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ABSTRACT
Merkel cell carcinoma is an ultra-rare cutaneous neuroendocrine cancer for which 

approved treatment options are lacking. To better understand potential actionability, 
the genomic landscape of Merkel cell cancers was assessed. The molecular aberrations 
in 17 patients with Merkel cell carcinoma were, on physician request, tested in a 
Clinical Laboratory Improvement Amendments (CLIA) laboratory (Foundation 
Medicine, Cambridge, MA) using next-generation sequencing (182 or 236 genes) 
and analyzed by N-of-One, Inc. (Lexington, MA). There were 30 genes harboring 
aberrations and 60 distinct molecular alterations identified in this patient population. 
The most common abnormalities involved the TP53 gene (12/17 [71% of patients]) 
and the cell cycle pathway (CDKN2A/B, CDKN2C or RB1) (12/17 [71%]). Abnormalities 
also were observed in the PI3K/AKT/mTOR pathway (AKT2, FBXW7, NF1, PIK3CA, 
PIK3R1, PTEN or RICTOR) (9/17 [53%]) and DNA repair genes (ATM, BAP1, BRCA1/2, 
CHEK2, FANCA or MLH1) (5/17 [29%]). Possible cognate targeted therapies, including 
FDA-approved drugs, could be identified in most of the patients (16/17 [94%]). In 
summary, Merkel cell carcinomas were characterized by multiple distinct aberrations 
that were unique in the majority of analyzed cases. Most patients had theoretically 
actionable alterations. These results provide a framework for investigating tailored 
combinations of matched therapies in Merkel cell carcinoma patients.

INTRODUCTION

Merkel cell carcinoma is an extremely uncommon, 
biologically aggressive, cutaneous neuroendocrine cancer 
[1–4]. It typically presents on sun-exposed skin of elderly 
men as a rapidly enlarging asymptomatic flesh-colored or 
blue-red nodule. Local, regional, and distant recurrences 
are associated with a poor prognostic outcome.

Management for localized disease is surgery: a wide 
local excision and a sentinel lymph node biopsy. A complete 
lymph node dissection may follow for patients with a 
positive sentinel lymph node for cancer. In addition, adjuvant 
radiation therapy is usually given not only to patients with 

positive sentinel lymph nodes, but also to patients with 
Merkel cell carcinoma of the head and neck [1–4].

For patients with metastatic disease, chemotherapy 
is used. Unfortunately, after two to three cycles of 
treatment, resistance frequently develops. In addition 
to radiation therapy [5, 6], immunotherapy (such as 
systemic pembrolizumab [MK-3475] a humanized 
anti-PD1 antibody [7]) and targeted molecular therapy 
are investigational approaches that have been used for 
metastatic Merkel cell carcinoma [8–11].

Due to the rarity of the disease, data regarding 
response to therapy are often derived from case reports and 
retrospective series, rather than prospectively performed 
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clinical trials. Thus, it has been challenging to define the 
role of chemotherapy in management of advanced Merkel 
cell carcinoma. Systemic chemotherapies currently used 
include platinum with or without etoposide, as well as 
cyclophosphamide, doxorubicin and vincristine [3–5]. 
Modest responses can be achieved with these cytotoxic 
agents (median progression-free survival of 3 months). 
Indeed, there are no drugs approved by the Food and Drug 
Administration (FDA) specifically for Merkel cell carcinoma.

Importantly, in Merkel cell carcinomas, several 
molecular abnormalities have been reported [12–30]. 
These include overexpression of Hedgehog (Hh) 
signal pathway proteins, telomerase activation (TERT), 
tumor suppressor anomalies (TP53, RB1 and SUFU), 
and tyrosine kinase signaling activation (AKT, KIT, 
PDGFRA, PIK3CA and PTEN). In addition, chromosomal 
abnormalities [29] and microRNA alterations [30] have 
been demonstrated in Merkel cell carcinomas.

Clinical trials using a variety of targeted tyrosine 
kinase inhibitors, either as monotherapy or in combination 
with chemotherapy or one or more additional tyrosine kinase 
inhibitors, have been initiated for Merkel cell carcinoma.  
Although a complete response with imatinib (targeting KIT 
and PDFGR) has been described [31], a low response rate 
to the agent was observed in a clinical trial [32]. Similarly, 
a complete response to pazopanib has been observed in 
Merkel cell carcinoma resistant to chemotherapy [33]; 
currently, a phase II trail (NCT01841736) is open to 
evaluate pazopanib in patients with neuroendocrine tumors 
including Merkel cell carcinoma. However, for several of 
the current trials, in which these therapies are being given to 
unselected patients rather than matched to individuals whose 
tumors harbored cognate aberrations, the results have yet to 
be reported. Indeed, we are unaware of any trials in which 
Merkel cell carcinoma patients Merkel cell carcinoma were 
selected for the presence of specific aberrations and were 
treated with appropriated targeting agents.

Given that additional effective treatment strategies are 
needed, the genomic profiles of Merkel cell carcinomas, as 
determined by comprehensive genomic profiling (targeted 
next-generation sequencing (NGS)), were examined and the 
data analyzed in the context of potential actionability. 

RESULTS

Genetic aberrations in Merkel cell carcinomas 
(Tables 1 and 2, Figure 1)

Specific genomic abnormalities were observed in 
all 17 Merkel cell carcinomas and ranged from one to 
five alterations per tumor; the median was four. Only two 
patients (cases 2 and 5) had one aberration and only three 
patients (cases 1, 7 and 15) had two aberrations. Indeed, 
more than half of the patients (9/17 [53%]) had four or 
more genetic anomalies.

The most common anomaly among all Merkel cell 
carcinomas was in the TP53 gene (12/17 patients [71%]). 

Abnormalities in the cell cycle pathway (CDKN2A/B, 
CDKN2C or RB1) were also observed in 71% of cases [12/17]. 
Aberrations in the PI3K/AKT/mTOR pathway (AKT2, 
FBXW7, NF1, PIK3CA, PIK3R1, PTEN or RICTOR) were the 
third most common set of aberrations (9/17 [53%]). Anomalies 
in DNA repair genes (ATM, BAP1, BRCA1/2, CHEK2, FANCA 
or MLH1) were seen in 29% (5/17) of patients. Aberrations in 
either ALK and RET (case 14) or ARIDIA (case 5) were each 
only noted in 6% (1/17) of patients.

Concurrent anomalies in both the cell cycle and 
PI3K/AKT/mTOR pathways were noted in 35% (6/17) of 
patients (cases 1, 3, 7, 10, 16 and 17). Abnormalities of both 
the cell cycle pathway and DNA repair genes occurred in 
18% (3/17) of patients (cases 4, 9 and 12) and aberrations 
in PI3K/AKT/mTOR pathway and DNA repair genes were 
discerned in 12% (2/17) of patients (cases 13 and 15).

Number of genomic aberrations and the 
distinctness of the profiles (Tables 1 and 2)

There were 30 distinct genes involved with 60 
distinct molecular alterations. Genomic twins refer to two 
or more patients that have alterations in the identical genes. 
Molecular twins refer to two or more patients that have 
alterations in the same genes and the specific alterations 
within the gene are also identical. There were no genomic 
or molecular twins in this study. Therefore, our analysis 
showed that each of the 17 Merkel cell carcinomas were 
distinct at the genomic and at the molecular level.

TP53 suppressor gene aberrations (Tables 1 
and 2, Figure 1)

Genomic abnormalities in TP53 were found in 71% 
(12/17) of patients. However, amongst the 16 molecular 
aberrations, 15 were distinct; two patients (cases 9 and 
17) had the same molecular abnormality: R248W. One 
tumor (case 13) harbored three distinct molecular TP53 
abnormalities and two tumors (cases 16 and 17) harbored 
two distinct molecular aberrations.

Cyclin pathway aberrations (Tables 1 and 2, 
Figure 1)

Aberrations in cell cycle genes were observed in 
71% (12/17) of patients. The most common aberration 
was in the RB1 tumor suppressor gene; RB1 was mutated 
in 10 patients. In one patient (case 9), there were two 
molecular aberrations in RB1. Genomic alterations in 
either CDKN2A/B (case 8) or CDKN2C (case 3) were each 
observed in one patient.

PI3K/AKT/mTOR pathway aberrations (Tables 
1 and 2, Figure 1)

Genomic abnormalities in the PI3K/AKT/mTOR 
pathway were noted in 53% (9/17) of patients. There 
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Table 1: Genomic portfolio in each of 17 patients with Merkel cell carcinoma [a]

C Aberrations
No. of gene 
alterations 

per patient [a]

Cell cycle 
pathway

DNA repair 
gene

PI3K/AKT/
mTOR 

pathway

Potentially 
actionable

1 NF1 L937*
RB1 Q685*
TP53 H179Y

3
X

X Yes
No
Yes

2 RICTOR amplification 1 X Yes
3 CDKN2C loss

PIK3R1 Q221*
2 X

X
Not clear

Yes
4 BAP1 G422fs*8

BRCA2 K3326*
PDGFRB L986F [b]
RB1 Q257*
TP53 C275W

5

X

X
X

Yes
Yes
Yes
No
Yes

5 ARID1A loss 1 No
6 MYC amplification

NTRK3 K461R [b]
RB1 Q93*
TP53 K120*

4

X

No
Yes
No
Yes

7 AKT2 amplification
RB1 Q93*
TP53 Q331*

3
X

X Yes
No
Yes

8 CDKN2A/B loss
EGFR E282K [b]

2 X Yes
Yes

9 BAP1 Q729*
FANCA T1161M [b]
MLH1 E694*
RB1 splice site 1499 − 2A > G
RB1 splice site 2489 + 1G > A
TP53 R248W

5

X
X

X
X
X

Yes
Yes
Yes
No
No
Yes

10 FBXW7 Q95*
NOTCH1 splice site 4586 + 1G > A [c]
RB1 splice site 1422 − 1G > A
SMARCA4 R1192C
TP53 R280K

5

X

X Yes
Yes
No
No
Yes

11 KMT2D truncation, exon 4
NOTCH1 splice site 5168 − 1G > A [c]
RB1 A392fs*5
TP53 R175H

4

X

Not clear
Yes
No
Yes

12 ATM R2993*
NOTCH1 E256* [c]
RB1 S249*
TP53 R282W

4

X

X Yes
Yes
No
Yes

13 BRCA1 Q1756*
PIK3CA E542K
PTEN splice site 635 − 1G > A
TP53 E339K
TP53 G187S
TP53 R202fs*45

4 X
X
X

Yes
Yes
Yes
Yes
Yes
Yes
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were 10 molecular abnormalities in these nine patients; 
one patient (case 13) had an aberration in both PIK3R1 
and PTEN. The most common genomic aberration was in 
PIK3CA [found in three patients (cases 13, 15 and 16)]; 
two patients had a genomic aberration of the NF1 gene. 

DNA repair gene aberrations (Tables 1 and 2, 
Figure 1)

DNA repair gene abnormalities were observed in 
29% (5/17) of patients. They included eight molecular 
abnormalities. Two patients had genomic aberration of 
BAP1 (cases 4 and 9); two patients had BRCA1/2 alterations 
(case 13 had a BRCA1 abnormality and case 4 had a 
BRCA2 abnormality). In two of the five patients, there were 
abnormalities in multiple DNA repair genes; either BAP1 
and BRCA2 (case 4) or BAP1, FANCA, and MLH1 (case 
9). Genomic alterations in either ATM (case 12) or CHEK2 
(case 15) were each observed in one patient.

Actionable aberrations (Tables 1, 2 and 3)

Of the 30 distinct genomic aberrations, 73% (22/30) 
were theoretically targetable by either an off-label use of 
an FDA-approved drug (21/30) or an experimental drug 
in a clinical trial where an off-label use did not exist 
(1/30). 

The vast majority of patients (94%, 16/17) had at 
least one aberration that was potentially targetable. There 
were between zero (case 5) and four (cases 4, 9 and 13) 
actionable genes affected per patient (median, two genes 
per patient). Potential therapies for the genomic aberrations 

in each of the 17 patients with Merkel cell carcinoma are 
summarized in Table 3 [34–72].

DISCUSSION

Merkel cell carcinoma is an ultra-rare neuroendocrine 
cancer of the skin that most commonly presents in elderly 
Caucasian men [5, 73]. The pathogenesis is related not only 
to ultraviolet light exposure, but also to immunosuppression 
[5, 73]. In addition, the presence of Merkel cell polyomavirus 
(MCPyV) has been demonstrated in about 45% [73] to 80% 
[74] of the cases. Gene mutations may have a role in the 
etiology of Merkel cell carcinoma, particularly in patients 
whose tumors are Merkel cell polymavirus-negative [75]. 
A recent study of nine virus-negative patients showed 
high mutational burden (as compared to that in virus-
positive patients), and alterations in TP53, RB1, PIK3CA, 
HRAS, PRUNE2 and NOTCH (integrative sequencing that 
included data from whole-exome sequencing and whole-
transcriptome sequencing) [13]. Another similar study  
(N = 619 genes analyzed; 21 virus-negative and 13 virus-
positive patients) confirmed high mutation burden and a 
UV-induced DNA damage signature for virus-negative 
patients. All viral-negative tumors harbored mutations in 
RB1, TP53, and a high frequency of mutations in NOTCH1 
and FAT1. Additional mutated or amplified cancer genes of 
potential clinical importance included those in the PI3K or 
MAPK pathway [14]. Of interest, a subset of virus-negative 
patients showed high PDL1, suggesting that they might 
respond to antiPD1 checkpoint inhibitors [15].

The prognosis for patients with Merkel cell 
carcinoma is poor; more than 33% of patients die from 

14 ALK F1174C
RET E511K

2 Yes
Yes

15 CHEK2 R346G [b]
PIK3CA R88Q
TP53 P177L

3 X
X

Yes
Yes
Yes

16 PIK3CA G1049R
PTCH1 P369L [b]
RB1 M386fs*1
TP53 R224H
TP53 Y220*

4

X

X Yes
Yes
No
Yes
Yes

17 APC W2612*
EPHAS R417Q [b]
NF1 splice site 5609 + 1G > A
RB1 W99*
TP53 P151S
TP53 R248W

5

X
X

Yes
Not clear

Yes
No
Yes
Yes

Abbreviations: C, case; No., number.
[a] �4 cases had more than one molecular aberration in the same gene: case 9 [RB1 = 2], case 13 [TP53 = 3], case 16 

[TP53 = 2], and case 17 [TP53 = 2].
[b] Aberration is of uncertain clinical significance and relevance of therapeutic strategies is unknown.
[c] Aberration is an inactivating alteration and therapeutic strategies are not expected to be relevant.
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their disease and 50% of patients with advanced tumors 
live less than 9 months following diagnosis [76]. Of 
interest in this regard is that exome sequencing of Merkel 
cell revealed that TP53 was more common in the virus-
negative group and predicted a poor survival (5-year 
survival in TP53 mutant versus wild-type stage I and 
II disease was 20% vs. 92%, respectively; P = 0.0036) 
[16]. In general, Merkel cell carcinoma has shown low 

response rates to chemotherapy [4-6] and to molecularly 
targeted therapies that are administered without molecular 
matching [32]. Thus, therapeutic options for Merkel cell 
carcinoma are limited. In addition, we are not aware of 
any reports that describe the response in Merkel cell 
carcinomas when genetic aberrations and therapies 
were matched. We therefore investigated the genomic 
landscape of Merkel cell carcinomas by comprehensive 

Table 2: Summary of genomic alterations in patients with Merkel cell carcinoma

Aberration Number of patients  Percent of patients Potentially actionable [a]

TP53 12 71 Yes
RB1 10 59 No
NOTCH1 3 18 No [b]
PIK3CA 3 18 Yes
BAP1 2 12 Yes
BRCA1/2 2 12 Yes
NF1 2 12 Yes
AKT2 1 6 Yes
ALK 1 6 Yes
APC 1 6 Yes
ARIDIA 1 6 No
ATM 1 6 Yes
CDKN2A/B 1 6 Yes
CDKN2C 1 6 Not clear [c]
CHEK2 1 6 Yes
EGFR 1 6 Yes
EPHAS 1 6 Not clear [c]
FANCA 1 6 Yes
FBXW7 1 6 Yes
KMT2D 1 6 Not clear [c]
MLH1 1 6 Yes
MYC 1 6 No
NTRK3 1 6 Yes
PDGFRB 1 6 Yes
PIK3R1 1 6 Yes
PTCH1 1 6 Yes
PTEN 1 6 Yes
RET 1 6 Yes
RICTOR 1 6 Yes
SMARCA4 1 6 No

[a] �Potentially actionable indicates some evidence in the literature that there are drugs that impact the target. This evidence 
may derive from clinical observations in other tumors or from preclinical evidence.

[b] Activating NOTCH mutations are potentially actionable but the ones in this series were inactivating.
[c] �Not clear indicates mixed or inconclusive literature evidence for the potential of available drugs to impact the altered  

gene product.
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genomic profiling and analyzed potential pharmacologic 
tractability.

The most common genetic aberration among 17 
patients with Merkel cell carcinoma was TP53 mutation 
(12/17 [71%]) (Tables 1 and 2, Figure 1). Our current study 
observed a markedly higher incidence of TP53 mutations 
than that noted in previous reports that demonstrated TP53 
mutations ranging from 0% to 37% [16, 19, 20, 77, 78].  
The TP53 gene is large and there are many areas that can 
be mutated [79]; our study used comprehensive genomic 
profiling that evaluated all areas of the gene; in contrast, 
some of the earlier reported results sequenced discrete 
regions of the TP53 gene and may not have identified all 
existing mutations. TP53 gene anomalies are generally seen 
in virus-negative Merkel cell cancers [16], but a limitation 
of our study is that viral status was not available.  Finally, 
each of the reports of Merkel cell genomics have small 
numbers of patients, perhaps accounting in part for the 
variability in percent positive for TP53 mutations.

TP53 has proven difficult to target. MDM2 inhibitors 
can theoretically be used in patients with wild-type TP53. 
Recent data suggest that TP53 mutations result in increased 
levels of VEGFA, which is the target of bevacizumab [80]. 
Said et al. showed that bevacizumab-containing regimens 
were associated with longer progression-free survival when 
compared to non-bevacizumab-containing regimens in 
patients with TP53-mutated advanced solid tumors (median 
11.0 versus 4.0 months (p < 0.01) [37]. Wee-1 inhibitors, 
which are in experimental trials, may also target TP53 [81] 
(Table 3 [34–72]).

The cell cycle pathway (CDKN2A/B, CDKN2C or 
RB1 genes) was also abnormal in 71% of patients (12/17) 
with Merkel cell carcinomas (Tables 1 and 2, Figure 1). 
Aberrations in the cyclin D-cyclin-dependent kinase 
pathway that regulates the cell cycle restriction point is a 
common feature of human cancer, contributing to tumor 
proliferation, genomic instability and chromosomal 
instability [12, 82, 83]. This pathway can be altered through 

Figure 1: Number of patients with each aberration.
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Table 3: Potential therapies for genomic aberrations in each of 17 patients with Merkel cell 
carcinoma [34–72] [a]

C Aberrations Examples of potential cognate targeted therapies
1 NF1 L937*

RB1 Q685*
TP53 H179Y

NF1 may be targeted with the mTOR inhibitor everolimus [34, 35] and /
or the MEK inhibitor trametinib [36]

Longer progression free survival with bevacizumab in patient with TP53 
mutations [37, 38]

2 RICTOR amplification RICTOR amplification is targetable by investigational mTORC1/
mTORC2 inhibiotrs (such as AZD8055 and MLN0128) [39–41]

3 CDKN2C loss
PIK3R1 Q221* PIK3R1 mutation targeted with mTOR inhibitor everolimus [42, 43]

4 BAP1 G422fs*8

BRCA2 K3326*

PDGFRB L986F [b]

RB1 Q257*
TP53 C275W

BAP1 targeted with PARP inhibitor olaparib [44–47]

BRCA2 targeted with PARP inhibitor olaparib [44, 45, 48, 49]

PDGFRB targeted by dovitinib [50] and sorafenib [51]

Longer progression free survival with bevacizumab in patient with TP53 
mutations [37, 38]

5 ARID1A loss
6 MYC amplification

NTRK3 K461R [b]

RB1 Q93*
TP53 K120*

NTRK3 inhibitors in development; also targeted by crizotinib [52, 53]

Longer progression free survival with bevacizumab in patient with TP53 
mutations [37, 38]

7 AKT2 amplification

RB1 Q93*
TP53 Q331*

AKT2 may be targeted with AKT or mTOR inhibitors [54] or MEK 
inhibitors [55]

Longer progression free survival with bevacizumab in patient with TP53 
mutations [37, 38]

8 CDKN2A/B loss

EGFR E282K [b]

CDKN2A/B loss leads to activation of the CDK4/6 pathway which can 
be targeted with CDK4/6 inhibitor palbociclib [56]

EGFR targeted with erlotinib or cetuximab [57]
9 BAP1 Q729*

FANCA T1161M [b]

MLH1 E694*

RB1 splice site 1499 – 2A > G
RB1 splice site 2489 + 1G > A
TP53 R248W

BAP1 may theoretically be targeted by olaparib and platinums [44–47]

FANCA may theoretically be targeted by PARP inhibitors and platinums 
[44–47, 58, 59]
MLH1 mutations may be targeted by PARP inhibitors and Top1 inhibitor 
(irinotecan) [60] or antiPD1 agents [61]

Longer progression free survival with bevacizumab in patient with TP53 
mutations [37, 38]

10 FBXW7 Q95*

NOTCH1 splice site 4586 + 1G > A  [c]

RB1 splice site 1422–1G > A
SMARCA4 R1192C1

TP53 R280K

FBXW7 may be targeted by mTOR inhibitors [62, 63]

NOTCH1 is potentially targetable with gamma-secretase inhibitor [64, 
65]; this alteration is unlikely to be activating

Longer progression free survival with bevacizumab in patient with TP53 
mutations [37, 38]
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multiple mechanisms including increased signaling through 
CDK4 and CDK6 amplification, overexpression of cyclin 
D1, and loss of inhibitors including CDKN2A and/or 
CDKN2B [84–87]. Regarding therapeutic implications, 
the cell cycle pathway is possibly targetable with CDK4/6 
inhibitors such as palbociclib [56], and further investigation 
is warranted (Table 3 [34–72]).

Mutation or loss of RB1, a tumor suppressor gene, 
also alters the cell cycle pathway. RB1 gene alterations 
in Merkel cell cancers are associated with virus-negative 
disease [88]. Merkel cell polyomavirus large-T antigen 
binds RB1 with high affinity, suppressing its anti-neoplastic 
function [89]. Aberration of RB1 renders tumors resistant 
to CDK4/6 inhibitors such as palbociclib [38]. Ten patients 

11 KMT2D truncation, exon 4
NOTCH1 splice site 5168–1G > A [c]

RB1 A392fs*5
TP53 R175H

NOTCH1 is potentially targetable with gamma-secretase inhibitor [64, 
65]; this alteration is unlikely to be activating

Longer progression free survival with bevacizumab in patient with TP53 
mutations [37, 38]

12 ATM R2993*
NOTCH1 E256* [c]

RB1 S249*
TP53 R282W

ATM mutation targeted with olaparib [66]
NOTCH1 is potentially targetable with gamma-secretase inhibitor 
[64,65]; this alteration is unlikely to be activating

Longer progression free survival with bevacizumab in patient with TP53 
mutations [37, 38]

13 BRCA1 Q1756*
PIK3CA E542K

PTEN splice site 635–1G > A

TP53 E339K
TP53 G187S
TP53 R202fs*45

BRCA1 targeted with PARP inhibitor olaparib [48]
PIK3CA mutations may be targeted with the mTOR inhibitor everolimus 
[42, 43]
PTEN mutations may be targeted with the mTOR inhibitor everolimus [43]

Longer progression free survival with bevacizumab in patient with TP53 
mutations [37, 38]

14 ALK F1174C
RET E511K

ALK targeted with crizotinib [67]
RET targeted with cabozantinib [68]

15 CHEK2 R346G [b]
PIK3CA R88Q

TP53 P177L

CHEK2 may be targeted by olaparib and platinums [44–47, 69]
PIK3CA mutations may be targeted with the mTOR inhibitor everolimus 
[42, 43]
Longer progression free survival with bevacizumab in patient with TP53 
mutations [37, 38]

16 PIK3CA G1049R

PTCH1 P369L [b]

RB1 M386fs*1
TP53 R224H
TP53 Y220*

PIK3CA mutations may be targeted with the mTOR inhibitor everolimus 
[42, 43]
PTCH1 mutation targetable with vismodegib [70]

Longer progression free survival with bevacizumab in patient with TP53 
mutations [37, 38]

17 APC W2612*
EPHA5 R417Q [b]
NF1 splice site 5609 + 1G > A

RB1 W99*
TP53 P151S
TP53 R248W

APC may be targeted with sulindac [71, 72]

NF1 may be targeted with the mTOR inhibitor everolimus [34, 35] and/
or the MEK inhibitor trametinib [36]

Longer progression free survival with bevacizumab in patient with TP53 
mutations [37, 38]

Abbreviations: C, case.
[a] Many of these therapies have not been validated as effective in patients.
[b] Aberration is of uncertain clinical significance and relevance of therapeutic strategies is unknown.
[c] Aberration is an inactivating alteration and therapeutic strategies are not expected to be relevant.
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in our series had RB1 mutations (Tables 1 and 2, Figure 1). 
Importantly, aberrations in the PI3K/AKT/mTOR 

pathway (AKT2, FBXW7, NF1, PIK3CA, PIK3R1, PTEN 
or RICTOR) were also commonly seen in Merkel cell 
carcinomas (9/17 [53%]) (Tables 1 and 2, Figure 1). 
PIK3CA is a key regulator of cell motility and chemotaxis. 
Aberrations in PI3KCA usually occur in tumors that do not 
have Merkel cell polyomavirus [24, 25].

The PI3K/AKT/mTOR pathway can be targeted 
by PI3K/AKT/mTOR inhibitors such as everolimus and 
temsirolimus, both of which are FDA-approved mTOR 
inhibitors [42, 43]. Since Merkel cell carcinomas—
regardless of whether they are positive or negative for 
Merkel cell polyomavirus—show activated PI3K/AKT 
signaling, PI3K and dual PI3K/mTOR inhibitors may be 
used as potential targeted therapies, though the literature 
suggests that for many tumors with pathway activation, 
they are not effective as single agents [24, 25]. With regards 
to RICTOR amplification, recent studies have shown 
that this aberration may be targetable by investigational 
mTORC1/mTORC2 inhibitors such as AZD8055 and 
MLN0128 [39–41] (Table 3 [34–72]).

Several investigators have also previously shown 
that MAP (mitogen-activated protein) kinase-related 
genes—such as KRAS and BRAF—are more frequently 
aberrant in the presence of mutant PIK3CA, as compared 
with wild-type PIK3CA [90]. These genes may confer 
resistance to PI3K/AKT/mTOR inhibitors. Interestingly, 
none of our patients had KRAS or BRAF alterations.

Abnormalities in the DNA repair gene pathway (ATM, 
BAP1, BRCA1/2, CHEK2, FANCA or MLH1) were also 
observed in 29% of patients (5/17) (Tables 1 and 2, Figure 1).  
Drugs such as platinums, PARP inhibitors, and possibly 
immunotherapeutic agents can target DNA repair gene 
abnormalities (Table 3 [34–72]). Some of these abnormalities 
(such as BRCA1/2 or ATM) can be germline; germline testing 
was not conducted in the patients included in this analysis.

Interestingly, 16/17 patients (94%) had potentially 
actionable aberrations (Table 1). The number of actionable 
genes affected per patient ranged between zero (case 5) and 
four (cases 4, 9 and 13), with a median of two per patient. 
Indeed, the majority of the genomic alterations were 
theoretically druggable (Tables 1 and 2). Of the 22 (73%) 
actionable aberrations, 21 were targetable by an FDA-
approved drug (off-label) (representing 70% [21/30] of all 
distinct alterations). An additional one (3% [1/30]) distinct 
alteration (RICTOR) was targetable by an experimental drug 
in a clinical trial. As there are no FDA-approved targeted 
therapies for Merkel cell carcinoma and most conventional 
chemotherapy has been shown to be associated with poor 
clinical outcomes: therefore, matched targeted therapies 
based on molecular profiling merits investigation [91].

Our current study has some limitations. First, it was 
performed retrospectively with a relatively limited number 
of patients. Second, molecular analysis was done on 
archival tumor tissue, which was obtained at different time 

points in relationship to the clinical history; there was no 
information regarding the status of the patients, whether 
the tumors were primary or metastatic, the location of 
the tumor and the presence or absence of Merkel cell 
polyomavirus, or cytokeratin-20 positivity (found in most, 
but not all, Merkel cell cancers) [95]. However, despite 
these limitations, the genomic characterization of Merkel 
cell carcinomas has uncovered interesting and possibly 
clinically relevant results.

In summary, our 17 patients with Merkel cell 
carcinomas harbored 30 genomic alterations (median 
= 4 per patient) of which 60 were distinct molecular 
aberrations. The most common genomic aberrations in 
patients with Merkel cell carcinoma were in the TP53 
gene and the cell cycle pathway (CDKN2A/B, CDKN2C 
or RB1), followed by the PI3K/AKT/mTOR pathway 
(AKT2, FBXW7, NF1, PIK3CA, PIK3R1, PTEN or 
RICTOR) and DNA repair genes (ATM, BAP1, BRCA1/2, 
CHEK2, FANCA or MLH1). The vast majority of patients 
(94%) had at least one aberration that was potentially 
pharmacologically tractable by an FDA-approved drug or 
an investigational agent in a clinical trial. Indeed, of the 
30 distinct genomic aberrations, 22 (73%) were potentially 
actionable. These observations suggest that matching 
patients with appropriately targeted agents is feasible and 
warrants study. Finally, no two patients had an identical 
molecular portfolio. This result is similar to that reported in 
metastatic breast cancer, where 131 distinct aberrations in 
57 patients with no two patients having the same molecular 
portfolio were recently described [92–94]. Taken together, 
these observations suggest that customized targeted 
combination therapy merits investigation in patients with 
Merkel cell carcinoma.

MATERIALS AND METHODS

Patients

We investigated the genomic alterations of patients 
with Merkel cell carcinoma referred to Foundation 
Medicine (Cambridge, MA) for next-generation sequencing 
(December 2011 to April 2014 (N = 17)). Here, we report 
the prevalence and frequencies of these aberrations. This 
study was performed in accordance with University of 
California San Diego IRB guidelines for a de-identified 
database.

Tissue samples and mutational analysis

Available tissues from diagnostic and therapeutic 
procedures were used to assess molecular aberrations. 
Samples from formalin-fixed paraffin-embedded tissue 
were sent for targeted next-generation sequencing at 
Foundation Medicine (Cambridge, MA). The test sequences 
the entire coding sequence of 182, or more recently 236, 
cancer-related genes plus 47 introns from 19 genes often 
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rearranged or altered in cancer to an average depth-of-
coverage of greater than 250X (http://foundationone.com/
docs/FoundationOne_tech-info-and-overview.pdf).

This method of sequencing allows for detection of 
copy number alterations, gene rearrangements, and somatic 
mutations with 99% specificity and > 99% sensitivity for 
base substitutions at > five mutant allele frequency and 
> 95% sensitivity for copy number alterations. Foundation 
Medicine uses a threshold of > eight copies for gene 
amplification. The submitting physicians provided a 
diagnosis of the tumor. Next-generation sequencing 
data were collected and interpreted by N-of-One, Inc. 
(Lexington, MA; www.n-of-one.com). For the purpose 
of our analysis, “cell cycle pathway” aberrations included 
CDKN2A/B, CDKN2C or RB1 alterations. Similarly, 
“phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway” 
aberrations included alterations of AKT2, FBXW7, NF1, 
PIK3CA, PIK3R1, PTEN or RICTOR. “DNA repair gene” 
abnormalities included alterations in ATM, BAP1, BRCA1/2, 
CHEK2, FANCA or MLH1. We have evaluated whether 
certain genomic alterations were actionable or not based 
on the availability of a drug that is approved or in clinical 
trials that targets that aberration with low 50% inhibitory 
concentration (IC50) or an antibody that primarily targets that 
abnormality.
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