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ABSTRACT Little is known regarding how community assembly and species associ-
ation vary with habitat and depth. Here, we examined the assembly and association
of protistan and bacterial communities across a coast-shelf-slope-basin gradient of
the South China Sea using high-throughput sequencing of the V3 and V4 regions of
the rRNA gene transcript. Our study revealed that homogenizing dispersal and drift
exerted an influence on protistan communities comparable to that on bacterial com-
munities. In contrast, selection and dispersal limitation exerted contrasting effects on
the two microbial communities. Community assembly was governed to a greater
degree by selection than by dispersal limitation in the bacterial community, and this
was much lower in the protistan community. Moreover, this organismal assembly
pattern was robust with habitat and depth. However, the relative importance of
selection to dispersal limitation varied with habitat and depth in both communities,
where horizontally it was higher offshore than nearshore and vertically it was lower
in the bottom or deep chlorophyll maximum (DCM) than on the surface. The off-
shore possessed more microbial network complexity and more associations among
microbial taxa than the nearshore, and vertically, the bottom possessed more com-
plexity than the surface and the DCM. Moreover, temperature is strongly associated
with the composition and co-occurrence of microbial communities, implying that
temperature plays a dominant role in the selection of the protistan-bacterial micro-
biome across a coast-to-basin continuum. This study contributes to our understand-
ing of the assembly mechanism and species association of protistan-bacterial micro-
biota across multiple habitats and depths.

IMPORTANCE Microbial organisms play a crucial role in global nutrient cycling. Few
studies have attempted to simultaneously investigate the community assembly of
microeukaryotes and prokaryotes and their association patterns in oceanic waters.
This is especially true regarding how they vary with habitats and depths despite the
fact that they are essential for developing a more holistic understanding of marine
ecosystems. This study revealed the differential actions of selection and dispersal li-
mitation and species association across a coast-to-basin continuum on the marine
protistan-bacterial microbiome. Moreover, temperature was identified as a crucial
factor driving the structure and co-occurrence of protistan and bacterial commun-
ities. The results emphasize that the differences in community assembly and associa-
tion patterns between nearshore and offshore of the main constituents of the ocean
microbiota should be considered to understand their current and future configura-
tions. This is especially crucial in the context of climate change, as the response of
ocean microbiota to nearshore and offshore temperature changes remains unknown.
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Microbial communities are abundant and diverse and vary according to location
and time (1). The spatiotemporal variability of the microbial community is shaped

by a combination of deterministic and stochastic processes (2). Deterministic commu-
nity assembly primarily results from selection, including environmental filtering and bi-
otic interactions such as predation, mutualism, and parasitism (3). Stochastic commu-
nity assembly occurs as a result of dispersal events such as dispersal limitation and
homogenizing dispersal and demographic shifts in birth and death (4). Previous studies
have examined the relative importance of deterministic and stochastic assembly proc-
esses on protistan and bacterial communities in a variety of aquatic environments (5–
8). Bacterial communities were primarily structured by selection, whereas protistan
communities were driven by drift/dispersal limitation in the eastern Antarctic coastal
lakes (5) and the lakes of the Tibetan Plateau (8). Bacterial communities were shaped
by the combination of selection, dispersal limitation, and drift, whereas picoeukaryotes
were predominantly driven by dispersal limitation in the surface layer of the tropical
and subtropical oceans (9). However, protistan communities were more structured by
selection relative to dispersal limitation than bacterial communities in the East China
Sea (6). The relative importance of deterministic and stochastic processes relies on spa-
tiotemporal scales, habitat types, and species traits (10). To date, limited evidence
exists regarding the assembly mechanisms of protistan and bacterial communities
across habitats and depths. To the best of our knowledge, only one study indicated
that the relative influence of selection to dispersal limitation was greater for protists in
the bottom layer than in the surface/deep chlorophyll maximum (DCM) of the East
China Sea (6). Assembly processes that shape marine protistan and bacterial commun-
ities have rarely been simultaneously investigated across a broad range of environmen-
tal gradients such as those that exist from the coast-to-basin continuum. Selection is
likely to play an important role in dynamic habitats with pronounced environmental
gradients such as those present in a coast-shelf-slope-basin continuum. Density differ-
ences among depth layers in the water column and water mass movements in oceanic
waters can form barriers that prevent water mixing, thus leading to a crucial role of dis-
persal limitation. Drift is likely to play a less critical role in the assembly of large popula-
tions than in the assembly of small populations (10). Given the large population sizes
of protists and bacteria in oceanic waters, selection and dispersal limitation may over-
ride the effects of drift on the assembly of the microbial communities. As a result, we
expect selection and dispersal limitation to be two vital forces driving microbial com-
munity variability across a coast-to-basin continuum and water depths.

Protist-bacterium interactions are common in the ocean and are observed in the
context of predator-prey relationships, symbiont/parasite-host relationships, and im-
portant substance exchanges such as the exchange of nutrients and vitamins (11, 12).
Therefore, their associations undoubtedly play a crucial role in determining the com-
munity assembly of the protistan-bacterial microbiota (13). However, the two groups
have rarely been investigated simultaneously as an organismal factor to reveal the role
of biotic interactions in community assembly studies (9, 14). A recent study found that
cross-domain organismic factors were essential variables for the assembly of protistan
and bacterial communities in lakes and ponds throughout Europe (14). Therefore, we
expect that protistan-bacterial interactions through the multiple, complex relationships
mentioned above would result in a complex co-occurrence network. Co-occurrence
network analysis has offered prominent information on the potential interactions
between microbial organisms in a wide variety of environments such as soil (15), fresh-
water (16), and the ocean (17). Previous studies have demonstrated that the microbial
co-occurrence network follows a nonrandom pattern and has a modular structure that
is primarily determined by the taxonomic relatedness of the co-occurring species (18).
Apart from ecological niche differences (niche-based theory), species co-occurrence
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may also be the result of dispersal and random processes of births and deaths (neutral
theory) (19). Therefore, determining the relative importance of deterministic and sto-
chastic processes in the assembly of microbial communities can shed light on the eco-
logical strategies of co-occurring microorganisms (20).

Here, we examined the assembly and association of protistan and bacterial com-
munities across spatial scales, i.e., horizontally from the coast to the basin and vertically
from the surface to the bottom of the euphotic zone of the South China Sea (SCS),
using high-throughput sequencing of the V3 and V4 regions of 16S and 18S rRNA
gene transcripts, respectively (see Fig. S1A in the supplemental material). Specifically,
we sought to address three questions of interest. (i) Protists have more complicated
cell structures than bacteria, and they can exhibit a wide array of responses to environ-
mental heterogeneity that may be less influenced by selection than bacteria. Based on
this and the larger cell size of protists than of bacteria, we hypothesized that commu-
nity assembly could be structured less by selection than by dispersal limitation in the
protistan community, and this may occur to a much greater extent in the bacterial
community. If this is the case, it would be interesting to determine how the relative im-
portance of selection to dispersal limitation in regulating protistan and bacterial com-
munities varies with habitats and depths. (ii) The SCS is one of the largest marginal
seas of the Western Pacific Ocean (21). Our sampling area was influenced by both the
Pearl River plume (PRP) and the internal tide that originated in the Luzon Strait and
propagated westward into the SCS (22, 23). With increasing distance from the coast to
the shelf, the Pearl River plume decreased its influence (Fig. S1B to I). Vertically, the in-
ternal tide reduced its impact from the bottom to the surface (Fig. S1J to Q). Surface
water is generally less stratified than DCM and bottom water (Fig. S1B to Q). Therefore,
dispersal limitation may result in a less critical role in the surface than in the other
layers. We hypothesized that the intrusion of the Pearl River plume, the movement of
the internal tide, and the stratification of the water layers would result in more stochas-
tic effects on both microbial communities in the nearshore (coast and shelf) than in
the offshore (slope and basin) and in the bottom and the DCM than in the surface. (iii)
Additionally, given the ubiquitous association between protists and bacteria in the
oceans, we hypothesized that multiple, complex relationships among protistan-bacte-
rial microbiomes would result in complex co-occurrence networks in the present study.
If this is the case, it would be interesting to examine how the protistan-bacterial micro-
biome co-occurrence differs between habitats and depths.

RESULTS
Community assembly of protistan-bacterial microbiota. In total, 6,198,192 high-

quality reads were obtained from water samples across the coast-shelf-slope-basin
continuum, and these were clustered into 6,532 protistan operational taxonomic units
(OTUs) and 5,274 bacterial OTUs at a 97% similarity level (see Table S1 in the supple-
mental material). We used the phylogenetic null model to infer the underlying ecologi-
cal processes that require a phylogenetic signal in habitat association. Habitat prefer-
ences of closely related taxa are more similar to each other than to the habitat
preferences of distant relatives. First, we used multiple regression on distance matrices
(MRM) analysis to identify the variables that were responsible for structuring differen-
ces in community compositions. The results revealed that temperature, dissolved oxy-
gen (DO), and bacterial abundance were strong predictors of the dissimilarity of proti-
stan communities in different habitats and at various water depths (Table S2).
Temperature, dissolved oxygen, and salinity were also important factors responsible
for driving the variation in bacterial communities (Table S2). Temperature was the
most dominant factor for structuring the microbial community composition (Table S2).
This result was confirmed by the finding that both protistan and bacterial community
dissimilarity showed a significant positive relationship with the temperature difference
(R2 = 0.57 and P, 0.001 for protists; R2 = 0.67 and P, 0.001 for bacteria), dissolved ox-
ygen (R2 = 0.20 and P , 0.001 for protists; R2 = 0.18 and P , 0.001 for bacteria),
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bacterial abundance (R2 = 0.20 and P , 0.001 for protists), and salinity (R2 = 0.19 and
P , 0.001 for bacteria) for pairwise comparisons (Fig. 1). This indicated that the more
difference in temperature between the two samples, the more dissimilar the commu-
nity composition between them. Additionally, temperature varies with depth, geo-
graphic distance, and other environmental factors, and based on this, a partial Mantel
test was performed to estimate the effect of temperature on both communities after
controlling for spatial distances and other environmental distances (Table 1). All the
results strongly suggested that temperature was a crucial factor for structuring proti-
stan and bacterial communities.

To examine the phylogenetic signals, the top three variables identified by MRM
analysis (temperature, DO, and bacterial abundance for the protistan community and
temperature, DO, and salinity for the bacterial community) were included in the

FIG 1 Correlations of protistan (A to C) and bacterial (D to F) community dissimilarities with differences in major environmental properties estimated by
linear least-squares regression. First- and second-order polynomial fits are shown with black and gray solid lines, respectively.

TABLE 1 Partial Mantel tests of protistan and bacterial community dissimilarities against distance matrix of temperature and other
environmental and spatial variables

Bray-Curtis
dissimilarity

Temperature.dista

controlling for Env.distb

(excluding temp)+
Geo.distc + Depth.distd

Env.dist (excluding
temp) controlling for
Temperature.dist+
Geo.dist+ Depth.dist

Geo.dist controlling for
Env.dist (excluding temp)+
Temperature.dist+
Depth.dist

Depth.dist controlling for
Env.dist (excluding temp)+
Temperature.dist+
Geo.dist

Protistan community
r 0.465 0.429 0.288 20.015
P ,0.001 ,0.001 ,0.001 0.599

Bacterial community
r 0.527 0.423 0.427 0.116
P ,0.001 ,0.001 ,0.001 ,0.001

aTemperature.dist, temperature dissimilarity based on Euclidean distance.
bEnv.dist (excluding temperature), distance of all measured variables except temperature based on Euclidean distance.
cGeo.dist, geographic distance.
dDepth.dist, depth dissimilarity based on Euclidean distance.
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following phylogenetic signal analyses (Fig. S2). Mantel correlograms consistently
revealed significant positive correlations across short phylogenetic distances for proti-
stan and bacterial communities (P , 0.01) (Fig. S2). The phylogenetic distance across
which there was a significant phylogenetic signal varied from 1.6% to 11.9% of the
maximum phylogenetic distance within the phylogeny of each microbial group
(Fig. S2). These results suggest that it would be appropriate to quantify phylogenetic
turnover among the closest relatives using the phylogenetic null model.

The phylogenetic null model analyses revealed that homogenizing dispersal played
a minor role in protistan and bacterial community assemblies that drove approximately
1.7 to 2.1% of the turnover in community compositions (Fig. 2A and B). Approximately
38.4% and 33.7% of the turnover in protistan and bacterial communities, respectively,
were due to drift (Fig. 2A and B). Selection was the most critical process for structuring
bacterial communities (55.0% of the overall community turnover), while dispersal limi-
tation played a minor role in the community assembly (9.3% of the overall community
turnover) (Fig. 2A and B). The contribution of selection and dispersal limitation exhib-
ited a reverse trend in protistan community assembly (i.e., selection explained 12.2% of
the overall community turnover, and dispersal limitation explained 47.4% of the overall
community turnover) (Fig. 2A and B). The ratio of selection to dispersal limitation was
higher in the bacterial community than in the protistan community, and this pattern
was consistent across habitats and water depths (Fig. 2C). These results indicated that
the bacterial community was more structured by selection relative to dispersal limita-
tion than the protistan community. Variation partitioning analysis (VPA) showed similar
results, where protists were less limited by selection relative to dispersal limitation
than bacteria (Table S3). Additionally, both protistan (R2 = 0.6) and bacterial (R2 = 0.7)
communities fit the neutral model (Fig. S3A and B). Approximately 56.3% and 68.7% of
protistan and bacterial community variations, respectively, were explained by the neu-
tral model (Fig. S3A and B). The migration rate (m) of the protistan community (0.06),
as estimated by the neutral model, was lower than that of the bacterial community
(0.09), thus suggesting that the protistan community was more limited by dispersal
(Fig. S3A and B). To explain the relative contribution of selection and dispersal limita-
tion to the assembly of protistan and bacterial communities, the habitat niche breadth
at the community level (Bcom) was estimated. The Bcom for the protistan community was
significantly higher than that for the bacterial community (Fig. 2D). Additionally, a simi-
lar tendency was seen both horizontally and vertically (Fig. 2D). Despite a consistent
pattern of organismal assembly, the relative contribution of selection to dispersal limi-
tation varied with distance in both microbial communities (Fig. 2C), being greater hori-
zontally in the offshore than in the nearshore and being less vertically in the bottom/
DCM than in the surface (Fig. 2C).

Co-occurrence networks of protistan-bacterial microbiota. Co-occurrence net-
works were constructed for the protistan-bacterial microbiota in the horizontal (near-
shore-offshore) and vertical (surface-DCM-bottom) directions (Fig. S4). The percentage
of negative correlation edges of the networks increased from the nearshore to the off-
shore and from the surface to the bottom, suggesting a clear spatial distribution pat-
tern of the antagonistic relationship that may be due to resource availability (Fig. S4).
We examined both OTU-level and network-level topological parameters, and our
results revealed variations across habitats and depths (Fig. 3). We used the Z-C scatter-
plot to demonstrate the role of an OTU in a network in how a node is positioned within
a specific module and how it interacts with other modules (Fig. 3). The results revealed
that the proportion of connector nodes (that offered links among modules) increased
from the nearshore (21.6%) to the offshore (42.7%); (Fig. 3A and B). In the vertical direc-
tion, the proportion of connectors increased from the surface (13.9%) to the bottom
(23.4%) (Fig. 3C to E). However, no module hubs (that were highly connected within a
module) were observed in the offshore and bottom networks (Fig. 3). Network hubs
(that were highly connected, both within and between modules) were absent in all the
networks. The above-described results indicated a less hub-based and more connected
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network structure for the offshore and the bottom. The network topological parame-
ters, including average degree, average clustering coefficient, and network density,
were higher in the offshore than in the nearshore and were higher in the bottom than
in the surface and DCM, suggesting that microbial communities in the offshore and
the bottom were more connected (Table 2). The average path length and network di-
ameter were both lower in the offshore and bottom networks, indicating closer rela-
tionships among the microbial communities (Table 2).

We assess the complexity of microbial networks using node numbers, edge num-
bers, betweenness, and assortativity (24). Networks exhibiting lower numbers of nodes
and edges and higher betweenness and assortativity represented lower network

FIG 2 Community assembly (A to C) and niche breadth (D) of protistan-bacterial microbiota across habitats
and depths. Selection and dispersal limitation were determined using bNTI, where phylogenetic distance is
measured relative to a null model. Asterisks indicate a statistical difference in community niche breadth
between protists and bacteria (***, P , 0.001 by a Wilcox rank-sum test).
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complexity and vice versa (Fig. 4). The offshore and bottom networks had a greater
number of nodes and edges and lower betweenness and assortativity, implying that
they are more complex than the nearshore and the surface and DCM networks, respec-
tively (Fig. 4A to D). Moreover, the number of nodes and edges increased and the
betweenness and assortativity decreased in response to the increase of temperature in
the surface layer, whereas the DCM and the bottom exhibited the reverse trend, with
the exception that assortativity decreased with the increase of temperature (Fig. 4E to
H). It is not surprising that the surface and the other two depth layers exhibit opposite
trends. The temperature of the surface water increased from the nearshore to the off-
shore (see Materials and Methods for details), whereas the DCM and the bottom exhib-
ited the reverse pattern. Based on this, contrasting results between depth layers were
expected (Fig. S5). These findings suggested that temperature affected microbial asso-
ciations and decreased the complexity of the microbial community networks as the
temperature increased. Taken together, offshore and bottom protistan-bacterial
microbiota networks exhibited greater connectivity and complexity, implying that
species co-occurrence is more frequent in offshore communities than in nearshore

FIG 3 Z-C plot distribution of OTUs in co-occurrence networks across habitats (nearshore [A] and offshore [B]) and depths (surface [C], DCM [D], and
bottom [E]).

TABLE 2 Topological features of co-occurrence networks of protistan-bacterial microbiota across habitats and depths

Location

Real networks

No. of nodes No. of edges Avg degree Network diam Network density Modularity
Avg clustering
coefficient

Avg path
length

Nearshore 495 3,749 15.147 10 0.031 0.464 0.528 3.539
Offshore 566 14,398 50.876 13 0.090 0.238 0.668 2.791
Surface 415 2,020 9.735 10 0.024 0.533 0.517 3.833
DCM 413 1,981 9.593 11 0.023 0.493 0.482 3.831
Bottom 467 3,921 16.792 11 0.036 0.380 0.579 3.391

Assemblies and Associations of Microbiota

September/October 2021 Volume 6 Issue 5 e00100-21 msystems.asm.org 7

https://msystems.asm.org


communities and is more frequent in bottom communities than in surface and
DCM communities, respectively.

DISCUSSION
Assembly mechanisms of protistan-bacterial microbiota across habitats and

depths. The mechanisms underlying the community assembly of microorganisms
have been studied extensively in recent decades (25). Here, we examined protistan
and bacterial community assembly along a coast-shelf-slope-basin gradient in the
photic zone of the South China Sea. Our study indicates that homogenizing dispersal
and drift each had an influence on protistan communities comparable to that on bac-
terial communities, while selection and dispersal limitation had contrasting effects on
the two microbial communities. The higher ratio of dispersal limitation to homogeniz-
ing dispersal of the protistan (28.1) than of the bacterial (4.4) communities suggested
that protists were more constrained by dispersal limitation than bacteria, and this is in
agreement with the size-dispersal hypothesis that the dispersal scales are negatively
correlated with the cell size fraction of ocean plankton (26). The neutral model results
also suggested that the migration rate of protists was lower than that of bacteria (see
Fig. S3 in the supplemental material). Moreover, the protistan community exhibited
wider niche breadths than the bacterial community across different habitats and water
depths, indicating that the protistan community may be less influenced by the envi-
ronment by exhibiting wider niche breadths (Fig. 2D). This finding is consistent with
those of previous studies demonstrating that generalists exhibiting wider niche
breadths tend to be influenced less by the environment, while specialists with nar-
rower niche breadths exhibited the reverse trend (6, 9).

The neutral model revealed that protists were more limited by dispersal limitation
than bacteria, and this is consistent with the phylogenetic null model. However, the
neutral model implied that neutral processes contributed significantly to bacterial
community variations, which contradicted the phylogenetic model’s results that selec-
tion accounted for nearly half of the overall community variations. This could be

FIG 4 (A to D) Numbers of edges (A) and nodes (B) and degrees of betweenness (C) and assortativity (D) of co-occurrence patterns across habitats and
depths. (E to H) Relationships of temperature to the numbers of edges (E) and nodes (F) and the degrees of betweenness (G) and assortativity (H) of co-
occurrence patterns across depths (bars without shared letters indicate significant differences at a P value of 0.05 by a Wilcox rank sum test).
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because the two approaches are fundamentally different (25). While the neutral model
is a powerful tool for inferring the involvement of neutral processes in microbial com-
munities, it is incapable of quantifying the contribution of deterministic processes to
community assembly (25). The phylogenetic null model was constructed using heuris-
tic randomization algorithms with no apparent biological mechanism. Because biotic
factors are not necessarily clustered phylogenetically, the influence of selection is fre-
quently underestimated (27). Furthermore, stochasticity (random fluctuation) does not
imply neutrality (similar mean fitness across species). Additionally, a single process
may contain stochastic and deterministic components. For instance, selection can be
driven by environmental stochasticity, and dispersal limitation can be either determin-
istic, stochastic, or a combination of the two (25). As a result, comparing the results of
the two approaches may be challenging. Future studies will be essential in elucidating
the community assembly processes through the further development and integration
of niche and neutral theories (25).

In this study, one of the objectives was to explore if and how the assembly mecha-
nism of microbial communities varied with habitats and depths. Despite a consistent
organismal assembly pattern, the relative importance of selection regarding dispersal
limitation was different across habitats and depths, where horizontally the offshore
was higher than the nearshore and vertically the bottom/DCM was lower than the sur-
face (Fig. 2C). In the present study, the nearshore sampling sites were influenced by
the Pearl River plume, particularly at site M11 (Fig. S2) (22). The movement of water
mass could facilitate high dispersal rates of microbes that inhabit them while strongly
limiting dispersal among water masses. Therefore, the intrusion of the Pearl River
plume could generate greater dispersal limitation effects on the nearshore than on the
offshore communities. The South China Sea is well known for the presence of internal
tides (28). The ridges of the Luzon Strait are the primary sources of internal tides in this
region. Internal tides formed in the Luzon Strait radiate westward into the SCS and
eastward into the Western Pacific Ocean (29). The propagation of internal tides in the
northern part of the SCS exhibits a considerable coverage distance (over 500 km) and
crosses over the deep basin and steep or gentle continental slope and shelf (Fig. S3)
(30). The oscillation of the internal tide can induce strong vertical movement of water,
thus causing the microorganisms that inhabit these waters to experience the up-and-
down fluctuations in the lower water columns. Unlike zooplankton, the dispersal of
ocean microbiota is more highly influenced by water physical movement due to the
limited mobility of the latter (1). Therefore, we expected that the impact of dispersal li-
mitation on nonsurface microbial communities would be greater than that on the sur-
face communities. Additionally, wind can facilitate the dispersal of microorganisms,
which decreases its impact from shallow to deep waters (31, 32). Moreover, surface
water generally exhibited a lower stratification level than the DCM and bottom layers
(Fig. S1), which can generate a less critical role of dispersal limitation in the surface
than in the other layers. Dispersal limitation was therefore expected to have less of an
influence on the surface microbial communities than on those below the surface. This
is in contrast to the finding in the East China Sea that protists were increasingly influ-
enced by selection relative to dispersal limitation as the water depth increased (6). This
discrepancy could be partially due to differences between sampling areas. The East
China Sea is primarily shallow, and approximately three-fourths of the sea is less than
200 m in depth (33). In a study by Wu et al. (6), the bottom samples were collected
from sampling sites possessing water depths of less than 104 m, which were located
close to the sediments (,7 m). Therefore, the bottom community could be strongly
influenced by the hydrographic conditions of sediments at the bottom (for example,
DO and NO2, as stated in the study), and this may have increased the relative impor-
tance of selection in regard to dispersal limitation (6).

Given the large population size of microorganisms residing in marine waters, it is
surprising to see that drift explained approximately one-third of the protistan and bac-
terial community variations. The present study focused on a spatial scale of
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approximately 535 km, and this is a very small spatial scale compared to that of the
global oceans. Moreover, drift was estimated via community snapshots taken from
complex natural microbial communities. Therefore, a small community size may
increase the relative influence of drift, even if the absolute community size is large
(34). There are reports that drift plays a moderate role in the assembly of picoeukar-
yotes and prokaryotes over large spatial scales such as those present in tropical and
subtropical surface oceans (9). A possible reason could be that other random processes
resemble drift in large microbial populations. As stated previously by Logares et al. (9),
the arrival of a new bacteriophage may attack abundant bacteria, and this could ran-
domly reshuffle the local species abundances.

Co-occurrence of protistan-bacterial microbiota across habitats and depths.
Despite the ubiquitous associations between protists and bacteria, few studies have
considered the protistan community as a factor shaping bacterial community assembly
and vice versa (14, 35). In this study, we examined the co-occurrence of protistan and
bacterial communities across habitats and depths. We observed that the offshore co-
occurrence network possessed a greater number of negative correlations than the
nearshore network, suggesting higher rates of potentially antagonistic interactions
among taxa offshore than nearshore (Fig. S4). It has been estimated that 300 to 380 Tg
of organic carbon per year, 37 to 66 Tg of total nitrogen per year, and 4 to 11 Tg of
total phosphorus are transferred from rivers and continents to coastal regions via river
plumes (36, 37). The nearshore therefore possesses a more enriched nutrient resource
pool than the offshore. Greater resource availability is speculated to reduce antagonis-
tic relationships such as competition in microbial communities (38). It is therefore likely
that nutrient input by river plumes in coastal regions contributes to the reduction of
antagonistic relationships. In the vertical direction, unlike the DCM, where both light
and nutrients are ideal for microorganisms to grow, the bottom layer is nutrient rich
but light deficient (39), and this may result in a higher level of competitive exclusion of
some closely related taxa. Therefore, the bottom co-occurrence network is expected to
possess a more negative correlation than the DCM.

Understanding community assembly and species coexistence is essential for the
study of microbial ecology. The theoretical framework of community assembly and
species coexistence is a synthesis of environmental filtering and contemporary coexis-
tence theory (40). The concept of environmental filtering is rooted in the assembly
study of the plant community and outlines how the environment functions as a filter,
allowing species from the regional pool with certain traits to become established in
local communities (41). Coexistence theory in the modern era emphasizes coexistence
on a local scale and incorporates niche differences and fitness similarities (42). While
species coexistence strategies have been extensively investigated in plant commun-
ities, they have received little attention in microbial communities (20, 43). In the pres-
ent study, species co-occurrence increased from the nearshore to the offshore as the
relative influence of selection to dispersal limitation increased in the assembly of mi-
crobial communities (Fig. 2 and 3). Our findings corroborated those of another study
on the bacterial community in undisturbed aquifers, which indicated that more inter-
connected bacterial communities were more susceptible to selection and had lower
community turnover rates (44). The present study found a significant correlation of the
composition and co-occurrence of protistan and bacterial communities with water
temperature (Table 1 and Fig. 1 and 4), indicating the critical role of temperature in
shaping the composition and co-occurrence of protistan and bacterial communities
across the coast-to-basin continuum. Consistent with our findings, previous research
has established that temperature is a crucial determinant of the structure of microbial
communities in oceanic waters, demonstrating the critical role of temperature at both
local and global scales (9, 45, 46). This could be partly explained by the physiological
properties of bacteria and protists as well as the trophic interactions that exist between
microbial organisms. Temperature is known to be a critical component in the growth
of bacteria and protists (47, 48). Additionally, temperature may have an effect on the
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abundance of protist prey and/or parasites/symbionts and vice versa (49–51). As a
result, we hypothesized that water temperature could influence the composition and
co-occurrence of protistan and bacterial communities in two ways: (i) directly affecting
the growth of protists and bacteria and (ii) indirectly shaping protistan and bacterial
communities through interactions of prey-predator and/or parasite/symbiont-host.
Taken together, our findings suggest that water temperature plays a critical role in the
selection of the protistan-bacterial microbiota across the coastal-to-basin continuum.

Conclusions. In this study, we examined the community assembly and species co-
occurrence of protistan-bacterial microbiota across the coast-to-basin continuum in
the photic zone of the South China Sea. Homogenizing dispersal and drift had an influ-
ence on protistan communities comparable to that on bacterial communities, while
selection and dispersal limitation had contrasting effects on the two microbial com-
munities. Bacteria were more subject to selection relative to dispersal limitation than
protists, and this pattern was robust across habitats and depths. Offshore communities
were more governed by selection relative to dispersal limitation than were nearshore
communities, while bottom/DCM communities were less governed than the surface
communities. Offshore communities were more governed by selection relative to dis-
persal limitation than nearshore communities, while bottom/DCM communities were
less governed than the surface communities. Microbial co-occurrence networks exhib-
ited more connected and more complicated structures horizontally offshore than near-
shore and vertically at the bottom than at the surface and DCM. Moreover, temperature was
identified as a crucial factor shaping the composition and co-occurrence of both protistan and
bacterial communities, which may provide a better understanding of the adaptation of micro-
bial communities to environmental changes such as climate change. This study expanded the
knowledge of the assembly and co-occurrence of protistan-bacterial microbiota across habi-
tats and depths and revealed the crucial role of temperature in selection.

MATERIALS ANDMETHODS
Sampling. Samples were collected from the coastal region to the basin of the northern South China

Sea (NSCS) along a transect from 39 to 535 km off the coast of Guangdong Province from 20 to 29 June
2019, onboard the R/V Tan Kah Kee (TKK) (see Fig. S1A in the supplemental material). The choice of the
transect was based on the previous characterization of the area in the context of a routine monitoring
project of the NSCS. This project is funded by the Natural Science Foundation and conducts cruises each
year. The investigated transect, which we studied in this study, covers the typical habitats of the NSCS.
The transect crosses the coast (site M11, water depth of 23 m), shelf (site M8, water depth of 91 m), slope
(site M4, water depth of 1,645 m), and basin (site Seats, water depth of 3,907 m) in the northern SCS
(Table S4). Hydrographic profiling revealed temporal variations in the water column structures at the
sampling sites (Fig. S1). For the nearshore sampling sites M11 and M8, the upper water column was
occupied by warm, less saline water sourced from the Pearl River plume, indicating the intrusion of the
PRP into the coastal and shelf regions (Fig. S1B to I). For the offshore sampling sites M4 and Seats, the
evident synchrony of the up-and-down fluctuations of the isotherms (Fig. S1J and N), isohalines (Fig. S1K
and O), and pycnoclines (Fig. S1L and P) indicated internal tidal oscillations. Moreover, the squared
buoyancy frequency (N2) profiles (Fig. S1M and Q) also demonstrated that the variations of the most
intense stratification and the depth of the highest N2 coincided with fluctuations of isotherms, isoha-
lines, and pycnoclines, revealing the influence of internal tides on the slope and basin regions (Fig. S1).
The surface temperature was increased from the nearshore to the offshore in the present study, and this
was the opposite of that observed for the deep chlorophyll maximum (DCM) and the bottom (Fig. S5A).
The profile of temperature and salinity of the transect revealed that sampling site M11 was influenced
by intensified upwelling over the widened shelf in the northeastern South China Sea that lowered the
surface temperature (Fig. S1B and C and Fig. S5B) (52). Additionally, the samples were collected from off-
shore to nearshore (from Seats to M11) (Table S4). Nearshore sampling was subjected to the influence of
Typhoon Mun (4 July 2019) that resulted in a decreased surface temperature. Collectively, the surface
temperature from the nearshore to the offshore exhibited a reverse trend from that of the DCM and bot-
tom layers due to the intensified upwelling and the influence of Typhoon Mun. Considering the possible
diurnal and depth differences in the microbial communities, we collected samples diurnally from three
water depths that included the surface (5 m), the DCM, and the bottom of the euphotic zone (Table S4).
A total of 84 water samples were collected (Table S4). Approximately 15 liters of 200-mm-prefiltered sea-
water was sampled using Niskin bottles attached to a conductivity-temperature-depth (CTD) profiler
(SBE 917) equipped with a probe for conductivity, temperature, and salinity. The collected seawater was
then filtered through a 0.22-mm-pore-size polycarbonate filter (Millipore, USA) using a peristaltic pump.
The filters were flash-frozen and stored at 280°C until RNA extraction.

Hydrodynamic profiles for depth, temperature, and salinity were measured using a CTD probe. For
bacterial and viral abundance analyses, 1.8 ml of a 20-mm-prefiltered sample was fixed with ice-cold
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glutaraldehyde at a final concentration of 1% for 15 min in the dark, flash-frozen in liquid nitrogen, and
stored at 280°C. Bacterial and viral abundances were analyzed using a flow cytometer (Epics Altra II;
Beckman Coulter). For photosynthetic pigment analysis, 6 to 8 liters of seawater samples was filtered
through Whatman GF/F filters and stored at 280°C for later analysis. Pigment extraction was performed
as described previously by Huang et al. (53). Briefly, pigments were extracted using 2 ml of N,N-dimethyl-
formamide in a freezer (220°C) for 2 h. Prior to analysis, extracts were cleared by filtration through 13-
mm Whatman GF/F filters to remove filter debris before mixing with a 1-mol/liter ammonium acetate so-
lution (600 ml–600 ml). Photosynthetic pigment concentrations were measured using high-performance
liquid chromatography (HPLC) (UltiMate 3000; Thermo). The chlorophyll a (Chl a) concentration was
derived from the pigment analysis. The CHEMTAX program was used to determine the group composi-
tion of phytoplankton (54). Three pigment-based ratios were estimated as proxies for the relative abun-
dances of micro-, nano-, and picometer-sized phytoplankton. The definitions of ratios for phytoplankton
functional groups followed those described previously by Vidussi et al. (55). Samples for nanoflagellate
enumeration were prefiltered through a 20-mm nylon mesh (Millipore, USA) to exclude larger plankton.
Approximately 50 ml of seawater was preserved with glutaraldehyde (at a final concentration of 0.5%) at
4°C for 15 min, filtered onto black 0.8-mm polycarbonate filters with approximately 1 ml of liquid remain-
ing, and stained with DAPI (49,6-diamidino-2-phenylindole; Sigma, USA) for 10 min, and all the liquids
were filtered out. The filters were sealed with paraffin onto microscope slides and stored at 220°C.
Nanoflagellates were enumerated using fluorescence microscopy (BX51; Olympus, Japan) (56, 57).

Extraction and PCR. Polycarbonate filters were cut into small pieces and subjected to bead beating
to allow mechanical lysis. A commercial extraction kit, the RNeasy minikit (Qiagen, USA), was used for
RNA extraction. All extraction steps were performed according to the manufacturer’s instructions. The
RNase-free DNase set (Qiagen, Germany) was used to remove the remaining DNA from the RNA extracts.
RNA was immediately reverse transcribed to cDNA using a high-capacity cDNA reverse transcription kit
(Applied Biosystems, USA) as described by the kit protocol. Primers 341F (59-CCTAYGGGRBGCASCAG-39)
and 806R (59-GGACTACNNGGGTATCTAAT-39) were used to amplify the V3-V4 region of the 16S rRNA
gene transcript (58). The protistan community was profiled by targeting the V4 region of the 18S rRNA
gene transcript using the eukaryote-specific primers TAReuk454FWD1 (59-CCAGCASCYGCGGTAATTCC-
39) and TAReukREV3 (59-ACTTTCGTTCTTGATYRA-39) (59). PCR conditions were described previously by
Roggenbuck et al. (58) and Stoeck et al. (59). Each sample was amplified in triplicate, pooled, and purified using
the Wizard SV gel and PCR cleanup system kit (Promega, USA). Paired-end sequencing of the amplicons from
cDNA templates was performed using the Illumina MiSeq platform by Meiji Bioinformatics Technology Co. Ltd.
(Shanghai, China).

Sequence processing. Illumina reads of both 16S and 18S rRNA gene transcripts were quality
checked using Trimmomatic (60) and Flash (61). The criteria were as follows: (i) low-quality reads with an
average quality score of ,20 and a read length of ,50 bp were discarded, (ii) reads with ambiguous
characters and mismatches in barcodes or primers were removed, and (iii) reads that exhibited overlap-
ping regions that were ,10 bp or had a mismatch ratio of .0.2 were discarded. After quality control,
chimera detection was performed with UCHIME (62) using the Protist Ribosomal Reference database
v4.11.1 (PR2) (63) and SILVA v132 (64) as the reference databases. The singletons were removed to avoid
the risk of sequencing errors. After removing chimeras and singletons, the final curated reads were clus-
tered into operational taxonomic units (OTUs) using USEARCH v10 (65) with 97% sequence similarity (9).
Representative reads of each OTU were taxonomically classified against PR2 v4.11.1 and SILVA v132 by
BLAST. After taxonomic assignment, nonprotist and nonbacterial OTUs were removed. To normalize the sam-
pling effort, the OTU reads for each sample were rarefied to 32,226 reads for the bacterial community and
41,562 reads for the protistan community for further analyses; these corresponded to a minimum number of
reads per sample for bacterial and protistan communities. Phylogenetic trees were constructed for both
groups (protists and bacteria) as described previously by Logares et al. (9). Briefly, OTU-representative
sequences were aligned with Mothur against an aligned template from SILVA (66). TrimAl was then used to
remove the poorly aligned sequences/nucleotides (67). Phylogenetic trees were constructed using FastTree
implemented in QIIME (68).

Phylogenetic null model analysis. To infer ecological processes, the phylogenetic signal across
phylogenetic distances was first examined according to the method of Stegen et al. (69). Temperature,
DO, bacterial abundance, and salinity (these are the top environmental variables identified by MRM that
explained a large percentage of the variance in the community composition of protists and bacteria, as
described in Table S2) were selected as environmental variables for niche differences (Fig. S2). Mantel
correlograms with 999 randomizations for significance tests were performed using Vegan (http://vegan.r
-forge.r-project.org). Phylogenetic null model analysis was then performed according to the method of
Stegen et al. (70) to quantify community assembly processes into the underlying driving forces of disper-
sal limitation, selection, and drift. First, the weighted b-mean nearest taxon distance (bMNTD) was cal-
culated to estimate phylogenetic turnover, quantifying the mean phylogenetic distance between the
evolutionarily closest OTUs in the two communities. The null model expectation was generated using
1,000 randomizations. Next, the b-nearest taxon index (bNTI) was calculated to determine the deviation
of the observed bMNTD from the null bMNTD, suggesting whether selection or dispersal/drift struc-
tured community composition. Raup-Crick measurements using Bray-Curtis dissimilarities (RCBC) were calcu-
lated to differentiate between dispersal limitation and homogenizing dispersal. Randomization was per-
formed 1,000 times. Next, the RCBC metric was calculated to determine the deviation of the observed Bray-
Curtis dissimilarities from the null Bray-Curtis values, which provided insight into the contribution of dispersal
events (i.e., dispersal limitation and homogeneous dispersal) to community assembly (70). To reveal the
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environmental factors influencing community phylogenetic turnover, standard and partial Mantel tests were
performed to test the statistical significance of the bNTI of microbial communities and environmental factors.

Variation partitioning analysis and neutral community model.We also employed variation parti-
tioning analysis (VPA) and the neutral community model (NCM) to infer the ecological processes respon-
sible for shaping microbial communities (71, 72). To determine environmental heterogeneity, we per-
formed a principal-component analysis (PCA) using the R package Vegan v.2.5-7 (73). Next, the axes
were selected according to the Kaiser-Guttman rule. To detect the spatial pattern, we accomplished this
using distance-based Moran eigenvector maps (MEMs) in the R package adespatial v.0.3-14 (74). Finally,
canonical correlation analysis (CCA) was performed to determine the relative effects of the environmen-
tal and spatial factors on community variations using Vegan v.2.5-7 (73). We used the NCM to estimate
the potential contribution of neutral processes to microbial community assembly (72). Sloan’s NCM is
based on Hubbell’s model of the neutral theory of biodiversity but is applicable to microbial commun-
ities (19, 72). The NCM predicts the relationship between the frequency with which taxa occur in a set of
local communities and their abundance across the wider metacommunity (72). Under neutral commu-
nity assembly, highly abundant taxa should be widespread since they are more likely to disperse by
chance among different sampling sites, whereas rare taxa should be more likely to be lost in different
sites due to ecological drift. For model fitting, we followed the approach used by Burns et al. (75). R2 rep-
resents the goodness of fit for the NCM. The parameter m represents the estimated migration rate, and
lower m values indicate that microbial communities are more dispersal limited. Calculation of 95% confi-
dence intervals around all fitting statistics was done by bootstrapping with 1,000 bootstrap replicates.

Community niche breadth. To help reveal the patterns of species sorting to dispersal limitation and
the influence on protistan and bacterial communities, Levins’ niche breadth (B) index was calculated
using the “niche.width” function in the package spaa (76). The formula is as follows:

Bj ¼ 1
�XN

i¼1
P2ij

where Bj represents the habitat niche breadth of OTU j in a metacommunity, N is the total number of
communities in each metacommunity, and Pij is the proportion of OTU j in community i. The average B
values of all taxa in a single community (Bcom) were calculated as an indicator of habitat niche breadth at
the community level.

Network analysis. To estimate the species coexistence of the protistan-bacterial microbiota, co-
occurrence networks across habitats (nearshore-offshore) and depths (surface-DCM-bottom) were con-
structed with an abundance-based OTU table. To reduce network complexity, only OTUs occurring in
more than 60% of the samples were retained for the subsequent analysis. SparCC was used to infer pair-
wise correlations between OTUs (77). All P values were adjusted for multiple testing using the
Benjamini-Hochberg false discovery rate (FDR)-controlling procedure with the R package multtest (78).
Next, significant (P value of ,0.01) and robust (jrj $ 0.7) correlations between OTUs were exported as a
GML format network file. To balance the unequal sampling efforts between habitats (nearshore versus
offshore), randomly selected same-size sample sets were included in the analysis (24 nearshore samples
and 24 offshore samples). Network visualization and node-level topological properties were performed
using Gephi v0.9.2 and Cytoscape v3.7.2. (79, 80). To differentiate their roles in the network, i.e., how a
node is positioned within a specific module and how it interacts with other modules, the nodes were
classified into four categories (i.e., network hubs, module hubs, connectors, and peripherals) (81). The
characterization of node categories was based on their within-module degree (i.e., z-score) and among-
module connectivity values (i.e., c-score, which is equivalent to the participation coefficient, i.e., Pi as
described by Poudel et al. and Guimerà and Amaral [81, 82]). Nodes with z-scores of .2.5 and c-scores of
.0.6 were defined as network hubs that were highly connected, both within and between modules. Those
with z-scores of.2.5 and c-scores of ,0.6 were defined as module hubs that were highly connected within
a module. Nodes with z-scores of,2.5 and c-scores of.0.6 were connectors that offered links among mod-
ules. Nodes with z-scores of ,2.5 and c-scores of ,0.6 were peripherals that provided few links with other
nodes (81). The z-score and c-score were calculated using the Cytoscape plug-in GIANT (83), according to
the methods described previously by Guimerà and Amaral (82). The formulas are as follows:

Zi ¼ kib 2 kb
s kb

and

Pi ¼ 12
XNM

c¼1

kic
ki

� �2

where kib is the number of links of node i with other nodes in its module; kb and s kb are the average
value and the standard deviation of within-module connectivity over all the nodes in module b, respec-
tively; ki is the number of links of node i in the whole network; kic is the number of links from node i to
nodes in module c; and NM is the number of modules in the network.

Data availability. All the sequences for 16S and 18S rRNA gene transcripts from this study have
been deposited in the public NCBI Sequence Read Archive (SRA) database under BioProject accession
number PRJNA687998.
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