Ncf1-/- mice, while only scanty neutrophils were observed in WT mice (Fig 3B). To quantify

leukocytes in the excessive inflammation of Ncf1-/- mice, we used flowcytometry to analyze

the single cell suspension from the lung tissues from WT and Ncf1-/- mice for neutrophils

Fig 1. Increased severity and mortality of M. marinum pulmonary infection in Ncf1-/- mice. Ncf1-/- (loss of function

mutation in p47phox) and WT controls were intra-tracheal injected with M. marinum (3 x 107 CFU). Survival (A) and changes

in body weight (B) were monitored over the 28 days period following M. marinum infection in WT (n = 20) and Ncf1-/- mice

(n = 23). The number of viable mycobacteria (C) was determined at 7 days and 14 days after M. marinum infection. Data are

shown as a mean log of CFU per paired-lung (5 mice per group). The high correlation between changes in body weight and a

number of viable mycobacteria in lungs was demonstrated in (D). Data represented mean ± sd. The experiments were

analyzed with Log-rank test (A), Kruskal-Wallis test (C), and Spearman’s rank correlation analysis (D) *p < 0.05; **p < 0.005.

These experiments were repeated twice with similar results.

https://doi.org/10.1371/journal.pone.0189453.g001
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(Cd11b+Ly6G+) and macrophages (Cd11b+F4/80+). We found that both neutrophil and mac-

rophage numbers in Ncf1-/- mice were higher than those in WT mice (both day 7, and day 14;

Fig 3C). Taken together, these data showed that ROS-deficiency leads to a disordered inflam-

mation, with an early influx of macrophages and neutrophils, which lead to loose inflamma-

tory cell aggregations.

High levels of IL-1β and neutrophilic chemokines in M. marinum-infected

Ncf1-/- mice

We went onto to characterize the cytokine and chemokine profiles in WT and Ncf1-/- mice

after infected with M. marinum (3 x 106 CFU). Higher levels of innate immunity-associated

Fig 2. A Higher level of pulmonary inflammation in Ncf1-/- mice after M. marinum infection in comparison with the

inflammation in WT mice. Representative gross pictures (A) and cross-sectional histological examinations (B) of M. marinum-

infected lungs from WT and Ncf1-/- mice at day 7 and day 14 after infection. Acid-fast stains (AFS) (B) at day14 showed

abundant AFS-positive bacilli in Ncf1-/- mice, whereas sparse AFS-positive bacilli were found in WT mice. These experiments

were repeated with similar results.

https://doi.org/10.1371/journal.pone.0189453.g002
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Fig 3. The loose and neutrophilic granulomas in Ncf1-/- mice in comparison with the compact granulomas in WT

mice. The representative immunohistochemical stain of macrophages (F4/80) (A) showed compact aggregation of

macrophages in WT mice, whereas macrophages were scattered within the granuloma of Ncf1-/- mice. The

immunofluorescent stain (B) (F4/80: red; Neutrophil elastase (NE): green) illustrated much more NE-positive neutrophils

interspersed among macrophages in Ncf1-/- mice compared with sparse neutrophils in WT mice. (C) Neutrophil and

macrophage counts of M. marinum-infected WT and Ncf1-/-mice at day 7 and day 14 were analyzed by flow cytometry, while

CD11b+Ly6G+ represented neutrophils and CD11b+F4/80+ represented macrophages. Data represent mean ± sd of 4 mice

from two independent experiments. The experiments were analyzed with Kruskal-Wallis test. *p < 0.05; **p < 0.005. These

experiments were repeated twice with similar results.

https://doi.org/10.1371/journal.pone.0189453.g003
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cytokines including IL-1β (Fig 4A), TNF-α (Fig 4B) and IL-6 (Fig 4C) in lung homogenates

were found in Ncf1-/- mice when compared with those in WT mice on both day-7 and day-14.

Notably, the extent of elevation of IL-1β, a critical innate immunity-associated cytokine, was

more marked when compared with the other two cytokines. Additionally, an early elevation

of IL-1β was noted in Ncf1-/- mice with a similar high level of IL-1β on both day7 and day14,

whereas levels of TNF-α and IL-6 were higher on day 14 than those on day 7. In contrast to

innate immunity-associated cytokines, no difference was found in the adaptive immunity-

associated cytokines including IFN-γ (Fig 4D), IL-10 (Fig 4E) and IL-17A (Fig 4F) between

WT and Ncf1-/- mice. We also assessed the levels of several neutrophil chemokines. Increased

levels of chemokines, including CXCL5, CCL5 and CXCL1, were reported in previous mouse

mycobacterial infection experiments [6, 14, 15]. We hence measured these cytokines in the

lung tissues. Among these three chemokines, CXCL5, secreted by pulmonary epithelial cells,

was previously identified to be a potent neutrophil chemokine which drives an early neutro-

philic inflammation in mouse TB infection [6]. We found that all these three chemokines had

elevated levels on day 14 when compared with those on day 7 in both groups and significantly

Fig 4. High levels of IL-1β and neutrophilic chemokines in M. marinum-infected Ncf1-/- mice. Cytokine and chemokine

responses to M. marinum infection (3 x 106 CFU). Cytokines of innate immunity including IL-1β (A), TNF-α (B) and IL-6 (C);

cytokines of adaptive immunity including IFN-γ (D), IL-10 (E) and IL-17 A(F), and neutrophilc chemokines including CXCL5

(G), CCL5 (H) and CXCL1 (I) were assessed in lung homogenates obtained 7 days and 14 days after M. marinum infection (3

x 106 CFU). Data represent mean ± sd (n = 4–7 mice each group) The experiments were analyzed with Kruskal-Wallis test.

*p < 0.05; **p < 0.005 and repeated with similar results.

https://doi.org/10.1371/journal.pone.0189453.g004
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higher in the Ncf1-/- mice when compared with those in the wild type group. It is noteworthy

that CXCL1 (KC, the murine IL-8 homologue) level may have peaked in Ncf1-/- mice on day 7

(Fig 4I), while CCL5 and CXCL5 increased significantly from day 7 to day 14 (Fig 4H). Taken

together, our results implicated that the high IL-1β and neutrophilic chemokines including

CXCL5, CCL5 and CXCL1 may contribute to the early neutrophilic inflammation in Ncf1-/-

mice.

Different regulation of IL-1β production by ROS in macrophages and

neutrophils

Previous studies, including our own, have indicated that decreased ROS levels lead to a lower

inflammasome activation and IL-1β production in mycobacterial infection in macrophages [8,

16, 17]. However, recent studies have shown that neutrophils play an important role in IL-1β
production during mycobacterial infection [18, 19]. We hence went on to investigate the role

of ROS in regulating IL-1β production in different immune cell populations including macro-

phages and neutrophils. Using thioglycollate-elicited macrophages and neutrophils of WT and

Ncf1-/- mice, we found that IL-1β production was significantly lower in ROS-deficient macro-

phages (Fig 5A), whereas the IL-1β production tended to be higher in ROS-deficient neutro-

phils (Fig 5B) after M. marinum infection. To clarify the relationship between ROS and pro-

IL-1β cleavage in macrophages, we investigated the effect of ROS on the IL-1β production in a

monocytic cell line. The western blot analysis of pro-IL-1β and IL-1β in THP1 cells stimulated

with M. marinum in the presence or absence of the NOX2 inhibitor diphenyleneiodonium

(DPI) showed that ROS production facilitates the cleavage of pro-IL-1β to IL-1β in monocytic

cells (Fig 5C).

Neutrophil elastase is active in processing pro-IL-1β
Based on the abundant infiltration of NE-positive neutrophils in M. marinum-infected Ncf1-/-

mice, we then tested the protease activity of NE, a neutrophil-specific protease, in activating

pro-IL-1β. We tested the activity of NE in granulocytes and found a high NE activity, which

can be inhibited by an enzyme inhibitor, in granulocytes after M. marinum infection (Fig 5D).

We then specifically tested the activity of NE to process pro-IL-1β. We found that NE was able

to process pro-IL-1β to produce IL-1β and this protease activity was reduced by adding inhibi-

tors of NE in a dose-response manner (Fig 5E). These data suggested that the elevated in vivo
levels of active IL-1β in the lung of M. marinum-infected Ncf1-/- mice may result from the

cleavage of pro- IL-1β by NE from the neutrophils in the tissue.

Expression of neutrophil elastase and IL-1β in the caseous

granulomatous inflammation of human pulmonary tuberculosis

To extend our findings from mouse to human and from M. marinum to M. tuberculosis, we

examined lung tissue samples from patients with pulmonary tuberculosis (Fig 6A). Character-

istic caseous granulomatous inflammation with Langhans giant cells was clearly demonstrated

by histological examination (Fig 6B). In line with one previous report [3], numerous neutro-

phils were found within the caseous tissue from the pulmonary cavity resulting from TB infec-

tion (Fig 6C). Importantly, the immunohistochemical staining with anti-NE antibody showed

abundant NE-positive cell within the caseous area (Fig 6D). Furthermore, the immunohisto-

chemical stain of IL-1β showed many IL-1β-positive cells in caseous granulomatous inflamma-

tion (Fig 6E). These data provide evidence supporting the potential roles of NE and IL-1β in

human TB infection.
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Fig 5. Different IL-1β production in macrophages and neutrophils from Ncf1-/- and wild type mice and the activity of

neutrophil elastase to process pro-IL-1β. Thioglycollate-elicited macrophages (1x105) and neutrophils (1x106) from Ncf1-/-

and WT mice were infected with M. marinum at MOI:1, the IL-1β release was then determined by ELISA (A and B).

Differentiated THP-1 cells were left uninfected (control) or pretreated by PBS and DPI then infected for 4 h with M. marinum at

MOI:1, 18 h later, pro-IL-1β (p34) and mature-IL-1β (p17) (C) were analyzed by immunoblot. NE activity of human

granulocytes (1x106) were left untreated or pre-treated by NE inhibitor and then stimulated with PMA (100nM) as a positive

control and M. marinum (MOI: 5) (D). Recombinant pro-IL1β (50 ng) was treated by NE (2x10-4 U) with and without NE

inhibitor, and mature-IL-1β (p17) was analyzed by immunoblot (E). Data represent mean ± sd. The experiments were

analyzed with Kruskal-Wallis analysis and repeated 2 times with similar results. *p < 0.05; **p < 0.005.

https://doi.org/10.1371/journal.pone.0189453.g005
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Fig 6. Expression of neutrophil elastase and IL-1β in the caseous granulomatous inflammation in the human lung

tissues of pulmonary tuberculosis. Formalinized lung tissue (A) of one patient with TB infection. The solid part (B) of the lung

tissue showed characteristic caseous granulomatous inflammation with Langhans giant cells, and numerous neutrophils were

found within the caseous part (C) of the lung tissues in high power field tissue. Immunohistochemical stain of neutrophil elastase

(D) and IL-1β (E) showed abundant neutrophil elastase-positive cells and IL-1β in the granulomatous inflammation.

https://doi.org/10.1371/journal.pone.0189453.g006

ROS in mycobacterial infection

PLOS ONE | https://doi.org/10.1371/journal.pone.0189453 December 11, 2017 11 / 19

https://doi.org/10.1371/journal.pone.0189453.g006
https://doi.org/10.1371/journal.pone.0189453


Blocking of IL-1β signaling alleviates the pulmonary neutrophilic

inflammation induced by mycobacterial infection

To define the role of IL-1β in this mycobacterial-induced pulmonary neutrophilic inflamma-

tion, we used both a monoclonal antibody to deplete IL-1β and a commercial IL-1 receptor

antagonist (Anakinra, Kineret1). We found that depletion of IL-1β ameliorated the tissue

inflammation in both M. marinum-infected Ncf1-/- and WT mice on day5 after infection

(Fig 7A). The immunofluorescent stain of NE also demonstrated a marked decrease in NE-

positive cells after depletion of IL-1β (Fig 7B). Similarly, after the treatment with IL-1 receptor

antagonist, the histological changes of pulmonary inflammation were attenuated (Fig 7C). The

quantification of infiltration area showed that blocking of IL-1 signaling reduced the mycobac-

terium-induced pulmonary inflammation in WT and Ncf1-/- mice (Fig 7D). Collectively, these

data suggested that early influx of neutrophils in M. marinum-infected Ncf1-/- mice may poten-

tially contribute to the IL-1β production through NE. Blocking of IL-1β may therefore amelio-

rate this neutrophilic inflammation in mycobacterial pulmonary infection.

Discussion

Dysregulated inflammation induced by mycobacterial infection leads to host-detrimental

tissue reactions including excessive lung infiltration and cavitary lesions in the lung. In this

study, we showed that ROS-deficiency leads to an early and extensive neutrophilic inflamma-

tion, which may contribute to the elevated IL-1β production in mycobacterial infection. These

findings reveal a novel role of ROS in the early neutrophilic granulomatous inflammation and

regulation of IL-1β production in mycobacterial infection.

We used M. marinum as a surrogate microorganism of M. tb to investigate mycobacte-

rium-related granulomatous and IL-1 pathway. Although not a common pathogen in the

human lung, M. marinum, a mycobacterium containing RD-1, which is a critical virulence

generation of M. tb, induces cutaneous suppurative granulomatous inflammation in infected

humans [20, 21]. M. marinum-induced reaction bears marked histological characteristics simi-

lar to granulomas induced by M. tb in the lung and has been increasingly used in mechanistic

studies of mycobacteria-induced inflammation [22]. Additionally, Cooper et al. found a higher

mycobacterial load, a higher level of IFN-γ, and more severe pulmonary inflammation with

aggregates of neutrophils after M. tb infection in Ncf1-/- mice than those in WT mice [23].

In this study, to minimize the effects of mycobacterial load on cytokines production, we

decreased M. marinum to 3 x106 in experiments studying the effects of ROS on the production

of cytokines and chemokines (Fig 4). In the low-dose infection, we found a similar CFU counts

between WT mice and Ncf1-/- mice (S1 Fig). The differences in the cytokine levels we observed

in this study hence should be attributed to the distinct tissue immunoregulatory conditions

rather than the bacterial loads. In human TB infection, as demonstrated in a non-human pri-

mate model (macaques) with low-dose M.tb (25 CFU) by using bronchoscopic injection, 5–6

weeks is required to find characteristic pulmonary inflammation after the infection [24]. How-

ever, such precise low-dose infection and long follow-up duration have difficulty to conduct in

animals other than non-human primate. High-dose mycobacterial infection protocols hence

were generally used in mouse models, including this study, which take only few days to find

prominent pulmonary inflammation after infection [6, 25]. This limitation in the mouse mod-

els may partly explain the differences in the findings from mouse mycobacterial infection

models and human mycobacterial diseases.

The formation of granulomas, organized aggregates of immune cells, is a hallmark micro-

scopic finding of mycobacterial infection in tissues [26]. Recent studies have shown that gran-

ulomas are highly dynamic structures containing neutrophils, macrophages, lymphocytes and
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Fig 7. IL-1β depletion and IL-1 receptor antagonist treatment alleviated the neutrophilic inflammation. The

characteristic pulmonary histopathological images (A) of M. marinum-infected Ncf1-/- mice and WT mice on day-5 with and

without IL-1β depletion by a monoclonal antibody directed against IL-1β (150μg on day-1). The immunofluorescent stain of

neutrophil elastase (NE) (B) also showed an apparently decrease of NE-positive cells after the depletion of IL-1β. The

representative histological images (C) of WT and Ncf1-/-mice treated with and without IL-1 receptor antagonist (Anakinra,

100mg/kg/day for 5days). Percentages of infiltration area (D) were quantified by using Image J. The experiments were analyzed

with Kruskal-Wallis test and repeated with similar results. *p < 0.05; **p < 0.005.

https://doi.org/10.1371/journal.pone.0189453.g007
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other cell types [27, 28]. Early influx of neutrophils may critically affect death pattern of

infected cells and the subsequent formation of granulomas, which have been reported to be a

significant determining factor for unfavorable clinical outcomes including latent pulmonary

TB and advanced pulmonary TB with cavity formation [2, 29, 30]. The host-detrimental role

of neutrophilic inflammation in TB infection was previously shown in IFN-γ-deficient mice by

Nandi et al. [31]. In ROS-deficient mice, we found a marked increase of CXCL5 (Fig 4G), a

pulmonary epithelial cell-produced chemokine which may contribute to the recruitment of

neutrophils early in mycobacterial infection [6]. The loose M. marinum-induced neutrophilic

granulomas in ROS-deficient mice shown in our results (Fig 3A and 3B) are similar to the

recent report by Deffert et al., showing less compact neutrophilic granulomas in mycobacte-

rium-infected mice with defective NOX2 [25]. In that study, they also found that M. bovis
BCG (Bacillus Calmette Guérin) infection induced more severe lung damage in NOX2-defi-

cient mice. They further demonstrated that restoring NOX2 function in macrophages/den-

dritic cells, but not in neutrophils, led to a marked decrease in the lung damage, indicating

different roles of ROS in macrophages and neutrophils during mycobacterial infection [25].

Those findings suggest that early influx of neutrophils may lead to loose granulomas, which

in turn result in defective mycobacterial sequestration and the poor control of mycobacterial

growth.

In this study, we used RD-1 containing M. marinum and found that the difference in

inflammasome-dependent and inflammasome-independent production of IL-1β in neutro-

phils and macrophage may be a critical factor underlying the differences between wild type

and NOX2-deficient mice. A number of studies have shown the key role of IL-1β in controlling

mycobacterial growth [9, 32, 33]. However, the specific role of IL-1β in the host-detrimental

tissue inflammation during mycobacterial infection remains unclear due to the difficulty in

comparing the severity of granulomatous inflammation without equalizing mycobacterial

loads in different mouse strains. Mishra et al. used a streptomycin-dependent infection model

to control the growth of M. tb and found that, given similar mycobacterial load, high levels

of IL-1β led to exacerbated pathology including less compact neutrophilic granulomatous

inflammation and high mortality in TB infection [34]. IL-1β is a critical innate cytokine in

mycobacterial infection and has complex cross-talk with other mediators within the complex

inflammatory network consisting of IL-1β, TNF-α, eicosanoids, chemokines, and Th17

response [4, 35]. Therefore, the balance among these innate immune pro-inflammatory cyto-

kines is crucial, and the interaction between cytokine networks and cell death patterns may in

turn orchestrate the inflammation in mycobacterial infection [36]. Moreover, the unbalanced

pro-inflammatory cytokines also leads to an early influx of neutrophils, which may impede the

mycobactericidal ability of resident macrophages, so-called Trojan Horse phenomenon [30].

Along the same line of high IL-1β levels found in Ncf1-/- mice reported in this study, those

results underscore the importance of the redox regulation of the acute inflammation cytokine

IL-1β in mycobacterial infection in the lung.

Neutrophil-derived proteases, including NE or cathepsins, have been implicated in caspase-

1 independent pro-IL-1β processing in arthritis and Pseudomonas aeruginosa infection mouse

models [37, 38]. It is now well recognized that inflammasomes are not the only mechanism

for processing IL-1 cytokines. High IL-1β production and high mortality were unexpectedly

found in M. tb-infected mice deficient in caspase-1 implicates the existence of caspase-1 inde-

pendent IL-1β production in mycobacterial infection [39]. Similarly, our laboratory used a

serum-induced arthritis mouse model to identify cathepsin B as one of the major proteases in

the pro-IL-1β processing in the ROS-deficient Ncf1-/- mice [12]. By immunohistochemical

analysis of the human lung with TB infection, we found abundant NE, but almost no cathepsin

staining in the inflammatory tissue. We therefore inferred that NE may be capable of
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processing pro-IL-1β to IL-1β in the lung with TB infection. Indeed, we found that neutro-

phils, which are more abundant in the Ncf1-/- mice with mycobacterial infection, produced

more IL-1β and the protease NE in neutrophils was capable of processing pro-IL-1β (Fig 5).

Modulating the death patterns of inflammatory cells is one of the evasion mechanisms

used by M. tb. to avoid immune clearance. These include regulation of the eicosanoid path-

ways in macrophages and the programmed death-1 (PD-1) pathway in dendritic cells [29,

40]. Divangahi et al. reported that a high prostaglandin E2 (PGE2) level in macrophages is

crucial for the initiation of adaptive immunity. Moreover, Periasamy et al. found that PD-1

pathway orchestrates the expansion of regulatory T cell in M. tb infection [36, 41]. Our previ-

ous study also found that inhibition of ROS regulates the production of PGE2 in macrophage

[8]. However, we found comparable levels of adaptive immunity cytokines including IL-10

and IL-17A between WT and Ncf1-/- mice after M. marinum infection in this study (Fig 4e

and 4f). We hence postulated that, instead of affecting Treg and Th17 pathway, ROS appears

to be mainly involved in the early phase of mycobacterial infection and leads to a dysregu-

lated lung inflammation.

Our findings suggest that inhibition of inflammasome alone may be insufficient to suppress

IL-1β-related inflammation due to the relative importance of inflammasome-independent

pathways in the lungs infected by mycobacteria. The reduced inflammation by abrogation of

the IL-1β signal as we showed in this study (Fig 7) and clinical evidence suggesting that IL-1

blockade is relatively safe in patients with rheumatic disorders regarding tuberculosis risk [42]

indicate the potential application of IL-1 blockade as an adjunctive therapy to ameliorate tissue

inflammation, termed host-directed therapy, in TB infection in combination with the control

of mycobacterial growth with conventional anti-TB antibiotic treatment [43]. In the groups of

TB patients with impaired leukocyte ROS production, including the patients with diabetes

mellitus, higher disease severity and poorer treatment outcome have been attributed to high

levels of pro-inflammatory cytokines, including IL-1β, in the tissue [8, 44, 45]. Our results

hence suggest that IL-1 blocking may ameliorate inflammation-induced tissue damage and

improve the treatment outcome especially in those groups of patients.

In conclusion, we found that lack of ROS leads to the early influx of neutrophils in the

formation of granulomas, which in turn leads to exacerbated inflammation. In addition to

showing that NOX2 deficient neutrophils are effective cells in inflammasome-independent

cleavage of pro-IL-1β, our results suggest the potential use of IL-1β-blocking agents as adjunc-

tive therapies with antimicrobial agents in TB treatment. Our findings shed light on the redox

regulatory mechanism of granulomatous inflammation in mycobacterial infection and may

contribute to the identification of molecular targets for optimal treatment for TB infection in

the future.
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