
RESEARCH ARTICLE

The Temporal Spectrum of Adult Mosquito
Population Fluctuations: Conceptual and
Modeling Implications
Yun Jian1, Sonia Silvestri1, Jeff Brown2, Rick Hickman2, Marco Marani1,3,4*

1. Nicholas School of the Environment, Duke University, Durham, North Carolina, 27708, United States of
America, 2.Mosquito Control Department, Brunswick County Government, Brunswick, North Carolina, 28422,
United States of America, 3. Department of Civil and Environmental Engineering, Duke University, Durham,
North Carolina, 27708, United States of America, 4. Department of Civil, Architectural, and Environmental
Engineering, University of Padova, Padova, Italy

*marco.marani@duke.edu

Abstract

An improved understanding of mosquito population dynamics under natural

environmental forcing requires adequate field observations spanning the full range

of temporal scales over which mosquito abundance fluctuates in natural conditions.

Here we analyze a 9-year daily time series of uninterrupted observations of adult

mosquito abundance for multiple mosquito species in North Carolina to identify

characteristic scales of temporal variability, the processes generating them, and the

representativeness of observations at different sampling resolutions. We focus in

particular on Aedes vexans and Culiseta melanura and, using a combination of

spectral analysis and modeling, we find significant population fluctuations with

characteristic periodicity between 2 days and several years. Population dynamical

modelling suggests that the observed fast fluctuations scales (2 days-weeks) are

importantly affected by a varying mosquito activity in response to rapid changes in

meteorological conditions, a process neglected in most representations of mosquito

population dynamics. We further suggest that the range of time scales over which

adult mosquito population variability takes place can be divided into three main

parts. At small time scales (indicatively 2 days-1 month) observed population

fluctuations are mainly driven by behavioral responses to rapid changes in weather

conditions. At intermediate scales (1 to several month) environmentally-forced

fluctuations in generation times, mortality rates, and density dependence determine

the population characteristic response times. At longer scales (annual to multi-

annual) mosquito populations follow seasonal and inter-annual environmental

changes. We conclude that observations of adult mosquito populations should be

based on a sub-weekly sampling frequency and that predictive models of mosquito

abundance must include behavioral dynamics to separate the effects of a varying
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mosquito activity from actual changes in the abundance of the underlying

population.

Introduction

A detailed understanding of mosquito population dynamics under natural

environmental forcing requires the observation and understanding of ecological

processes over a wide range of time scales. For example, the effect of rainfall on

mosquito oviposition has been documented to be dependent on the time scale: the

effect is negative over short and intermediate time scales, due to diluted nutrients,

reduced mosquito activity, and egg removal, and it is positive over long time

scales because of increased habitat extent and relative humidity [1]. Adult

mosquito activity (such as host seeking) can also respond quickly to

meteorological forcings [2, 3], thus inducing fast response times of apparent

population abundance. Many mosquito species have relatively short generation

times. Laboratory experiments show that, under favorable conditions, less than 3

weeks may be required between two successive generations of Ae.vexans [2].

Mosquito oviposition and feeding processes occur at hourly and daily scales

[1, 4, 5], and endogenous and exogenous driving factors typically vary on weekly

to monthly scales [6-12].

The sampling resolution should of course adequately cover such a wide range of

scales, but few studies address the role of temporal resolution in mosquito

sampling [10, 13-16], which is most commonly carried out over one single night

with a weekly frequency [6, 8, 11, 17-21]. Daily, long-term studies of adult

mosquito populations in their environment are, in fact, the exception rather than

the rule. Among the exceptions is the work by Shaman et al. [22], who focus on

linking water availability and mosquito abundance at the monthly scale. Daily

data are also used in Chuang et al [23], who aggregate them into weekly means to

explore the merit of using satellite and in situ weather measurements as drivers for

mosquito modeling. Both these contributions take advantage of the increased

reliability of weekly/monthly abundance estimates afforded by averaging daily

data, but do not explore the full extent of the temporal scales covered by a daily

dataset.

Indeed, particularly in the case of adult mosquito populations in natural

conditions, an important question concerns the choice of the sampling frequency

which can capture the governing population dynamical mechanisms. In fact, the

degree with which observations represent the population being studied is a general

and fundamental problem that should always be explicitly addressed in ecological

studies [24–26]. In the present case, the representativeness of observations of adult

mosquito abundance with respect to the underlying population dynamics depends

crucially on the time scales over which the size of the population changes, and on
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the factors that may affect the relation between observations and the actual

abundance.

In this framework, the aims of this paper are the identification of the range of

temporal scales over which mosquito population variability occurs, the

attribution of these temporal scales of fluctuation to the exogenous and

endogenous dynamical mechanism generating them, and the inference of

implications for observational requirements and modelling approaches. To this

end we analyze, through Fourier Transform and mechanistic population models, a

unique 9-year time series of uninterrupted daily abundance observations in North

Carolina involving a large number of mosquito species, produced and maintained

by the Mosquito Control Department in Bolivia (NC).

Methods

Study area and data

The Mosquito Control Department in Brunswick County (North Carolina – USA)

was established to monitor and prevent mosquito-borne diseases, with particular

reference to Eastern Equine Encephalitis (EEE) and West Nile Virus (WNV),

among the most severe mosquito-borne diseases in temperate semi-humid areas.

The ornithophillic Culiseta melanura, and several other species, including Aedes

vexans, have been implicated as mammalian bridge vectors of EEE, as well as of

other arboviruses such as WNV [27–30]. Since 2004, the Mosquito Control

Department of Brunswick County has been routinely collecting daily abundance

of adult mosquito at three locations using New Jersey Light Traps (NJLT,

Figure 1) all year around. NJLT’s were placed 4 feet off the ground at chest height.

The trap light source is a 25 watt frosted incandescent light bulb. All traps were

hard wired and plugged into a 120 V all-weather outlet. The light source and fan

were run continuously. Trap collections are made every morning between 8 and

10 am, 7 days a week. The mosquito sampling was carried out on the Brunswick

county government property (the ‘‘Chicken Trap’’, 34.059 ,̊ 278.168 ,̊ contact

Jeffrey Brown Jbrown@brunsco.net for future permissions) as well as on private

property (the ‘‘Fox trap’’, 34.216 ,̊ 278.000 ,̊ and ‘‘X-roads trap’’, 33.930 ,̊

278.611 ,̊ for future permissions contact Jeffrey Brown Jbrown@brunsco.net and

Rick Hickman rickhickman@atmc.net). Field studies did not involve endangered

or protected species.

We focus here on the ‘‘Chicken Trap’’ site (close to several woodland pools and

to a sentinel chicken site providing blood bait) because of the comparatively large

sample size and because expert opinions from the Brunswick County Mosquito

Control Department suggest that the population dynamic recorded at the

"Chicken trap" sentinel site is well-aligned with changes in mosquito population

abundance over large areas of the County. Daily weather data (temperature,

precipitation, dew point, and wind speed) at the closest National Climate Data

Center (NCDC) station were acquired (Station USW00013748, about 34 km from

the ‘‘Chicken Trap’’ site, http://gis.ncdc.noaa.gov, http://gis.ncdc.noaa.gov).
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Ground water level observations were also downloaded from the U.S. Geological

Survey real-time groundwater level network (Station 335629078115407, 13 km

from the ‘‘Chicken Trap’’ site http://groundwaterwatch.usgs.gov/). These data

were used to study the role of exogenous environmental controls as drivers of

mosquito population dynamics.

Cs.melanura is identified as the primary vector of EEE disease. This mosquito

species feed primarily on birds and lay eggs in underground crypts. It is a

multivoltine species with an exceptionally low development rate and a tolerance to

cold weather. It can overwinter in multiple larval stages [27, 29, 31–33]. Ae.vexans

is a floodwater mosquito species ubiquitously found in the USA. It is important

Figure 1. Study area, sampling sites and weather stations.

doi:10.1371/journal.pone.0114301.g001
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because of its abundance, widespread distribution, and role as the vector of

multiple diseases. This species lays eggs in soils subject to transient flooding. The

eggs hatch and complete their development when submerged under water. Unlike

Cs.melanura, Ae.vexans overwinters as eggs [2, 34, 35].

Data analysis

Various time series analysis approaches have been developed and applied in the

context of population ecology (e.g. phase space models, autoregressive models,

and Bayesian models [24, 36–44]). The objectives of this work require the

identification and analysis of the characteristic scales of fluctuation of mosquito

abundance. We tackled this problem by first applying Fourier analysis to detect

and identify, in the observed adult mosquito abundance and environmental

forcing time series, characteristic fluctuation time scales. We then experimented

by artificially degrading the data resolution to the weekly scale to observe how fast

scales of fluctuation and inferred statistical properties changed with observation

frequency. Finally, we used an Individual Based Simulation model (IBS model), as

well as density-dependent population models, to comparatively explore the

relative importance of mosquito activity and of endogenous and exogenous

controls in determining the observed scales of fluctuation and the overall

population dynamics.

Fourier Analysis

Discrete Fourier Transform (DFT) decomposes a time series into the sum of

sinusoidal functions with varying periods Ti5 (N ?Dt)/i (i50, …, N/2) [45]

(where N is the sample size and Dt is the sampling interval). This representation is

very useful to detect seemingly irregular hidden periodicities. DFT provides, as a

result of the analysis, the amplitude of the fluctuations corresponding to each

discrete period Ti, hence allowing identification of possible dominant periodicities

(i.e. having relatively large amplitudes). Other analysis methods, such as wavelet

analysis, provide further sophistication, e.g. in analyzing non-stationary time

series [46]. However, the focus here is the identification of characteristic

periodicities in adult mosquito populations (which may e.g. arise due to the

presence of characteristic time scales in environmental forcings and/or in

mosquito life cycles), and the DFT (employed in previous population ecology

studies, e.g. see [46–48]) is an efficient tool that suffices this objective. One

important notion related to the DFT is the Nyquist theorem, which establishes

that the shortest periodicity (i.e. the fastest dynamics) that can be captured when a

process is sampled at a resolution Dt is equal to 2Dt (corresponding to the Nyquist

frequency, 1/(2Dt)). In the case of mosquito abundance observations, when adult

mosquitoes are collected once per week, the shortest periodicity that can be

resolved is 2 weeks: fluctuations occurring over shorter time scales will remain

undetected in the data and will be seen as ‘‘noise’’. The dataset used here has a

resolution of 1 day, such that the shortest periodicity that can be resolved is equal

to 2 days: this dataset allows us to explore, in the field and under natural
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conditions, the full range of periodicities that may be present in population

dynamics of adult mosquitoes. As customary, we represent results from the DFT

through the power spectrum, S(T), which represents the square of the oscillation

amplitude of the sinusoidal component of period T in the Fourier decomposition

of the time series studied.

Autocorrelation, partial correlation, and data resampling

We resampled the daily observation time series at a 7-day frequency to evaluate

how a degraded temporal resolution affects the temporal scales of fluctuation

captured by the time series. We obtained 7 subsampled time series, each

‘‘collected’’ on a different day of the week. We computed the AutoCorrelation

Function (ACF) and the Partial AutoCorrelation Function (PACF) for the original

dataset and for the sub-sampled ones. The k-th element of the ACF provides a

measure of the average correlation between the abundance values xt, and xt-k, k

time steps apart. The PACF is obtained by removing from the correlation between

xt and xt-k the indirect correlation associated with the intermediate terms xt-1, xt-2,

…, xt-k+1, such that only the direct correlation between xt, and xt-k is retained [43].

Models

With the aim of identifying the statistical properties in the observed abundance of

adult mosquitoes associated with distinct population dynamical mechanisms, we

constructed Individual-Based life cycle Simulation (IBS) models for Ae.vexans and

Cs.melanura populations. The IBS models explicitly describe three mosquito life

stages: egg, larva/pupa, and adult [2]. Each stage is characterized by a distribution

of the time spent in that stage, dependent on physiology, environmental

conditions, and population density (Figure 2 and Figure S1 in File S1). Each stage

is characterized by a survival rate, also a function of environmental conditions (

Figure 2). We based our description of the distributions of the time spent in each

stage and of the survival rate for each stage on existing literature, to minimize the

number of parameters which require ad hoc assumptions (Figure 2). No

calibration of the models was performed as the objective is here to obtain a

realistic representation of adult mosquito abundance fluctuations, rather than the

numerical reproduction of a specific sample.

The time spent in each life stage by each individual is drawn from a normal

distribution whose mean depends on the temperature averaged over a 10-day

window (to represent temperature conditions throughout the developing period),

and a fixed standard deviation (1 day). The mean ‘‘residence’’ time (d) in each

stage is assumed to decrease with the average temperature according to a power

law (Figure 2): d5 A ? T 2a [2]. The literature-derived exponents adopted are as

follows: a51.90 for Ae.vexans embryogenesis, a51.86 for Ae.vexans larval/pupal

stage, a5.30 for Cs.melanura embryogenesis, and a52.25 for Cs.melanura larval/

pupal stage [2, 29, 35, 49]. The gonotrophic cycle in adult mosquitoes includes

copulation, blood search, blood digestion, and egg development in the female

body. The length of the gonotrophic cycle for Cs.melanura is assumed to be drawn
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from a Gaussian distribution with a mean which decreases with increasing

temperature and a unit standard deviation [32]. The length of the gonotrophic

cycle for Ae.vexans is assumed to be a truncated normal distribution with a mean

of 10 days, standard deviation of 1 day, upper bound of 13 days and lower bound

of 7 days [2, 35] (Figure 2 and File S2). The survival rates for the larval/pupal and

adult stages of Ae.vexans, and the adult stage of Cs.melanura are quadratic

functions of the 10-day moving average temperature (Figure 2) [32, 35, 49]. The

larval/pupal survival rate of Cs.melanura is assumed to be 1 when the current

larval abundance is zero and 10-day moving average of precipitation is larger than

Figure 2. Main biological parameters as assumed in the IBS model. (a) Transition time from egg to larva
as a function of temperature. (b) Transition time from larva to adult as a function of temperature. (c) Length of
gonotrophic cycle for Cs.melanura as a function of temperature. (d) Marginal distribution of the number of
eggs laid per batch. (e) Larval survival rate as a function of temperature for Ae.vexans. (f) Adult survival rate
as a function of temperature for both Cs.melanura and Ae.vexans.

doi:10.1371/journal.pone.0114301.g002
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1 mm/d as there is no information for this species. We further assume that the

survival rates of larvae and adults for both species decreases when the 10-day

moving average of precipitation is below 1 mm/day to mimic a documented

sensitivity of survival rates on moisture and water availability [3, 17]. Finally,

survival rates for egg and larval stages for both species are assumed to decrease

linearly with abundance to reflect documented density dependence effects [6]

(File S2).

Under natural conditions only a fraction of female mosquitoes is successful in

obtaining a blood meal and are able to oviposit. The probability of success is

represented by a Bernoulli distribution with a mean that linearly increases with

the 10-day moving average of relative humidity for Ae.vexans, and a mean which

is an increasing quadratic function of the 10-day moving average of temperature

for Cs.melanura (File S2) [2, 32]. After oviposition, engorged females can start

another gonotrophic cycle until they die. This model representation realistically

reproduces (under current weather conditions) the fact that the large majority of

females only have the opportunity of one blood meal and oviposit only once

during their lifetime [35]. Only a small proportion of females succeeds in

obtaining a second blood meal and oviposit a 2nd batch of eggs. The number of

eggs laid by each adult per batch is assumed to have a normal distribution, with a

mean that increases with precipitation amount, as water is more likely available

for oviposition (Figure 2).

Details on the development rate and the values of the controlling factors for

each development stage can be found in File S2. Such values were obtained from

the wide relevant literature, as noted above, and we purposely avoided ad hoc

calibrations because the objective is to identify the signature of each individual

developmental process on the resulting population variability, rather than to

maximize the ability of the model to reproduce a specific observed time series.

The models (i.e. defined by one set of parameter values for each species) were run

under three configurations: (1) observed environmental forcings (temperature

and rainfall in 2004-2012) (2) observed temperature forcing only (effect of rainfall

on survival rate, oviposition and egg hatching ‘‘ turned off ’’) (3) endogenous

dynamics only (fixed temperature -T518 C̊ - and rainfall effect turned off). The

three model configurations allow us to separate and identify the population

fluctuations and periodicities caused by endogenous and environmental controls.

The IBS models produce, at each time step, the abundance of the ‘‘actual’’ adult

mosquito population (the abundances of the other life stages, also computed at

each time step, are not analyzed here due to a lack of the corresponding

observations). We further assumed that the observed population, i.e. the number

of adults that would be attracted and captured by a trap, is a varying fraction of

the underlying actual adult population. The dependence of this ‘‘activity fraction’’

on rainfall was estimated based on observations as follows. We first calculated the

ratio of the current abundance to the maximum abundance in a moving window

of 31 days. The rationale for this estimate is that the maximum abundance over a

relatively homogeneous period should be a good proxy for the fraction of the

underlying population that can be captured under the most favorable
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environmental conditions. The median of the activity ratio computed over

discrete intervals of rainfall intensity was then plotted against current day rainfall.

This analysis indicates that the activity ratio increases with rainfall at low

intensities and decreases steeply for rainfall intensities above a threshold (Figure

S2 in File S1). This nonlinear dependence of the activity ratio on rainfall was used

to represent rainfall-activity effects in the IBS model.

We note here that, while the IBS model formulation indeed includes several

assumptions, we have extensively experimented with a wide variety of such

assumptions and parameter values, and found the impact on the emerging

dynamical time scales, and particularly on the fastest and slowest time scales of

population fluctuations, to be limited. Because of the stochastic nature of the IBS

models, we ran the models 20 times for each species, to obtain ensemble means as

a basis for further discussion.

Two classic and commonly used population models were applied to the daily

abundance observations of Ae.vexans and Cs.melanura: the Ricker model and the

Gompertz-logistic model [7, 24] (Table 1). These models are defined through

specific relations between per-capita growth rate and abundance: the relation is

linear in the Ricker model and log-linear in the Gompertz formulation. Through

the application of these models we tested for the existence of density dependence

with lag between 0 and 5 days, to explore the possible effects of delayed density

control. We also compared the statistical properties of the population dynamics

generated by these models with those from observations, to identify which

features can indeed be reproduced using canonical population modeling.

Environmental forcings were included in the models as additive terms, to account

for the dependence of the carrying capacity and the maximum per-capita growth

rate on environmental conditions [6, 8]. These models were calibrated (in R

2.15.1) as linear models using the least squares method (see File S3 for estimated

parameter values). It is known that least square methods applied to ecological

models can lead to improper estimates of parameter values [50]. However, the

focus of our analyses is not the identification of ‘‘true’’ parameter values, but the

evaluation of the ability of density-dependent population model formulations to

capture observed correlation structures. We will thus focus on comparing

modeled and observed correlation structures rather than on quantifying bias in

parameter estimates. The calibrated density-dependent models were used to

generate synthetic time series, and their ACF and PACF were compared with those

of the original observations and of the time series produced using the IBS model.

Results

We analyze the observed statistical properties of the four most abundant species in

the studied area: Aedes vexans, Culex salinarius, Culiseta melanura, and Psorophora

columbiae (Figure 3). Cs.melanura and Ae.vexans are connected with EEE and

WNV diseases, hence the additional interest and further analyses reported later.

Figure 3 shows large and very rapid fluctuations in the daily abundance of adult
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mosquitoes: for example, more than 800 individuals of Ae.vexans were collected

on Oct-27-2010, while only about 50 individuals were collected 2 days before and

after. This dramatic change in the abundance is much more rapid than would be

allowed by physiologically possible generation times (about 3 weeks under

favorable conditions [2]). Indeed, large differences (several order of magnitudes in

1–2 days during the growing season) are present throughout the 9-year dataset (

Table 1. Density-dependent models (showing lag 0 as examples).

Model name Recursive form

Ricker model Nt+15Nt 6 exp(rm (1-Nt/K))

Gompertz-logistic model Nt+15Nt 6 exp(rm (1-logNt/logK))

Where t is index of sample date; N is adult mosquito abundance; rm is the maximum per capital growth rate; K is the carrying capacity.

doi:10.1371/journal.pone.0114301.t001

Figure 3. Observed abundance for the 4 dominant species at the Chicken Trap site in the period 2004 –
2012. The subpanels show details of the abundance fluctuations for two specific periods identified by the grey
windows in (a) and (b).

doi:10.1371/journal.pone.0114301.g003
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Figure 3), which are likely attributable to the changing proportion of active

individuals rather than to changes in the actual population.

The results of DFT analysis differ for the four species (Figure 4). A Peak at

yearly time scales in the power spectrum is found for Ae.vexans, Cx. salinarius and

Ps. columbiae, but it is less obvious for Cs.melanura. The lack of detected cycles at

yearly scales for Cs.melanura may probably be attributed to the large differences in

its inter-annual abundance (e.g. see the particularly low abundance during the

2007 drought), as well as to more widely varying overwintering times (Figure 3).

At the scale of 1 to several months, major peaks can be seen for two of the studied

species (70 days and 30 days for Ae.vexans, and 110 days and 30 days for

Cs.melanura). This intermediate range of time scales includes realistic durations of

the life stages in mosquito life cycle [2, 3]. At shorter time scales (less than 1

month), peaks in the Fourier spectra are found for Cs.melanura and Ps.columbiae.

In particular, peaks at wavelenghts shorter than 2 weeks are identified for

Cs.melanura. Spectral power at daily scales does not exhibit significant preferred

scales of fluctuations. The power spectra of temperature, rainfall and relative

humidity exhibit a major annual cycle (Figure S3 in File S1). The spectrum of

rainfall also shows peaks at time scales of several days, while the power spectrum

of groundwater is very smooth with no obvious cycles during the study period.

Interestingly, the peaks in the power spectra of mosquito abundance at monthly

scales are not matched by major peaks in the power spectra of weather focings.

This suggests that fluctuations over these time scales are caused by internal

dynamical mechanisms.

Analysis of the ACF’s highlights significant differences between the daily data

and the weekly subsamples, and among the weekly subsamples (Figure 5). For

brevity we focus here, and in most of the following, on the two most relevant

species, Ae.vexans and Cs.melanura. The ACFs of the daily Ae.vexans observations

are significantly positive for time lags up to about 11 weeks, while, for example,

the ‘‘Wednesday’’ samples for the same species only show a significant positive

autocorrelation for lags up to 3 weeks. Furthermore, the ACFs of different weekly

subsamples exhibit very wide differences. For example, the positive autocorrela-

tions of the ‘‘Sunday’’ sample are both larger and more persistent than those in

the ‘‘Wednesday’’ sample. A quite similar situation is seen in the case of

Cs.melanura, some weekly samples suggesting a much shorter memory than

others (Figure 5 c) and d)) and, in particular, a shorter memory than indicated by

the more statistically representative daily observations. Furthermore, the peaks in

the ACF of daily sampled Cs.melanura at about 1 and 3–4 weeks (Figure5, panel c)

correspond to the peaks identified in the Fourier spectrum, as theory requires.

Such peaks are lost in the weekly ACF. It is clear from these results that the

apparent statistical properties of the adult mosquito population are extremely

different depending on the specific weekly time series which happens to be

sampled.

We now turn to the analysis of the synthetic time series generated using the IBS

models. We again underline that the IBS models were run in an ‘‘unconstrained

mode’’: we used literature values of the parameters and we did not update the
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model state (number of eggs, adults, etc.) using observations during the

simulations. The time series generated by the IBS models with observed

environmental forcings with and without the activity term exhibit realistic annual

peaks and reproduce the influence of dry and cold weather conditions (Figure 6).

However, the fast time scales of fluctuation in the observed abundance are

realistically represented only by the IBS model which includes an activity term

modelling the variable vagility of adult mosquitoes (Figure 6).

We also compared the PACFs of the observations, of the IBS simulations, and

of the output of canonical population models. The PACFs for the daily

observations are positive for both species up to about one week, while the PACFs

generated by the Ricker and Gompertz models with density dependence dictated

by the current abundance (lag 0) are negative at the same temporal scale (Figure 7

(d), (e), (i), (j)). Models which embed density dependence at the 1 day or 5-day

lag exhibit similar results (Figure S4 in File S1). Moreover, adding multiple lags

(lags 0–5) to the density dependence representation does not produce a better

match of the observed correlations, as it increases the short term correlations but

model outputs are less correlated in time than measured abundance (Figure S4 in

File S1).

The PACFs for the IBS model without the activity component also show

negative correlations at short temporal scale (Figure 7, (c) and (h)). However,

Figure 4. Power spectra for the 4 dominant species. The text marks the approximate locations of major
peaks.

doi:10.1371/journal.pone.0114301.g004
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when the activity component is included in the formulation, the resulting

dynamics show significant, and realistic, positive correlations at time scales up to

about one week (Figure 7, (b) and (g)). This suggests that the apparent correlation

properties in the observed population at short time scales (,1 week) are highly

influenced by adult mosquito activity and do not reflect fluctuations in the actual

population.

We finally compare the power spectra of the simulated abundance generated

with the three model configurations that include the activity component with

those obtained by ‘‘turning-off’’ mosquito activity (Figure 8). For simplicity we

use Cs. melanura as the illustrative example. Under constant environmental

forcings, a major peak is found at time scales of about 180 days (Figure 8 (a) and

(d)), which is a result of endogenous controls as exogenous factors do not

fluctuate under this environmental setting (T518 C̊, and no rainfall effect), with

the population oscillating around the carrying capacity. When the observed

temperature is included in the model, an annual peak appears due to the yearly

cycle in this forcing (Figure 8 (b) and (e)). Under the same setting, the spectra also

exhibit another peak at a monthly scale (about 35 days), which is the joint result

of interacting endogenous and exogenous controls. The added rainfall effects

reduce the size of the peaks at the yearly scale and introduce a peak at about 70

days (Figure 8 (c) and (f)). The annual cycle in the population abundance

Figure 5. ACF for daily observations ((a) and (c)) and for subsampled weekly data ((b) and (d)). The
dashed blue lines represent the 95% confidence intervals for the ACF. Significant peaks around 1 and 3–4
weeks, marked magenta in (c), are partly lost in the subsampled weekly data.

doi:10.1371/journal.pone.0114301.g005
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becomes less obvious because the interannual rainfall variability induces large

uncorrelated variations in bloom times and abundance across different years.

Finally, when activity is added to the model, the height of the peaks at longer time

scales (.1 month) are reduced considerably while their position and shape are

preserved. The amplitude of short time scale fluctuations increases (at the high-

frequency end) relative to longer time scale periodicities, yielding a relatively low

difference in amplitude across scales. While this is a qualitative observation, we

note that model formulations including adult mosquito activity lead to power

spectra in which energy decreases less steeply with increasing frequency, similarly

to what happens for observations.

Discussion and Conclusions

A coherent picture of adult mosquito dynamics, for the species examined here,

emerges from the analysis of daily data and the use of a variety of modeling tools.

First, the analysis of the autocorrelation properties suggest that the relatively

large ‘‘memory’’ in the observations (represented by positive values in the PACF

for several time lags, Figure 7) can hardly be reproduced by density dependence

Figure 6. The mean abundance from 20 runs of IBS model driven by observed weather forcings for
Ae.vexans and Cs.melanura: simulations without ((a) and (c)) and with ((b) and (d)) activity
component. The grey lines represent the range (minimum and maximum) of 20 simulated values.

doi:10.1371/journal.pone.0114301.g006
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mechanisms, even when multiple lags are involved. On the contrary, the inclusion

of weather-driven activity does produce a modelled PACF which more realistically

reproduces observed partial autocorrelations (see the supplementary material for

a detailed comparison). The influence of mosquito activity on the ACF and PACF

has implications for empirical analyses of mosquito populations. Observational

ACFs and PACFs, in fact, importantly depend on the sampled abundance (as

influenced by activity) and their interpretation as representative of the ‘‘memory’’

in the actual underlying population abundance can lead to erroneous conclusions

regarding population dynamical mechanisms, e.g. in terms of reproductive time

scales or of the time lags at which density dependence operates. The availability of

daily observations allowed us to show that autocorrelation structures estimated on

weekly data may vary widely and may be quite different from the ‘‘actual’’

autocorrelation structure estimated using daily data (Figure 5). Hence, even when

Figure 7. PACF of observed abundances for Ae.vexans and Cs.melanura, ((a) and (f)), for IBS model
realizations including activity ((b) and (g)), IBS model realizations without activity ((c) and (h));
Gompertz model realizations with density dependence at lag50 days ((d) and (i)), and Ricker model
realizations with density dependence at lag50 days [58] and (j)).

doi:10.1371/journal.pone.0114301.g007
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relatively long time scales are of interest, a high sampling frequency is highly

beneficial to obtain realistic estimates of abundance autocorrelation properties

and of density dependent population regulation mechanisms.

Spectral analysis reveals a coherent structure of the temporal organization of

adult mosquito population dynamics (Figure 9). We find that mosquito activity,

forced by short time scale weather, is most likely responsible for the observed

population variability at fine time scales (,1 month). This is a sort of

‘‘microscale’’ at which variability is ‘‘injected’’ into the system. At monthly time

scales coherent temporal structures and characteristic time scales emerge. These

periodicities are here explained by the interplay of exogenous forcing and

endogenous mechanisms. Our results suggest that the organized character of

mosquito dynamics at the intermediate scales ranging from one to several months

is jointly determined by the characteristic time scales of endogenous regulations

(of survival, death rate, development, and reproduction) and by population

responses to temperature and rainfall fluctuations At even longer time scales,

mosquito population fluctuations mirror seasonal, annual, and inter-annual

environmental patterns.

This interpretative framework provides guidance in choosing the observational

temporal scale required to resolve the relevant population dynamics and possibly

improve the prediction of adult mosquito population abundance. Clearly, if the

mosquito species of interest exhibits characteristic scales of variability shorter than

2 weeks (such as in the case of Cs.melanura), our results imply that weekly

Figure 8. Power spectrum of IBS model outputs with ((a), (b), and (c)) and without ((d), (e), and (f)) activity component. Panel (a) and (d): IBS model
with constant temperature (18˚C) and no rainfall effect; panel (b) and (e); IBS model with observed temperature, and no rainfall effect; panel (c) and (f) IBS
model with observed temperature, and with rainfall effect on death rate, oviposition, and egg hatching driven by observed rainfall.

doi:10.1371/journal.pone.0114301.g008
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observations, typical in adult mosquito studies in the field, are unsuitable to

describe the full extent of the mosquito population variability, as they can only

capture periodicities longer than two weeks.

Generation times in mosquito populations typically range between weeks and

months [2, 3] and are thus not consistent with the rapid fluctuations we have

observed in mosquito abundance on daily time scales. This discrepancy

emphasizes the importance of understanding the relation between captured adult

individuals and the actual underlying population. Non-detection by a trap does

not imply the absence of the targeted animal [25, 51], and the number of captured

individuals does not necessarily reflect true abundance fluctuations [24, 25, 52–

56]. Hence, adult mosquito activity is a fundamental property of mosquito

populations and fundamentally affects the observation process. Observations with

weekly (or lower) resolution tend to overestimate population variability/responses

because large observational fluctuations due to adult mosquito activity are

erroneously attributed to changes in the actual population. Furthermore, we find

that the inclusion of a weather-forced activity component allows the reproduction

of realistic density dependence, autocorrelation functions, and power spectra.

Our results indicate that the dynamics of mosquito populations may not be

understood separately from the mechanisms driving the activity of individuals.

Current models for adult mosquitoes often appear unable to generate seemingly

fast abundance fluctuations, and have difficulties in predicting observed per-

capita growth rates at relatively short temporal scales [42, 57]. We suggest that this

apparent lack of predictive ability may be due to a changing proportion of the

active mosquito individuals, which should be included as a fundamental

Figure 9. A conceptual spectrum highlighting the ecological/environmental processes driving
mosquito dynamics at different time scales.

doi:10.1371/journal.pone.0114301.g009
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ingredient of mosquito population models, conceptual or mechanistic, particu-

larly at the short temporal scales.
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