
ORIGINAL RESEARCH
published: 16 September 2020
doi: 10.3389/fcell.2020.578901

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 September 2020 | Volume 8 | Article 578901

Edited by:

Liang Cheng,

Harbin Medical University, China

Reviewed by:

Junwei Han,

Harbin Medical University, China

Ying Wang,

Xiamen University, China

*Correspondence:

Juan Wang

wangjuan@imu.edu.cn

Specialty section:

This article was submitted to

Molecular Medicine,

a section of the journal

Frontiers in Cell and Developmental

Biology

Received: 01 July 2020

Accepted: 13 August 2020

Published: 16 September 2020

Citation:

Bian H, Guo M and Wang J (2020)

Recognition of Mitochondrial Proteins

in Plasmodium Based on the

Tripeptide Composition.

Front. Cell Dev. Biol. 8:578901.

doi: 10.3389/fcell.2020.578901

Recognition of Mitochondrial
Proteins in Plasmodium Based on the
Tripeptide Composition
Haodong Bian 1, Maozu Guo 2,3 and Juan Wang 1,4*

1 School of Computer Science, Inner Mongolia University, Hohhot, China, 2 School of Electrical and Information Engineering,

Beijing University of Civil Engineering and Architecture, Beijing, China, 3 Beijing Key Laboratory of Intelligent Processing for

Building Big Data, Beijing, China, 4 Stage Key Laboratories of Reproductive Regulation & Breeding of Grassland Livestock,

Hohhot, China

Mitochondria play essential roles in eukaryotic cells, especially in Plasmodium cells.

They have several unusual evolutionary and functional features that are incredibly vital

for disease diagnosis and drug design. Thus, predicting mitochondrial proteins of

Plasmodium has become a worthwhile work. However, existing computational methods

can only predict mitochondrial proteins of Plasmodium falciparum (P. falciparum for

short), and these methods have low accuracy. It is highly desirable to design a classifier

with high accuracy for predicting mitochondrial proteins for all Plasmodium species, not

only P. falciparum. We proposed a novel method, named as PM-OTC, for predicting

mitochondrial proteins in Plasmodium. PM-OTC uses the Support Vector Machine (SVM)

as the classifier and the selected tripeptide composition as the features. We adopted

the 5-fold cross-validation method to train and test PM-OTC. Results demonstrate that

PM-OTC achieves an accuracy of 94.91%, and performances of PM-OTC are superior

to other methods.
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1. INTRODUCTION

The parasite Plasmodium is the main cause of malaria, and kills more than one million African
children annually (Phillips et al., 2017). There are approximately 40% humans whose are infected
by malaria in the world. Four species of Plasmodium that can infect humans with malaria are P.
falciparum, Plasmodium vivax, Plasmodium malaria, and Plasmodium ovale, respectively, where
P. falciparum is the most lethal (Gardner et al., 2002). Research on the mitochondrial evolution
and functions of Plasmodium indicates that Plasmodium mitochondrion is suitable targets for
anti-parasitic drugs (Vaidya and Mather, 2009). Thus, it is exceptionally important to predict
mitochondrial proteins of Plasmodium.

Traditional methods for predicting protein functions are based on biological experiments and
they are costly and time-consuming. So, the researchers proposed the computational methods
to predict the protein functions (Wei et al., 2015, 2017; Qu et al., 2019). The machine learning
algorithms can achieve the prediction (Zou, 2019). There are two main steps of the machine
learning: classifier and feature. For the classifiers, Logistic Regression (LR) has been used to
recognize protein subcellular localization (Wan et al., 2015). Naïve Bayes (NB, Rish, 2001) is applied
to predict protein-protein interaction sites (Murakami and Mizuguchi, 2010). As an efficient and
powerful machine learning algorithm, SVM (Vapnik, 2000) has been applied widely for predicting
protein subcellular localization (Hua and Sun, 2001; Kumar et al., 2018), G-protein coupled
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receptors (Karchin et al., 2002; Bhasin and Raghava, 2004a),
protein-protein interactions prediction (Guo et al., 2008), and
protein fold recognition (Ding and Dubchak, 2001).

For the features, there are many methods for extracting
features from the protein primary sequences. The methods for
extracting features of the amino acid, dipeptide and tripeptide
from protein sequences can generate fixed-length data for
the protein sequences with different length. Nakashima and
Nishikawa (1994) first proposes the amino acid composition
(AAC) with 20 dimensional vectors, i.e., the frequency of
each single amino acid, to represent proteins. Dipeptide
composition (DPC) with 400 dimensional vectors, i.e., the
frequency of each one pair of amino acids in protein sequences,
is used to discriminate protein subcellular localization (Bhasin
and Raghava, 2004b; Ahmad et al., 2016). Furthermore, the
researchers propose 8000 dimensional tripeptide composition
(TPC) based on the structural properties of proteins, which
has been used to predict protein subcellular localization (Liao
et al., 2011) and sub-chloroplast localization (Lin et al., 2013).
Besides, split amino acid composition (SAAC), which divides a
whole sequence into three parts: N-terminal, C-terminal, and
a region between the two, i.e., the remaining amino acids
between N- and C-terminal, is introduced (Chou, 2005) and
used for mitochondrial proteins prediction (Kumar et al., 2006,
2018). Additionally, Shen and Chou (2006) proposes pseudo
amino acid composition (PseAAC) based on the physicochemical
characteristics of proteins. The researchers used the PSI-BLAST
software to compute the position-specific score matrices (PSSM)
for extracting evolutionary information from protein sequences
(Altschul et al., 1997). And PSSM also has been used for proteins
subcellular localization prediction (Rashid et al., 2007) and
protein-protein interaction site prediction (Zeng et al., 2019).

There are lots of approaches for predicting mitochondrial
proteins of P. falciparum. Bender et al. (2003) uses the neural
network and the relative amino acid frequency to predict
mitochondrial transit peptides (mTPs) of P. falciparum. Verma
et al. (2010) applies the SVM to predict mitochondrial proteins
of P. falciparum and uses SAAC and PSSM to represent protein
sequences. Jia et al. (2011) uses Bi-profile Bayes and SAAC to
extract protein sequence features and uses the SVM classifier
as the classifier to train two models (PfMP-N25 and PfMP-30)
in order to recognize mitochondrial proteins of P. falciparum.
Chen et al. (2012) proposes an increment of diversity (ID)
method based on the n-peptide composition of the reduced
amino acid alphabet (RAAA) to predict mitochondrial proteins
of P. falciparum. Furthermore, Ding and Li (2015) uses the
analysis of variance (ANOVA) to reduce the feature dimension
and generate the optimal 5-gap dipeptide composition from the
protein sequences. However, all these methods mentioned above
are used to predict only mitochondrial proteins of P. falciparum.
Our paper will introduce a noval model, named by PM-OTC, to
predict mitochondrial proteins of all Plasmodium. PM-OTC uses
the SVM to classify and selects several tripeptides to represent the
proteins. To evaluate the performance of PM-OTC, we adopted
5-fold cross-validation to train and test our method on the two
datasets: the PM275 (collected from UniprotKB/SwissProt) and
the PfM175 (used by Bender et al., 2003).

2. MATERIALS AND METHODS

2.1. Datasets
2.1.1. PM275

The proteins of PM275 are selected from UniprotKB/SwissProt
(released 2020_01) by the following rules: (1) without ambiguous
amino acids, such as “B,” “X,” and “Z;” (2) their function that
have been confirmed by biological experiments; (3) sequences
with > 50 length. Here we obtain 54 mitochondrial proteins
as positive examples, and 340 non-mitochondrial proteins as
negative examples, including cytosol proteins, secreted proteins,
and apicoplast proteins. Next we used the CD-HIT (Fu et al.,
2012) software with global alignment and sequence identity
threshold set to 0.4 to process negative sequences in order to
eliminate the similar sequences. Then the protein sequences
whose sequence similarity is more than or equal to 40% are
regarded as the same cluster and the longest sequence from each
cluster are chosen the resulting sequences. Finally, we obtained
221 non-mitochondrial proteins as the negative examples. So,
the PM275 contains 54 mitochondrial proteins and 221 non-
mitochondrial proteins.

2.1.2. PfM175

The PfM175 is mainly used in predict the mitochondrial
proteins of P. falciparum. This dataset includes 40 mitochondrial
proteins and 135 non-mitochondrial proteins (61 cytoplasmic, 21
secretory, and 53 apicoplast, respectively).

2.2. Sequences Representation
A protein sequence needs an efficient mathematical
representation that can correctly express the inherent
connection with the prediction types. To efficiently identify
mitochondrial proteins of Plasmodium and build a robust
model, we synthetically considered three sequences of features
based on the protein primary sequence.

2.2.1. AAC

AAC has low complexity and has been widely used to predict the
function of proteins. Given a protein sequence S with L residue,
AAC represents it as following:

AAC(S) =
(

f1, f2, · · · , f20
)T

(1)

where fi = ni/L (i = 1, 2, · · · , 20), ni is the frequency of the i-th
amino acid.

2.2.2. DPC

DPC computes the frequency of two amino acids. A protein
sequence can be represented by a 400 dimensional vector. DPC
contains information about the proportion of amino acids as well
as the order of sequence.

DPC(S) =
(

f1, f2, · · · , f400
)T

(2)

fi =
dep(i)
∑

dep(i)
(3)
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where dep(i) is one out of 400 dipeptides,
∑

dep(i) represents
total number of all possible dipeptides in sequence S.

2.2.3. TPC

TPC computes the frequency of three contiguous amino
acids. A protein sequence can be represented by a 8000
dimensional vector.

TPC(S) =
(

f1, f2, · · · , f8000
)T

(4)

fi =
tep(i)
∑

tep(i)
(5)

where tep(i) is one out of 8000 tripeptides,
∑

tep(i) represents
total number of all possible tripeptides in sequence S.

2.3. Support Vector Machine
SVM is a powerful and efficient machine learning algorithm for
linear, non-linear classification and regression. Compared with
other machine learning algorithms, the advantage of the SVM
algorithm is that the dimension of SVM parameters equals the
number of training samples (Zavaljevski et al., 2002).

SVM algorithm aims to calculate an optimal hyperplane
that can separate two samples correctly in space. The optimal
hyperplane, also known as support vector, is a set of
vectors obtained by maximizing the separating margin on
the training set. For linear separable classification problems,
the optimal hyperplane can be directly obtained by the
constrained optimization problem. For non-linear classification,
the advantage of SVM is to introduce kernel function
and transform the non-linear classification problem into a
linear classification problem (Amari and Wu, 1999; Hofmann
et al., 2008). The essence of kernel function or kernel
technique is to map Euclidean space to Hilbert space by
non-linear transformation so that the non-linear classification
problem of original space can be transformed into the linear
classification problem of calculating the optimal hyperplane in
high dimensional space. Scikit-learn (Pedregosa et al., 2011),
which provides linear, Gaussian (RBF), polynomial, and sigmoid
kernel function, are adopted to implement the SVM classifier.We
mainly use linear kernel function and Gaussian kernel function
in our experiments. In order to find the optimal values of the
two parameters C and γ , we employ a grid search method with
5-fold cross-validation. The range of C and γ are [2−1, 23] and
[2−4, 2−1] with the step of 2.

2.4. Feature Selection
TPC can obtain 8000 feature values for a protein. However, these
feature values may contain redundant and noisy information
which will affect the training model and can lead to low
prediction accuracy eventually. Accordingly, it is vital to select
appropriate features from TPC to improve the prediction
accuracy. The analysis of variance (ANOVA) can filter out the
tripeptides with low variance, which is suitable for processing
TPC because of its lots of zero values. ANOVA can compute
the difference in the mean of two or more samples. ANOVA

computes a F-value by the difference within the same group and
the difference among different groups (Anderson, 2001). The
F-value for the ξ -th tripeptide is defined as:

F(ξ ) =
s2B(ξ )

s2W(ξ )
(6)

where Sb2 and Sw2 are calculated by the following formulas:

s2B(ξ ) =
K
∑

i=1

mi

(∑mi
j=1 fξ (i, j)

mi
−

∑K
i=1

∑mi
j=1 fξ (i, j)

∑K
i=1mi

)2

/(K − 1)

(7)

s2W(ξ ) =
K
∑

i=1

mi
∑

j=1

(

fξ (i, j)−

∑K
i=1

∑mi
j=1 fξ (i, j)

∑K
i=1mi

)2

/(M−K) (8)

where K andM represent the number of groups and total number
of samples. fξ (i, j) is the frequency of the ξ -th tripeptide of
the j-th sample in the i-th group. mi represents the number of
samples in the i-th group. The F(ξ ) in Equation (6) computes
the ratio of the sample variance among groups and the sample
variance within groups. MSB (mean square between) denotes the
sample variance between groups andMSW (mean square within)
denotes the sample variance within groups. If the value of F(ξ ) is
away from 1, then there is a significant difference between MSB
and MSW. On the contrary, if the value of F(ξ ) is close to 1,
then there is no significant difference between MSB and MSW.
The larger the F(ξ ) value is, the greater the impact of the ξ -th
tripeptide on the predicted results. So we rank 8000 tripeptides in
the descending order of F(ξ ) values and employ an Incremental
Feature Selection (IFS) strategy to find the optimized TPC with
the highest prediction accuracy as the features. The detailed steps
are as follows. First, we choose the tripeptide with the highest F-
value to generate an initial feature set. Second, we select another
tripeptide with the second-highest F-value and add it to the initial
feature set and form a new feature set. And repeat this step to
form 8000 feature sets. Each feature set is used to train and test
a prediction model. Finally, we choose the feature set, which
prediction model based on it achieve the maximum accuracy, as
the optimized TPC.

2.5. Performance Measures
We use 5-fold cross-validation to assess the prediction
performance of our method. First, we randomly divide the
dataset into five mutually exclusive subsets of similar size.
Second, we choose one subset as the testing dataset and the
other four subsets as the training dataset. So, we run five times
of training and testing, and return the average value of five
test results.

Here, six metrics for evaluating methods are used, accuracy,
sensitivity, precision, recall, F-score, and the Matthews
correlation coefficient (MCC), respectively. The detailed
formulas are followings:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(9)
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TABLE 1 | Cross-validation performances of AAC with different classifiers on

PM275.

Classifier Accuracy Sensitivity Precision Recall F-score MCC

LR 82.91% 12.73% 71.26% 56.36% 55.28% 0.24

NB 57.82% 58.73% 58.16% 58.02% 50.68% 0.12

SVM 80.36% 1.82% 40.18% 50% 44.56% 0

The bold values are the maximum value for each column.

Sensitivity =
TP

TP+ FN
(10)

precision =
TP

TP+ FP
(11)

recall =
TN

TN+ FP
(12)

F − score =
2 ∗ precision ∗ recall
precision+ recall

(13)

MCC =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

(14)

Here TP represents the number of mitochondrial proteins
predicted correctly, FP represents the number of non-
mitochondrial proteins predicted incorrectly, TN represents
the number of non-mitochondrial proteins predicted
correctly, FN denotes the number of mitochondrial proteins
predicted incorrectly.

3. RESULTS

Experiments first evaluate the performances of using AAC,
DPC, TPC as the features, and the different machine learning
algorithms as classifiers. Results demonstrate that TPC performs
better than other feature sets (Tables 1, 2). So, we use TPC
as features and then use the ANOVA to select a part of
TPC as features in order to improve the prediction accuracy.
Experiments then evaluate the performances of using the
optimized TPC as the features. Results suggest that the optimized
TPC significantly improves the accuracy of discriminating
mitochondrial proteins of Plasmodium, especially for the SVM
classifier (Table 3). Therefore, we obtain a new mode named
PM-OTC, using the SVM as the classifier and the optimized
TPC as the features, to predict the mitochondrial proteins of
Plasmodium. Experiments finally evaluate the performance of
PM-OTC by comparing PM-OTC with other computational
methods (PlasMit, PFMpred, PfMP-N25, PfMP-30, ID, and
Ding). Results show PM-OTC is superior to the others (Table 4).

3.1. Analysis of AAC on PM275
We plot a histogram based on the frequency of each amino
acid for each protein from PM275 (Figure 1) in order to
analyze the differences between mitochondrial proteins and
non-mitochondrial proteins. Figure 1 shows that mitochondrial
proteins have more alanine, phenylalanine, glycine, isoleucine,
leucine, proline, glutamine, arginine, threonine, and valine

TABLE 2 | Cross-validation performances of DPC, TPC, and combination features

using different classifiers on PM275.

Feature

vector

Classifier Accuracy Sensitivity Precision Recall F-score MCC

DPC

LR 83.27% 33.27% 76.59% 64.36% 66.84% 0.39

NB 60.73% 86.73% 63.55% 70.49% 57.46% 0.33

SVM 86.18% 29.45% 92.68% 72.73% 68.33% 0.49

AAC+DPC

LR 82.55% 31.45% 74.25% 63.23% 65.32% 0.35

NB 60.73% 86.73% 63.61% 70.48% 57.42% 0.33

SVM 85.82% 27.64% 92.52% 63.82% 67.18% 0.48

TPC

LR 88.73% 42.55% 93.91% 71.27% 75.54% 0.60

NB 82.91% 12.73% 81.24% 56.36% 56.09% 0.29

SVM 89.82% 48.18% 94.43% 74.09% 78.80% 0.65

The bold values are the maximum value for each column.

TABLE 3 | Cross-validation performances of optimized TPC using different

classifiers on PM275.

Classifier
Feature

dimension
Accuracy Sensitivity Precision Recall F-score MCC

LR 984 91.27% 55.64% 95.13% 77.82% 82.8% 0.71

NB 2578 85.09% 24% 92.22% 62% 63.98% 0.43

SVM 399 94.91% 74.18% 97.05% 87.09% 90.86% 0.83

The bold values are the maximum value for each column.

TABLE 4 | Cross-validation performance of PM-OTC compared with other

methods on PfM175.

Method Accuracy Sensitivity Recall MCC

PlasMit (Bender et al., 2003) 90.00% 94.00% 89.00% 0.74

PFMpred (Verma et al., 2010) 92.00% 97.50% 90.40% 0.81

PfMP-N25 (Jia et al., 2011) 96.00% 87.50% 98.50 0.93

PfMP-30 (Jia et al., 2011) 98.80% 97.50% 99.30% 0.97

ID (Chen et al., 2012) 92.00% 100% 89.63% 0.82

Ding (Ding and Li, 2015) 97.10% 90.00% 99.30% 0.92

Our method 99.43% 97.50% 98.75% 0.98

The bold values are the maximum value for each column.

than non-mitochondrial proteins. On the contrary, non-
mitochondrial proteins have more aspartic, glutamic, lysine,
asparagine, serine, and tyrosine than mitochondrial proteins.
Only the amino acid cysteine and histidine are no significant
differences in mitochondrial and non-mitochondrial proteins.
We further research the prediction performance when using the
AAC as the features. So, we extract the AAC (Equation 1) for
each protein from PM275. Here we use the SVM, the Logistic
Regression (short for LR) and the Naïve Bayes (short for NB)
as classifiers.

Table 1 shows the results. The results show that the LR has
a more excellent performance than other classifies in accuracy
of 82.91%, precision of 71.26%, F-score of 55.28%, and MCC of
0.24. The NB performs better in sensitivity (58.73%) and recall
(58.02%) than other classifiers. Overall, using the AAC as the
features to predict mitochondrial proteins of Plasmodium have
low performance.
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FIGURE 1 | Amino acid composition of 54 mitochondrial proteins (mito) and

221 non-mitochondrial proteins (non_mito). The abscissa represents the

abbreviation of amino acid, and the ordinate represents the percentage

content of amino acid.

3.2. Prediction Performances of DPC, TPC
and Combined Feature on PM275
Next, we consider three feature sets: DPC (Equations 2, 3), DPC
combined with AAC, and TPC (Equations 4, 5). We input these
three feature sets into three classifiers (LR, NB, SVM). Results
are recorded in Table 2. Table 2 shows that the model using
the SVM as the classifier and the TPC as the features performs
better in almost all measures than other models, and achieves
the accuracy of 89.82%, precision of 94.43%, recall of 74.09%,
F-score of 78.80%, and MCC of 0.65. The models using TPC as
the features get better performances compared with DPC and
AAC+DPC. Thus, TPC has obvious advantages in discriminating
mitochondrial proteins of Plasmodium. Table 1 shows that the
SVM classifier does not perform as well as the other two classifiers
when using the AAC as the features. However, as we can see from
Table 2, the SVM classifier performs efficient and powerful when
using high dimensional feature sets as the input features. So, we
choose TPC as the features.

3.3. Prediction Performance of Optimized
TPC on PM275
We use ANOVA and IFS strategy to reduce the dimension of TPC
and further obtain the optimized TPC as the features. We rank
the 8000 dimensional TPC according their F-value (Equation
6) and adopt IFS to generate 8000 subsets. Then we input all
8000 subsets into three classifiers (LR, NB, SVM) and calculate
the accuracy of 5-fold cross-validation of each subset. Figure 2
shows the IFS curve. From Figure 2, we can see that the accuracy
of 5-fold cross-validation has the maximum 94.91% when using
the SVM as the classifier. And the optimized TPC only contains
399 tripeptides. Table 3 shows that the model using the SVM as
the classifier and the optimized TPC as the features performs
more reliable than the other classifiers. Accordingly, the PM-
OTC model uses the top 399 ranked tripeptides as features and

FIGURE 2 | The IFS curve for predicting mitochondrial proteins of Plasmodium

using three classifiers. The accuracies of the SVM classifier and the LR

classifier improve when the number of features is initially increased. When the

number of features exceeds 399, the accuracy of the SVM classifier decreases

significantly and finally returns to stable. With the increase in the number of

features, the accuracy of the NB classifier first decreases significantly and then

gradually increases to stable.

the SVM as the classifier to predict the mitochondrial proteins
of Plasmodium. Figure 3 shows the structure of PM-OTC.

Table 2 shows that the model using the SVM as the
classifier and the TPC as features can only achieve the cross-
validated accuracy by 89.82%, which is lower than that (94.91%)
of PM-OTC. So, the optimized TPC significantly enhances
the prediction performance of the model using SVM as the
classifier, especially in accuracy, and improves it by 5.09%. This
result shows that the original 8000 dimensional TPC includes
redundant or noise information. Table 2 shows that the modes
using the LR and NB as the classifiers and the optimized TPC as
the features also improve the prediction performance (Figure 3).
This result shows that the optimized TPC is an effective and
efficient feature vector in predicting mitochondrial proteins
of Plasmodium.

3.4. Performance of the PM-OTC on
PfM175
Most of the published methods can only predict mitochondrial
proteins of P. falciparum and built on PfM175. Accordingly,
we train and test PM-OTC adopting 5-fold cross-validation
on PfM175 in order to compare our approach with other
computational methods. Table 4 records the comparison of
all methods. Result shows that our method outperforms
other methods with an accuracy of 99.43% and MCC of
0.98. Meanwhile, precision and F-score of our method are
99.64 and 99.15%, respectively. This result indicates that the
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FIGURE 3 | The structure of PM-OTC model. The input data is whole protein sequence. First, through extracting tripeptides from raw sequence, 8000-dimensional

TPC are obtained. And then, TPC constitute a feature vector of 399 dimensions by ANOVA, which is fed into the SVM classifier for prediction.

prediction results of PM-OTC are more correct and reliable than
other approaches.

4. CONCLUSION

Predicting mitochondrial proteins of Plasmodium is the key to
treating malaria because mitochondrion is a suitable target for
anti-malarial drugs. Here we build the PM-OTC to predict the
mitochondrial proteins of Plasmodium instead of only predicting
mitochondrial proteins of P. falciparum.

The PM-OTC uses the optimized TPC as the features and
the SVM as the classifier to predict mitochondrial proteins of
Plasmodium. The performance of PM-OTC on PM275 indicates
that PM-OTC performs well in predicting mitochondrial
proteins of Plasmodium with an accuracy of 94.91%. The
performance of PM-OTC on PfM175 shows that PM-OTC
improves the accuracy by 0.64 − 9.43% compared with other
methods. So, the PM-OTC is efficient and effective in predicting
mitochondrial proteins of P. falciparum.
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