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ABSTRACT

Promoter design remains one of the most impor-
tant considerations in metabolic engineering and
synthetic biology applications. Theoretically, there
are 450 possible sequences for a 50-nt promoter, of
which naturally occurring promoters make up only a
small subset. To explore the vast number of poten-
tial sequences, we report a novel AI-based frame-
work for de novo promoter design in Escherichia
coli. The model, which was guided by sequence fea-
tures learned from natural promoters, could capture
interactions between nucleotides at different posi-
tions and design novel synthetic promoters in silico.
We combined a deep generative model that guides
the search for artificial sequences with a predictive
model to preselect the most promising promoters.
The AI-designed promoters were optimized based
on the promoter activity in E. coli and the predic-
tive model. After two rounds of optimization, up to
70.8% of the AI-designed promoters were experimen-
tally demonstrated to be functional, and few of them
shared significant sequence similarity with the E. coli
genome. Our work provided an end-to-end approach
to the de novo design of novel promoter elements,
indicating the potential to apply deep learning meth-
ods to de novo genetic element design.

INTRODUCTION

Well-characterized regulatory elements are indispensable
for the design of synthetic circuits and metabolic engineer-
ing, which offer enormous potential for industrial biotech-
nology to produce chemical, medical and material products

(1,2). Promoters are key elements that regulate gene expres-
sion at the level of transcription; hence, the choice of pro-
moter elements is an essential consideration in synthetic bi-
ology applications (3). Researchers have proposed several
methods to generate novel synthetic promoters (4–6).

Previous studies searching for novel promoters have
mainly focused on mutagenesis (4,7,8) or regulatory ele-
ment combinations (9–11). Methods based on mutagene-
sis, such as constructing random mutation libraries, were
reported to successfully generate novel synthetic promoters
(12). For example, Alper et al. used error-prone PCR to mu-
tagenize the bacteriophage PL-� promoter in Escherichia
coli, resulting in a novel library with 22 functional mu-
tants (13). In addition, sequence combination strategies,
such as integrating TF binding sites with promoter back-
grounds (14,15), combining known short functional com-
ponents (10,11) and random sequence assembly methods
(16–18), have generated some novel promoters for regulat-
ing target genes.

Although these experimental approaches are available,
these works were constrained by a relatively small library
size compared to the large number of all possible sequence
combinations. Even for a 50-nt long prokaryotic promoter,
the number of all combinations of DNA sequences is 450.
The number of possibilities is even much larger for eu-
karyotic promoters, which have longer promoter lengths
and more complex structures. Therefore, it is an interesting
question whether one could use computational methods to
navigate the vast potential sequence space effectively to find
novel promoters.

Recent advances in deep learning methods have provided
novel alternative approaches for promoter design. In partic-
ular, generative adversarial networks (GANs) (19), which
are deep neural network (DNN)-based generative models,
offer a promising way to navigate sequence space and thus
to generate novel promoters. Based on the minimax ad-
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versarial game between two neural networks (the genera-
tor and discriminator), GAN can extract essential features
from data and automatically generate novel samples. Mul-
tiple state-of-the-art image generation methods have been
created with GANs (20–22), and GANs have demonstrated
the ability to generate novel images with sufficient diver-
sity (23,24). Recently, some variants of GAN have been
used to design probes for protein binding microarrays (25),
synthetic genes coding for antimicrobial peptides (26), and
drug-like molecular structures (27–29).

Here, we proposed a deep learning-based approach for
de novo promoter sequence design, and validated the activ-
ities of the generated promoters in vivo. A GAN model was
trained to extract features from natural promoters, and gen-
erated millions of brand new artificial sequences. These AI-
generated sequences could mimic key characteristics of nat-
ural promoters such as k-mer frequency, –10 and –35 motifs
and their spacing constraints. After filtering by a promoter
activity predictive model, up to 70.8% of the AI-designed
promoters were experimentally demonstrated to be func-
tional, and a number of them showed comparable or even
higher activities than most active natural promoters and
their strongest mutants. These novel promoters showed low
global sequence similarity to E. coli genomic sequences, and
noncanonical motifs were found in highly-expressed AI-
generated promoters, offering new insight into the design
of novel promoters. In conclusion, our method provides a
new strategy to effectively design brand new functional pro-
moters.

MATERIALS AND METHODS

Promoter library plasmid construction

The E. coli strain DH5� [F-, �80d, lacZ� M15, � (lacZYA-
argF), U169, endA1, recA1, hsdR17(rk-, mk+), sup E44�,
thi-, gyrA96, relA1, phoA] was used as the host organism
and cultivated in Luria−Bertani (LB) media supplemented
with 100 �g/ml kanamycin at 37◦C for promoter activity
validation.

Promoter constructs were cloned into the medium-copy-
number modified vector pFAB217 with a p15A replicon
driving the expression of sfGFP from the reporter gene
sfgfp. We also cloned the AI-designed promoters into mod-
ified vector pFAB217 using the reporter gene mrfp1. Pro-
moters from two rounds of optimization are displayed in
Supplementary Table S1. We used the fixed 5′UTR se-
quence downstream of promoters, which has been applied
in previously works (30,31) and iGEM (international ge-
netically engineered machine competition) parts testing ex-
periments (32). The forward primer designed from the
5′UTR fragments (B0030: GGGCTCTGTAAGATCTAT
TAAAGAGGAGAAAG) contained an EcoRI site, a BglII
site and BamHI site. The putative Shine-Dalgarno sequence
in the 5′UTR was placed 7 nt upstream of the original TSS
region. Annealing reactions were performed by incubating
the complementary oligonucleotides at 95◦C for 2 min (2 �l
of 100 �M forward and reverse oligonucleotides in sterile
water) each cycle for 57 cycles and cooling to 4◦C for stor-
age. The annealed oligonucleotides were phosphorylated
using T4 polynucleotide kinase (PNK from NEB) with ATP
for 1 h. Then, the 5′UTR oligonucleotides were digested

by restriction enzymes EcoRI and BamHI and cloned into
the EcoRI–BglII sites in modified pFAB217 by T4 DNA
ligase. The recombinant plasmids with 5′UTR sequences
were verified by sequencing. The modified vector pFAB217
and promoter oligonucleotides were digested with the re-
striction enzymes EcoRI and BglII, and the designed pro-
moter oligonucleotides flanking the same multiple cloning
site were cloned into the new EcoRI-BglII sites. Six positive
control promoters, five random baseline promoters (with
GC content near 50%) and two blank control plasmids were
also tested for promoter activity. All of the reporter plas-
mids were verified by sequencing.

Assay strains were stored as glycerol stocks (20% glyc-
erol) in sterile centrifuge tubes (1.5 ml). E. coli with tar-
get plasmid was picked out using a sterilized metal pinner
and grown on plates containing 5 ml of LB medium supple-
mented with kanamycin. Monoclonal selections were per-
formed overnight (16 hours) in a 96-well U-bottom deep-
well plate covered with sterile breathable sealing film (sterile
sealing films; Axygen) at 30◦C with shaking at 300 rpm on
an orbital shaker.

Then the overnight cultures were diluted 1:100 into a fi-
nal volume of 1.5 ml of fresh medium with the appropri-
ate kanamycin concentration and grown for another 8 h.
Then, 200 �l of culture was added to each well of clear
bottom black plates, and repeated measurements of the op-
tical density at 600 nm (OD600) and fluorescence (relative
fluorescence units [RFU]; excitation at 485 nm and emis-
sion at 510 nm) were performed with a microplate reader-
incubator-shaker (Thermo). All experiments were repeated
at least three times, and the positions of strains in the wells
of the microplates were changed during three repeated ex-
periments to avoid any local position effects.

Promoter activity measurement

Five control variants were generated in which the syn-
thetic promoters were replaced by complete random se-
quences, and the GC content was controlled at near 50%.
The resulting expression levels were measured based on
the basal expression of the sfgfp gene. This experiment
was conducted to test the transcription baseline in our
system. Six positive control promoter sequences were also
used in the present work, including two different types of
wild-type promoters, BBa J23119 and Ptrc (Trc1), with two
of their corresponding mutants (BBa J23100, BBa J23102
and Ptrc m010 (Trc2), Ptrc m004 (Trc3)), which showed
the highest expression in the previously reported muta-
tion library (33). BBa J23100 and BBa J23102 were ob-
tained from the BioBrick (34) part in the iGEM Reg-
istry of Standard Biological Parts (http://parts.igem.org/
Promoters/Catalog/Constitutive). Ptrc (Trc1), Ptrc m010
(Trc2) and Ptrc m004 (Trc3) were obtained from previous
research (33) and were cultivated in 0.5 ml LB medium
with 0.1 mM IPTG. We generated 91 artificial sequences
that shared the same –10 and –35 motifs with the wild-type
Ptrc promoter, but the other base positions were randomly
synthesized with the same possibilities (Supplementary Ta-
ble S1). Two repeated blank control variants were designed
by replacing the synthetic promoter sequences with a 10-
nt random sequence (GGGCTCTGTA), which could not

http://parts.igem.org/Promoters/Catalog/Constitutive
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provide enough length for RNA polymerase to bind to the
upstream sequence of the protein coding region. The pro-
moter strength is calculated as (33):

S = (F/OD600)Clone − (F/OD600)blank

(F/OD600)BBa J23119 − (F/OD600)blank

Final reported promoter activities were calculated by tak-
ing the average of three independent biological experiments
and all the artificial sequences with their promoter activity
were shown in Supplementary Table S1.

A brief introduction to GAN model

Generative adversarial networks (GANs) (19) have
achieved impressive results in the fields like natural image
generation (35), image-to-image translation (36), and super
resolution image creation (20). GANs contain two ‘adver-
sarial’ networks: the generator G and the discriminator
D. The generator tries to capture the data distribution
and produces artificial samples to fool the discriminator,
whereas the discriminator tries to distinguish generated
samples from training data. Thus, a minmax game between
two networks could be described in the following function:

min
G

max
D

Ex∼Pr [log(D(x))] + Ex̃∼Pg [log(1−D(x̃))]

where x represents training samples from the real distribu-
tion, and x̃ represents the generated samples from the gener-
ator model, Pg is implicitly defined by x̃ =G(z), z ∼ P(z), in
which P(z) is the latent variable distribution, say a gaussian
distribution here. After model training, we could do ran-
dom sampling from P(z) and use the generator network to
map them to artificial promoters. We used the WGAN-GP
framework which uses Earth Mover’s Distance (37) as well
as gradient penalty technique (38) to solve the gradient van-
ishing problem in the original vanilla GAN (39). Besides,
the resblock structure (40) is introduced in both the genera-
tor and the discriminator model, which helps to solve gradi-
ent degradation problem and improves the feature learning
ability. The architecture of the WGAN-GP model is shown
in Supplementary Figure S1(A).

In addition, we trained the deep convolutional GAN
(DCGAN) model (41) as a control method, which has been
widely used for image generation tasks (42). We slightly
changed the architecture of the original DCGAN model to
adapt to our promoter generation task, which used the 1D
convolutional kernel instead of 2D kernel, and decreased
the number of convolutional and deconvolutional layers.
The architecture of the DCGAN model is shown in Sup-
plementary Figure S2(A).

Model training of GAN models

The training dataset contains a total of 14098 experi-
mentally identified promoters in the E. coli K12 MG1655
genome (43). Most of the promoters recognized in this
dataset are σ 70 promoters. The promoter sequence is de-
fined as 50 bp upstream of the TSS, which could include key
motifs, such as the –10 and –35 regions, but not too long to
exclude unnecessary sequences (44).

We used all the promoter sequences in the dataset de-
scribed above as the real samples. In the DCGAN model,
the input of the generator was the uniform distribution ran-
dom variable. The batch size was set to 128, the iteration
time was set to 100, and we used stochastic gradient descent
as the optimization method of our model.

Different from the DCGAN model, in the WGAN-GP
model, we sampled from the standard normal distribution
as the input random variable of the generator. The batch
size was set to 32, and we trained our network for 160
epochs. We found that the best result was approximately 12
epochs, so we selected synthetic promoters from that range
of iterations. Note that to obtain the best result from the
WGAN-GP model, we trained 5 times for discriminator and
one time for generator in each batch training (37). The opti-
mizer used Adam with a learning rate equal to 0.0001, beta1
equal to 0.5 and beta2 equal to 0.9.

The model training of predictive models

For the first round of preselection, we trained a convolu-
tional neural network (CNN) predictive model based on
public transcriptome data. The training dataset was from
Thomason et al., which contains 14098 promoters with cor-
responding gene expression levels measured by dRNA-seq
(43). The batch size was set to 128, and we used stochas-
tic gradient descent (SGD) as the optimization method. We
trained this model with 9000 samples as the training set,
1000 samples as the validation set and others as the test-
ing set, and we achieved a Pearson correlation coefficient
(PCC) = 0.25 in the testing set. Notice that we used ker-
nel size equal to 6 to capture the –10 and –35 motifs in the
promoter region.

For the second round of preselection, we trained a sup-
port vector regression (SVR) model based on the first-round
results, which included 83 model-generated promoter se-
quences and five random sequences. We used the radial ba-
sis function (RBF) kernel in the SVR model, i.e.

K RBF
(
x, x′) = exp

[−γ ||x − x′||2]

Here, the inverse of the standard deviation γ was selected
by the grid search technique with 5-fold cross validation.
To test the performance of the SVR model, we used 66 pro-
moter sequences as the training and validation set and 22
promoter sequences as the testing set. The model achieved
a Pearson correlation coefficient of 0.57 in the testing set.
We also tested two previous models which predicted the pro-
moter activity by linear SVR model (45) and artificial neural
network (ANN) (33), and they achieved Pearson correlation
coefficient of 0.514 and 0.480 respectively on our dataset.
These results demonstrated the effectiveness of our model.

Finding the –10 and –35 motifs by PSSM matrix

We first used the occurrence possibility of each position in
the promoter sequences to calculate the PSSM matrix and
then calculated the logit function, i.e., log2 pi j/bi , where
pi j implied the element in the PSSM matrix and bi implied
the background distribution. Here, we selected the back-
ground by calculating the occurrence possibility of T, C, G,
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A in the whole dataset. The –10 and –35 motif-finding re-
gions were restricted to 1–23 bp and 25–45 bp upstream of
TSS, respectively.

Novel motifs found by DREME and FIMO

By exploiting our computational and experimental results,
we used DREME (46) with e-value threshold 10−50 to find
novel motifs from the top 1% highest expression promoters
selected by our second-round predictor. Then, the experi-
mental high-expression promoters were scanned by FIMO
(47) with P-value threshold 10−3 to search the novel mo-
tifs found by DREME. Other parameters for DREME and
FIMO were set by default.

BLAST search on experimental functional promoters

BLAST compared 55 AI-designed functional promoters (38
from the first round and 17 from the second round) with E.
coli K-12 genome (taxid:83333). Here, we used the default
setting in blastn algorithm.

RESULTS

An AI framework for de novo promoter design

To generate functional synthetic promoters, we introduced
an AI-based design workflow (Figure 1), including a GAN
network for de novo promoter generation and a predictive
model to select promoters with high activity. Then, the gen-
erated synthetic promoters were tested by fluorescent pro-
tein expression in E. coli.

The GAN works as follows: the generator network takes
samples from the low-dimensional latent space and maps
them to artificial promoters, while the discriminator net-
work evaluates the divergence between the generated pro-
moters and the natural promoters. Based on the minimax
game between the discriminator and generator, the GAN
model could generate new sequences according to the fea-
ture distribution learned from natural promoters. A predic-
tive model trained by gene expression data was introduced
to predict sequence activity to preselect the most promising
artificial promoters. (Materials and Methods).

AI-designed promoters were cloned into a reporter vector
to build a promoter library in E. coli (Supplementary file
1). A fixed 5′UTR region was used to control the influence
of interaction effects between core transcriptional elements
(30). These promoters were designed to drive the expression
of the sfgfp gene (48), and their activities were verified in
vivo.

The WGAN-GP model captured essential promoter sequence
features

We tried several GAN frameworks to generate promoters
and found that the WGAN-GP (38) model (Supplemen-
tary Figure S1) could efficiently learn the essential pro-
moter features (Figure 2). Three critical characteristics of
the WGAN-GP model (25,38) are important: convolutional
layers, resblock structure (40) and the utilization of Earth
Mover’s Distance (37). The convolutional layers have been
reported to extract motif features as well as high-order base

pair dependencies (49–51). The resblock network structure
was first proposed (40) to handle the gradient degradation
problem in DNNs to improve feature learning abilities. We
found that the resblock structure helped decrease the bi-
ased base occurrence during promoter generation (Figure
2(A)). The Earth Mover’s Distance is continuous and pro-
vides a usable gradient everywhere (37), which showed more
promising results than the Jensen-Shannon (JS divergence)
used in the original vanilla GAN model (19) (Figure 2(A)).

To make a comprehensive evaluation of the AI-designed
promoters, we analyzed the features of them computation-
ally and experimentally. We firstly analyzed the distribu-
tion of the WGAN-GP-generated promoters computation-
ally by the following three aspects: the sequence motif logo,
k-mer frequency and the motif spacing constraint. We also
tried the deep convolutional GAN (DCGAN)-based net-
work structure (Supplementary Figure S2(A)) as a con-
trol method, which was also widely used in image genera-
tion tasks (42). The position-specific scoring matrix (PSSM)
sampling method was used as another control method; this
method independently generated bases according to natural
promoter base frequencies.

In terms of the sequence motif logo, the DCGAN model
could partly learn sequence motifs in the –10 and –35 re-
gions, but some base preferences appeared in the spacer
sequence compared to the base distribution of WGAN-
GP promoters (Supplementary Figure S1(B)). We calcu-
lated the 2-mer to 6-mer base frequency in promoters gener-
ated by the WGAN-GP, PSSM and DCGAN models (Sup-
plementary Figure S3) and found that the occurrence fre-
quency of some common 6-mers, such as TATAAT, in-
creased with the WGAN-GP method, whereas they de-
creased with the PSSM method (Figure 2(C)), and the cor-
relation of k-mer frequency between natural promoters and
DCGAN-generated promoters dropped quickly when the k
increased (Figure 2(B)). We also analyzed the top 10 most
frequently occurring 6-mers of natural promoters in the
WGAN-GP, DCGAN and PSSM promoters (Supplemen-
tary Table S2). The WGAN-GP promoters shared five com-
mon 6-mers with natural promoters, while DCGAN pro-
moters and PSSM promoters both shared only one 6-mer,
indicating that the WGAN-GP model captured important
k-mers in natural promoters.

To explore the position distribution of the naturally
most frequently occurring 6-mers and the Pribnow box
(TATAAT) in these model-generated promoters, their rel-
ative distances to the transcriptional start site (TSS) were
analyzed. The position distribution of the top 20 most fre-
quently occurring 6-mers in natural promoters is shown in
Supplementary Figure S4. As shown in Figure 3(A), the
WGAN-GP model outperformed the PSSM method and
showed a more similar position distribution with natural
promoters, which demonstrated that the WGAN-GP model
could learn the k-mer location preference of natural pro-
moters. In addition, the separation between the –10 and –
35 regions was also calculated. As a result, the length of the
separation between –10 and –35 regions of the WGAN-GP
promoters was more centrally distributed in the interval of
16–18 bp compared with those of the DCGAN and PSSM
promoters (Figure 3B, C). It was previously reported that
a separation of ∼16–18 bp was beneficial for the binding
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promoters tested in E. coli were used to reconstruct the predictive model for the second-round optimization.

of RNA polymerase (52), thus indicating that the WGAN-
GP model-generated promoters offered a better chance for
RNA polymerase binding.

In conclusion, compared with the PSSM and DCGAN
models, which cannot learn long-range base pair dependen-
cies, the WGAN-GP model showed the ability to capture
higher-order promoter sequence features, including crucial
k-mer frequency, k-mer location preference and separation
constraint.

The AI-designed promoters showed a high success rate and
transcriptional activity

After generating millions of artificial sequences with critical
characteristics, a predictive model (Supplementary Figure
S5) was trained for selecting the most promising sequences.
We then tested 83 WGAN-GP designed sequences with the
top predicted activity in E. coli. In addition, six positive
controls, including two wild-type promoters (BBa J23119
and Trc1) and their corresponding strongest mutants (33)
(BBa J23100, BBa J23102 and Trc2, Trc3) were also tested.

Furthermore, five random sequences with controlled GC
content were generated as negative control variants (Ma-
terials and Methods). The detailed sequences are provided
in Supplementary Table S1.

As a result, 45.8% (38 out of 83) of AI-designed promot-
ers showed significantly higher promoter activities than ran-
dom sequences (t-test with Benjamini Hochberg correction,
FDR < 5%). Interestingly, three of the synthetic promot-
ers showed comparable or even higher activities than any
of the six positive control promoters (Figure 4 and Supple-
mentary Figure S6). We also tested the promoter activity of
44 WGAN-GP designed promoters using the reporter gene
mrfp1 and the results were highly correlated with those mea-
sured using sfgfp (Pearson correlation coefficient (PCC) =
0.81, Supplementary Figure S7).

For comparison, we tested the in vivo promoter activity
of 20 DCGAN-generated promoters selected by our predic-
tive model (Supplementary Table S1, Supplementary Figure
S8). As a result, the successful design rate (20%) was signifi-
cantly lower than the WGAN-generated promoters (Fisher
exact test, P-value < 0.03). We also synthesized 91 artificial
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sequences containing the same –10 and –35 motifs as the
wild-type Trc1 promoter with the other bases randomly syn-
thesized (Supplementary Table S1). Few of these sequences
showed promoter activity in E. coli (Supplementary Figure
S9), demonstrating that our AI model gained other impor-
tant features beyond canonical –10 and –35 boxes and gen-
erated promoters with high success rates and strong activity.

Iterative optimization significantly improved model perfor-
mance

The experimental validation of designed promoters demon-
strated the feasibility of the AI framework. However, as the
genome wide gene expression profile not only depends on
promoter activity but also many other regulatory elements,
the correlation between the predicted promoter activity and
dRNA-seq level in the testing set was moderate (Pearson
correlation coefficient (PCC) = 0.25, Supplementary Figure
S10). And due to the short half-lives of mRNA in E. coli,
it has been shown that the mRNA and protein level could
have relatively low correlation (53), the success rate of func-
tional promoters could be limited by the activity prediction
model.

To further improve the performance of promoter design
strategy, we adopted an iterative strategy by using the first-
round promoters to reconstruct the predictive model. In

the second round, the reconstructed predictor was trained
based on the sfGFP expression level of the first-round
WGAN-GP promoters. Considering the relatively small
sample size of the first-round tested promoters, we trained
a SVR model instead of deep neural networks. This model
achieved a much higher PCC of 0.57 (materials and meth-
ods, Supplementary Figure S10). Twenty-four promoters
were selected in the second round, which were sequences
predicted to have the highest expression level by the SVR
model. These promoters were cloned into a reporter vec-
tor in E. coli to test the promoter activity. As a result, the
promoters in the second round showed on average 1.68-fold
higher expression activity than those in the first round, and
the success rate was significantly improved from 45.8% to
70.8% (Fisher exact test, P-value < 0.05).

AI-model explored new sequence features

To explore the novel features in our AI-designed promoters,
we first discovered sequence motifs in the top 1% compu-
tationally highly-expressed WGAN-GP generated promot-
ers by DREME (46) (e-value < 10−50). We used FIMO (47)
to search these motifs in experimentally validated highly-
expressed promoters and found several noncanonical mo-
tifs occurring in these promoters (Supplementary Figure
S11). As an example, the sequence ‘TACCCT’ from the
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distance distribution between the –10 and –35 motifs. The natural promoters are marked in green, and the WGAN-GP, PSSM and DCGAN-generated
promoters are marked in red, blue, and orange, respectively.

first noncanonical motif appeared twice in the top 5 most
highly-expressed promoters. This sequence differed from
the canonical –10 motif (TATAAT) but showed a similar
distance (–12 to –7 bp) to TSS, which suggested that AI-
based method could capture noncanonical motifs to help
design the highly-expressed promoters. Considering these
new motif features could be helpful in designing novel syn-
thetic promoters.

To examine how the AI-designed promoters were differ-
ent from natural promoters, a standard nucleotide BLAST
search on experimental functional promoters was con-
ducted against the whole E. coli genome, and no high sim-
ilarity matches were found. The average e-value obtained
for functional AI-designed promoters was 34.98, indicating
that the newly designed functional promoters have low sim-
ilarity with natural E. coli genome (Supplementary Figure
S12). The e-value of our functional promoters and random
sequences were at the same level and our functional promot-
ers showed lower similarity to the natural genome than the

promoters designed by Alper (13) and most constitutive σ 70

promoters in iGEM BioBrick (34) standard parts (Supple-
mentary Table S3). These results suggested that our frame-
work could design novel synthetic promoters rather than
copying the original sequences, indicating that the DNN
could effectively explore the sequence space to find novel
promoters for E. coli.

DISCUSSION

In this study, we conducted de novo promoter design based
on the GAN framework and validated synthetic promoter
activities in vivo. Our method benefited from recent develop-
ments in the deep generative model, which helped us to ex-
tract higher-order sequence features and generate millions
of novel promoters. In vivo experimental results suggested
that 70.8% of the selected novel sequences are functional
promoters in E. coli. These generated promoters inherited
the key features of E. coli promoters, such as the –10 and
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Figure 4. (A) The promoter activity of 38 first-round AI-designed functional promoters (WGAN-1). BBa J23119 (dark red) and Trc1 (light red) are wild-
type promoters. BBa J23100, BBa J23102 and Trc2, Trc3 are their highly-expressed mutants. Ran1–5 represent five random sequences. The error bar
represents the standard deviation of three biological replicates. The AI-designed promoters (dark grey) are named by the predicted expression level rank
obtained from the CNN model. The dashed lines are the 100% baseline represented by BBa J23119 (high) and average relative activity of five random
sequences (low), respectively. (B) The promoter activity of 24 second-round AI-designed functional promoters (WGAN-2). The second-round AI-designed
promoters (dark grey) are named by the predicted expression level rank obtained from the SVR model. (C) The promoter activity distribution of first- and
second-round AI-designed functional promoters.

–35 regions, and shared similar k-mer frequencies with nat-
ural promoters. Meanwhile the promoters showed substan-
tial sequence differences from the genomic sequences, which
could help avoid genetic instability due to the lower proba-
bility of recombination with the E. coli genome (9).

Naturally occurring promoters have evolved for millions
of years but make up only a small subset of the large po-
tential sequence space. While taking advantage of the pow-
erful feature learning ability of deep learning, a great num-
ber of synthetic promoters could be automatically designed,
which could largely extend functional promoter sequence
reservoirs.

Conventional sequence generation methods by which fix-
ing the –10 and –35 regions and randomizing the surround-
ing nucleotides generated ∼46 functional inducible lac pro-
moters in Lactococcus lactis (54), but this lac promoter se-

lection method could not work in E. coli (55). The muta-
genic PCR method used in E. coli by which the Hamming
distance to the natural promoter is typically 1–2 base pair
(56), and showed that less than 0.1% of colonies could be
functional promoters (13). Here, we fixed the –10 and –
35 regions of wild-type promoter in E. coli, sampling the
functional promoters in the possible combinatorial space
of ∼1019 sequences, showing that directly randomizing the
surrounding bases of –10 and –35 regions could not find
promoters efficiently, indicating that sequence beyond the –
10 and –35 regions also contain important information for
generating functional promoters.

From the perspective of pattern recognition, transcrip-
tional machinery could be considered as a molecular clas-
sifier, which distinguishes real promoter sequences from the
other genomic regions to initiate transcription. Thus, syn-
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thetic promoters need to have similar properties as natural
promoters to recruit the transcriptional machinery. GANs
suit this logic well: the discriminator learns to distinguish
the real promoters from the artificial ones, mimicking the
role of transcriptional machinery. The generator tries to
produce artificial sequences that have crucial sequence fea-
tures similar to those of natural promoters, resembling the
mutation process in nature. Unlike the naturally occurring
mechanisms, in which promoters are mutated randomly and
passively, the AI model could automatically learn to gener-
ate optimized sequences, and the model performance could
be greatly improved by testing a relatively small number of
promoters experimentally, showing its potential ability to
reduce the scale of biological screening experiments.

Recently, deep generative models has shown great po-
tential in generating novel images, antimicrobial peptides
(26) and small molecular drugs (28), etc. The most power-
ful aspect of the model is that it could automatically extract
crucial features from training samples even without prior
knowledge constrains. Thus, we expect that such model
frame would also be used to learn different crucial sequence
features of other genetic elements. An interesting future at-
tempt could be the generation of synthetic regulatory ele-
ments optimized for specific properties. For example, the
conditional GAN model (57), which could generate samples
with different properties conditioning on additional infor-
mation, could be implemented to design conditional spe-
cific promoters. Combining other recent advances in ma-
chine learning like few-shot learning (58), transfer learning
(59) and reinforcement learning (60) may help us to learn
the model with only a few training samples such as light-
response or stress-response promoters.

As our prediction model was trained by a relatively small
number of promoters tested experimentally, further im-
provement could be achieved by high-throughput exper-
iments, such as massively parallel reporter assay, which
could test the strength of thousands promoters in a sin-
gle experiment (61). Combining the high-throughput exper-
iments with AI-based design could help improve the design
efficiency of synthetic promoters.

In summary, we proposed an AI-based generative frame-
work for the de novo design of promoter sequences, which
showed a high success rate based on experimental valida-
tion in vivo. Our work provided new insights into de novo
synthetic element design, indicating the potential ability for
deep learning approaches to explore the sequence space of
synthetic elements.
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