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COVID-19 has spread globally to over 200 countries with more than 40
million confirmed cases and one million deaths as of November 1,
2020. The SARS-CoV-2 virus, leading to COVID-19, shows extremely
high rates of infectivity and replication, and can result in pneumonia,
acute respiratory distress, or even mortality. SARS-CoV-2 has been
found to continue to rapidly evolve, with several genomic variants
emerging in different regions throughout the world. In addition, despite
intensive study of the spike protein, its origin, and molecular mecha-
nisms in mediating host invasion are still only partially resolved. Finally,
the repertoire of drugs for COVID-19 treatment is still limited, with
several candidates still under clinical trial and no effective therapeutic
yet reported. Although vaccines based on either DNA/mRNA or protein
have been deployed, their efficacy against emerging variants requires
ongoing study, with multivalent vaccines supplanting the first-genera-
tion vaccines due to their low efficacy against new strains. Here, we
provide a systematic review of studies on the epidemiology, immuno-
logical pathogenesis, molecular mechanisms, and structural biology,
as well as approaches for drug or vaccine development for SARS-
CoV-2.
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INTRODUCTION
Since early 2020, a novel highly infectious disease, coronavirus disease

2019 (COVID-19), emerged as a worldwide epidemic.1,2 COVID-19 was
declared to be a “pandemic” by WHO on March 11, 2020, and more than
40 million cases were confirmed and one million deaths recorded across
more than 200 countries by November 1, 2020.3,4 COVID-19 is a pulmonary
disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), which belongs to the Coronaviridae family.5,6 Coronaviruses contain
a single-stranded RNA genome ranging from 25 to 32 kilobases and are
generally categorized into four major genera: alpha-, beta-, gamma-, and
delta-coronavirus.7,8 SARS coronavirus caused an outbreak in 2002, result-
ing in more than 8,000 infections and 774 deaths across 37 countries.9,10

Another coronavirus discovered in Saudi Arabia, MERS (Middle East respi-
ratory syndrome), is reportedly responsible for 2,494 confirmed cases and
858 deaths since September 2012.11 Several coronaviruses that cause mild
to moderate symptoms in humans have not gained worldwide attention,
whereas the HKU2 coronavirus, a newly reported mammalian coronavirus,
ll
was found to be responsible for fetal acute diarrhea syndrome in pigs in
2017.12

Coronaviruses have also been identified in several other mammalian
hosts, such as birds, bats, civets, and mice, among other species.13,14

Similarly, SARS-CoV-2 has raised major concerns globally, with clinical
features ranging from mild or moderate upper respiratory symptoms to
severe cases involving respiratory, gastrointestinal, hepatic, renal, and
neurological system failure.15–17 In the worst case scenarios, SARS-
CoV-2 infects the lower respiratory tract, and can quickly develop into
acute respiratory distress syndrome (ARDS), which requires mechani-
cal oxygen support. The basic reproductive rate (R0) is an epidemiolog-
ical metric to estimate the extent of epidemic transmission without
control measures, as well as to evaluate the efficiency of reducing
the transmission of disease by human intervention. Initial evaluation
of trends of COVID-19 transmission showed that R0 is close to 2.5,
which appeared similar to the spread of SARS-CoV in 2003, which
had an R0 of 2.90 (range 2.3–3.7). However, the basic reproduction
number of SARS-CoV-2 dropped markedly to lower than 1 after
implementing strict physical distancing and preventive hygiene
measures.18–20 Globally, the R0 of SARS-CoV-2 ranges between 2.5
and 7.1 when in the absence of human intervention (Figure 1A).

To date, no effective methods have been found that can prevent the
spread of the epidemic, apart from emphasizing the need for extended
social distancing, molecular/antibody testing for infections, and contact
tracing to identify and isolate infected patients.5,21 In addition, antibody
testing can be applied to identify individuals with previous SARS-CoV-2
infection, and those former patients with sufficient convalescent plasma
may opt to donate blood to benefit the therapy of current patients. At the
community level, antibody surveillance programs can be implemented to
locally monitor public serological data to better inform public health pol-
icy, while increased molecular testing can be used to evaluate the effi-
cacy of vaccination efforts.22,23 Given these current strategies for
epidemic control, development of affordable and accurate non-invasive
nucleic acid and antibody tests is therefore urgently needed by commu-
nity health services.

In this study, we conducted a systematic review focusing on
genomic variation, origin tracking, epidemiological characteristics,
transmission mode, and differences between virus strains, as well as
pathological mechanisms, potential treatments, and recent advances
in vaccine development.
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Figure 1. A summary of the epidemiology, molecular docking, genetic evolution, and genome structure of SARS-CoV-2 (A) Comparison of the characteristics between
SARS-CoV-2 and SARS-CoV; (B) genome structure and protein modeling of SARS-CoV-2; and (C) complex structure of human ACE2 binding with RBD of SARS-CoV-2.
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Clinical manifestations and epidemiology
COVID-19 was declared to be a “pandemic” by WHO on March 11, 2020,

and more than 40 million cases were confirmed and one million deaths re-
corded across more than 200 countries by November 1, 2020. Similar to
other coronaviruses, SARS-CoV-2 primarily spreads through respiratory drop-
lets; although, this coronavirus was also potentially capable of transmission
through the fecal-oral route. Recent reports have focused attention on shifts
in the distribution of cases to an increasingly lower median age of occur-
rence, although the underlying reasons may be due to social practices rather
than biological changes in infectivity (i.e., ignoring potential virus transmis-
sion conditions, relaxed social distancing, and less wearing of masks).24,25

Multiple cluster cases have been reported as schools re-opened, especially
in university dormitories, or at large-scale social events. Moreover, although
the fecal-oral transmission route has not been verified, another study de-
tected active virus in stools from SARS-CoV-2-positive patients, suggesting
that the virus was able to invade through the gastrointestinal tract.26,27

Based on data from the Center for Disease Control and Prevention, the
median age of library-confirmed cases (mostly through positive results
of RT-PCR) is 51, 51% of whom are male.28 Several studies have shown
that the elderly and men have a relatively high susceptibility to SARS-
CoV-2 infection, which aligned with previous studies that also reported
similar patterns of slightly higher MERS-CoV and SARS-CoV infections
among males than females.29 Case fatality ratio (CFR) is an important
factor for evaluating the severity of COVID-19.30 Figure 1A presents
comparative features between the CFRs of SARS-CoV-2 and SARS-CoV
by the end of January 2020. These data show that the current interna-
tional fatality ratio of SARS-CoV-2 is 0.7%, considerably lower than the
previously reported CFR of 3.8%.
2 The Innovation 2, 100116, May 28, 2021
Global reports indicate that the clinical symptoms of SARS-CoV-2 patients
are variable and relatively non-specific, with approximately 50% of infected
patients appearing asymptomatic, exhibiting no obvious symptoms. More-
over, the early diagnostic window is short and may result in misdiagnosis
since it cannot be easily differentiated from a common cold based purely
on symptoms. In addition to respiratory symptoms, some patients report
digestive symptoms, such as loss of appetite, stomach discomfort or
nausea, and vomiting.6 The viral load reaches its peak in the respiratory tract
and it remains unclear if virus persistence in the gut is a driver of aggressive
damage during COVID-19 progression.31 Since the viral load increases rela-
tively linearly, even after the active phase, viral RNA are still detectable after
a patient has died.32 A persistent infectious environment can potentially
lead to dendritic cell damage or incomplete maturation and thereby impair
T cell activation, evenwith a sufficient viral load toactivate immune response.
This process consequently results in a chronic infective status, and several
studies have reported poor outcomes of SARS-CoV-2 infection due to chronic
inflammation in patients.33,34

Some COVID-19 casesmay progress quickly from a dry cough to ARDS or
even to multi-organ failure, which then requires extracorporeal membrane
oxygenation support. Laboratory examinations show several abnormalities
associated with COVID-19: slightly increased blood cell counts, lymphopenia,
increasedC-reactive protein inmost patients, aswell as erythrocyte sedimen-
tation.35,36 Recent studies have shown increased lactose dehydrogenase in
severely affected COVID-19 patients. Most infected patients with mild symp-
toms typically have a good prognosis with an approximately 14-day hospital
stay. However, elderly patients or patients with an underlying disease
frequently haveworse prognoses and require an oxygen supply. Somesevere
cases even need intensive care unit treatment and the fatality ratemay reach
www.cell.com/the-innovation
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Figure 2. The phylogenetic history of the SARS-CoV-2
strains based on 3,991 genomes Colors in the legend
represent each particular strain of SARS-CoV-2. The ge-
nomes of 3,991 SARS-CoV-2 strains were clustered into 12
classes, each of which showed similar genomic variation
pattern.
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17% among those patients.37,38 One retrospective study revealed that a
decrease in eosinophil counts was significantly associated with poor prog-
nosis in patients.39,40 To avoid the spread of COVID-19, clinical professionals
and policymakers generally pay attention to pathogenesis and the overall
infection process to establish effective measures for control of the disease.
Previous studies have identified common patterns in chest CT imaging re-
sults, even before nucleic acid testing showed positive results.41 The results
from Santamarina et al. illustrated that over 95% of COVID-19 patients pre-
sent bilateral lung opacities during CT scan, while lobular and sub-segmental
areas of consolidation were unique features compared with that of the com-
mon cold or other types of pneumonias.42 Romero et al. and Kamani et al.
examined chest CTs of infected patients in different cohorts and found mul-
tiple regions of ground-glass opacities presenting with consolidation.43,44

Moreover, evaluation by thoracic radiology has been considered an informa-
tive factor for discriminating between patients with or without COVID-19
infection. From a public health perspective, the rapid isolation of infected pa-
tients is crucial to minimize disease spread. Moreover, other CT features,
including lymphadenopathy, pleural effusions, pulmonary nodules, or even
white lung, can indicate patients with respiratory failure.45,46

The genomic variation of SARS-CoV-2 and origin tracking of
COVID-19

SARS-CoV-2 is a beta-coronavirus that belongs to the same family as the
highly pathogenic SARS-CoV and MERS-CoV, and contains the largest
genome of all known RNA viruses.47,48 Both SARS-CoV and MERS-CoV
were first documented in bats or dromedary camels and then later trans-
mitted to humans. However, possible intermediate hosts of the newly identi-
fied SARS-CoV-2 virus remain unknown.49 Coronaviruses can infect humans
primarily due to the unique structure of their spike protein and variable
numbers of open reading frames (ORFs). Sequence analysis has shown
that the SARS-CoV-2 genome could be divided into several ORFs, including
ORF1a, ORF1b, ORF3a, ORF6, ORF7a, ORF7b, and ORF8, as well as the spike
structural protein (S) viral envelope (E), membrane protein (M), and nucleo-
protein (N) protein coding regions (Figure 1B). ORF1a/ORF1b cover approx-
imately 67%of the SARS-CoV-2 genome. TheRNAgenome iswrapped by the
N protein, which thus forms a coiled tubular structure. This helical nucleo-
capsid is surrounded by the viral E protein, which is associated with other
ll
structural proteins, such as the M and S proteins. Previous studies have re-
ported that surface glycoproteins on the SARS-CoV spike protein play an
important role in binding to the host receptor via their receptor-binding do-
mains (RBDs).50 The SARS-CoV infection process is reportedly mediated
by a receptor for an angiotensin-converting enzyme (ACE2), whereas
MERS-CoV primarily utilizes a dipeptidylpeptidase 4 receptor.51,52 Alignment
of the whole genomes of these 3 coronaviruses indicated a high degree of
conservation in ORF1a and ORF1b, with only 5 nucleotides out of a total of
29,800 differing among them. SARS-CoV-2 is relatively similar to SARS-
CoV, with some notable changes in amino acid sequence that current studies
are aiming at characterize for their influence on the functionality or pathogen-
esis of SARS-CoV-2.

The phylogenetic history of the SARS-CoV-2 was reconstructed using a
maximum likelihood approach53 by Nextstrain54 based on genomes of
3,991 strains55, and the tree was shown andmanipulated in itol.56 The phylo-
genetic tree showed 12 different classes of genomic variations, including
types 19A, 19B, 20A, 20B, 20C, 20D, 20E (EU1), 20F, 20G, 20H/501Y.V2,
20I/501Y.V1, and 20J/501Y.V3 (Figure 2). Themajor shared and othermuta-
tions within the spike protein of different strains are shown in Table 1. The
clustered cases were shown to be relatively related to the geographical loca-
tion and formed a mosaic pattern of phylogenetic placement in those coun-
tries. Types 19A and 20C are primarily found in the United States and Europe,
20E is the major type of SARS-Cov-2 strain in South America, type 20B is
mainly present in Asia, while type 20H is now themajor type in Africa. Among
these, type A has been proposed as the ancestral variant of these three types
of SARS-CoV-2.57,58 Although the intermediate host in SARS-CoV-2 transmis-
sion tohumans still remains unclear, several studies have suggested awarm-
blooded vertebrate likely served as an intermediate host. The coronavirus
genome displays an inherently high recombination frequency, as well as
high mutation rates, which together facilitate their transmission among
different species.59 Korber et al. found that a mutated variant has arisen as
the most prevalent strain in the worldwide epidemic.60 This SARS-CoV-2
variant has a single amino acid conversion at residue D614G, resulting
froma single, non-synonymous A-to-G nucleotide switch from that of the first
reported SARS-CoV-2 reference genome. The proportion of newly infected
patients infected by this SARS-CoV-2 variant has rapidly increased. The cry-
oelectronmicroscopy (cryo-EM) structure of the spike protein illustrated that
The Innovation 2, 100116, May 28, 2021 3



Table 1. Amino acid mutations emerged in spike proteins of six SARS-CoV-2
strains

Clade

20A 20B 20C 20H 20I 20J

B.1.525 P.2 B.1.526 B.1.351 B.1.1.7 P.1

Shared
mutations

S: D614G S: D614G S: D614G S: D614G S: D614G S: D614G

S: E484K S: E484K S: E484K S: E484K S: E484K S: E484K

S: N501Y S: N501Y

S: L18F S: L18F

S: K417N S: K417N

S: A701V S: A701V

S: V1176F S: V1176F

Other
mutations

S: H69- S: L5F S: D80A S: A570D S: T20N

S: V70- S: T95I S:D215J S: P681H S: P26S

S: Y144- S: D253G S: L241- S: T716I S: D138Y

S: Q52R S: L242- S: S982A S: R190S

S: A67V S: A243- S: D1118H S: H655Y

S: Q677H S: T1027I

S: F888L
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the D614 residue offers a hydrogen bond to link S1 and S2 subunits. Also, the
mutational residue G614 could remove the hydrogen bond and increase
main-chain flexibility. Residue 614 of the spike protein is close to the
TMPRSS2 cleavage site. The titers in infectious virus experiments indicate
that the entry of D614 into 293T cells was enhanced by TMPRSS2. However,
G614 does not rely on TMPRSS2 to enhance 293T cell invasion. Fortunately,
G614 was just increasing the viral load in patients and there is no evidence
that this mutational residue will cause an increase in patient mortality.

Previous studies showed that SARS-CoV-2 is probably descended from a
SARS-like bat CoV, with spike and accessory proteins showing lower similar-
ity to MERS-CoV.61 Moreover, SARS-CoV-2 is a novel beta-coronavirus, and
its genome sequence shares only 79.0% and 51.8% identity with those of
SARS-CoV andMERS, respectively, whereas its identity with the SARS-like co-
ronavirus, RaTG13, originating in bats, reached 96% identity.11 Bats can serve
as a major reservoir for multiple zoonotic pathogens because of its living
environment, thermoregulation, and self-elimination of many toxins and
waste products. Thus, bats are more likely to be the reservoir of SARS-
CoV-2 than other candidate species, although the chances of direct interac-
tions between humans and bats is relatively low. Due to the low probability of
direct species jumping due to infrequent encounters, many studies have
investigated possible intermediate hosts between the reservoir (bat) and final
host (human), with civet cats proposed as a strong candidate for the interme-
diate host.62,63 A longitudinal study revealed the coexistence of highly diverse
SARS-CoV strains in a single, specific cave containing almost all of the genet-
ically different virus strains. One characteristic specific to coronaviruses is
their high frequency of RNA recombination, which provoked us to speculate
that newly emerged SARS-CoVs may arise through recombination between
SARS-CoV strains in bats from other caves. Recent studies conducted by
the Guo group indicated that the virus in the intermediate host was likely
closer to snowmink coronavirus than bat coronavirus,64 while another study
reported that snakes most likely served as intermediate infection hosts.65–67

Infection mechanism and immunological pathogenesis of COVID-19
The spike (S) glycoprotein was reported as a key factor in facilitating

SARS-CoV-2 to enter host cells (Figure 3). The S protein, a component of
the membrane comprised of the S1 and S2 subunits, gives coronaviruses
their characteristic “crown” appearance. The RBD and N-terminal domain
4 The Innovation 2, 100116, May 28, 2021
(NTD) are found in the S1 subunit, while the S2 subunit contains the fusion
peptide and heptad repeat regions, responsible for membrane fusion be-
tween virus and host cells.68,69 Furthermore, a furan cleavage site for
TMPRSS2 was reported at the boundary between S1 and S2, resulting in S
protein cleavage during the progression of viral infection. This TMPRSS2 pro-
teolytic cleavage site can also beused to distinguish SARS-CoV-2 fromSARS-
CoV. In addition, the SARS-CoV-2 RBD has a relatively higher binding affinity
than that of SARS-CoV,which can at least partially explainwhy SARS-CoV-2 is
highly contagious and exhibits increased infectivity.70 A recent study showed
that SARS-CoV-2 manipulates host splicing machinery during infection to
affect viral replication.Moreover, other studies have suggested that the notch
signaling pathway is involved in SARS-CoV-2 infection via the host protease,
furin, which can interferewith viral entry into host cells.71,72 The nucleocapsid
(N) protein is located within virions and reportedly participates in packaging
the RNA genome. The membrane (M) and envelope (E) structural proteins
are essential for viral assembly and pathogenesis. M protein interactions
lead to downregulation of mitochondrial fusion-mediated interferon-gamma
responses by host cells.73 By contrast, the E protein can interact with protein
bromodomains BRD2 and BRD4 to regulate gene transcription.

Other work has shown that S protein binding affinitywith ACE2 is 20-folder
greater than that of SARS-CoV, and that high levels of ACE2 receptor have
been associatedwith elevated risk for infection aswell as poor prognosis dur-
ing disease development.74 Unfortunately, SARS-CoV-2 infection can result in
hypoxic conditions which may ultimately lead to the onset of ARDS and/or
toxic encephalopathy in its later stage.75,76 Conti et al. revealed that SARS-
CoV-2 could consistently induce an aggressive inflammatory response re-
sulting in damage to airways, while severely affected patients died primarily
due to the effects of ARDS.77,78 In general, patients with ARDS present symp-
toms, such as difficulty breathing and low blood oxygen levels, causing them
to succumb to secondary bacterial and fungal infections. Among these
symptoms, ARDS is the major cause in 70% of COVID-19-related patient
deaths.79,80 Cell infiltration mediates pulmonary damage through excessive
secretion of proteases and reactive oxygen species, and subsequently those
inflammatory cells can directly damage lung structure, hinder macrophage
infiltration, and induce diffuse alveolar damage and pulmonary edema.

Structural analysis of the virus, potential drug therapy, and vaccine
development

Molecular docking analysis, followed by chemical stability studies, with
subsequent target point determination, is the standard bioinformatics work-
flow that contributes to innovation in drug design, overcoming drawbacks of
the traditional, more time-consuming, less predictable, drug development
process. Among these processes, molecular docking can provide advan-
tages in drug design, comparison, and evaluation of their efficacy. The
COVID-19 pandemic is largely characterized by a lack of effective therapeu-
tics, and with only a few candidates under clinical trial. Using the crystal
structure of SARS-CoV-2 proteinase in conjunction with traditional herbal
medicines in docking analyses yielded some promising terpenoid natural
products that could inhibit the viral protease activity.73,81 Another docking
study that screened clinically approved medicines with the structure of
SARS-CoV-2 Mpro suggested that lopinavir, ritonavir, and nelfinavir, and other
drugs that were shown to be successful as antiviral treatments for HIV, can
act as potential candidates for drug therapy of COVID-19.82,83

Protein-protein binding assays showed that ACE2 serves as the cellular
binding receptor, of which a 17 amino acid of N-terminal signal sequence
and 22 hydrophobic transmembrane sequence near the C terminus were
found to be essential for the interaction.Moreover, ACE2 also contains a cyto-
plasmic domain with potential glycosylation sites that could mediate the
initial host cell binding interaction.84 To date, seven types of animal- and hu-
man-infecting coronaviruses have been reported, four ofwhich only infect the
upper respiratory tract and producemild symptoms. However, three corona-
viruses have been shown to infect and replicate in the lower respiratory tract
of humans, causing pneumonia, ARD, and death.85 Compared with SARS-
CoV, SARS-CoV-2 can progress to critical or ARD within a relatively short
period, i.e., consistently less than 10 days after symptom onset. In addition,
www.cell.com/the-innovation

http://www.cell.com/thennovation


Figure 3. The mechanism of COVID-19 infection and the amplification process of SARS-CoV-2 as well as the response of the human immune system to the virus
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SARS-CoV-2 exhibits similar characteristics in its host cell infection process
as that of SARS-CoV in that they can both rely on the spike surface protein, a
multifunctional molecule comprised of S1 and S2 subunits. The S1 subunit
mediates host cell receptor binding, while the S2 subunit subsequently medi-
ates viral fusion with the host cell. The structural conformation of the spike
protein differs between the prefusion and post-fusion states, withmembrane
fusion serving as a key process in transitioning between the pre- and post-
fusion conformations.

The S1 subunits are comprised of an NTD and RBD, through binding,
which forms a complex of spike protein and human ACE2 (Figure 1C) for
recognition of distinct host receptors before viral attachment. These two do-
mains are connected by disulfide bonds at the beta-c2 and -c4 sites between
five strands that form the first part, while the other one stabilizes another
small flexible loop. The second S1 sub-domain is distributed on the protein
surface and functions in the prefusion recognition process. Formation of
ll
the prefusion complex between SARS-CoV-2 S1 and human ACE2 NTD is
initially driven by van der Waals forces, while H bond/salt bridge interactions
drive further interactions. The SARS-CoV-2-CTD spans 195 residues, from
T333 to P527, within which residues G466 to G502 formH bondswith amino
acids of hACE2.86,87 The interface was shown to contain three interaction re-
gions, with a bridge forming between the alpha-1 helix and sites between the
alpha-2 helix and loop 3–4. High-resolution imaging by cryo-EM further sup-
ported the formation of a stable prefusion complex.88,89

By contrast, the S2 subunit contains five functional domains, including a
fusion peptide, heptad repeat N- and C-terminal regions (HR-N and HR-C),
a transmembrane domain (TM), and a cytoplasmic domain.90 The S2 subunit
facilitates the viral fusion process via interaction with TMPRSS2 protein on
the host cell surface. X-ray crystallography of the S2 subunit revealed a
rod-like 6-HB fusion core that forms a deep hydrophobic groove adjacent
to the HR1 domain, allowing HR2 binding to connect them.91 Structural
The Innovation 2, 100116, May 28, 2021 5



Figure 4. Timeline of COVID-19 disease and the progress of vaccine development

Review
T
he

In
no

va
ti
on
and biophysical evidence has together illustrated that the considerably higher
infectivity of SARS-CoV-2 is due to the 20-fold higher affinity of S protein bind-
ing to human ACE2 than that of the SARS-CoV spike protein.

Vaccine development has been widely regarded as the most effective
approach for prevention and management of COVID-19. The past year has
seen substantial progress in the research and development of new coronavi-
rus vaccines through the joint global efforts ofmedical and scientific research
institutions and businesses, resulting in vaccine deployment in many coun-
tries and regions. The timeline of progression of SARS-CoV-2 vaccine devel-
opment is shown in Figure 4. The WHO COVID-19 vaccine progress draft
shows that 173 prospective vaccines for COVID-19 are currently in the pre-
clinical stage as of January 2021,92,93 while 64 candidate vaccines have
entered clinical trials, 22 of which are in phase II/III or phase III clinical trials.
The traditional strategy for development of coronavirus vaccines relies on vi-
rus inactivation, virus attenuation, and recombinant protein methods. In
recent years, new technology platforms, such as viral vector vaccines and nu-
cleic acid vaccines (mRNAvaccines andDNAvaccines), have openedup new
avenues for vaccine development.94

Although nucleic acid vaccines can be produced quickly, this new type of
vaccine requires relatively stringent transportation and storage conditions to
ensure vaccine stability. In contrast, the preparation method for inactivated
vaccines is well established and reliable, but the resultant vaccines provide
relatively weak immunity. The use of recombinant protein technology is
mature and considered safer than other vaccines, with low possibility of
causing adverse reactions, but the immune response may also be insuffi-
ciently strong to control the virus. To date, three vaccines have been autho-
rized in the United States, two of which are mRNA vaccines. On November
10, 2020, Pfizer and its partner BioNTech announced that their COVID-10 vac-
cine candidate BNT162b2 exhibited greater than 90% effectiveness among
study participants.95 The phase III clinical trial of BNT162b2 included a cohort
of 43,538 participants, approximately 42% of which were recruited interna-
tionally, while 30% were US participants. Another American pharmaceutical
company, Moderna, also successfully deployed an mRNA vaccine against
SARS-CoV-2. Clinical safety trials showed that vaccinated people maintained
high levels of antibodies for as long as 119 days.96

Other countries have focused on development of different types of vac-
cines. The Sinopharm Group announced approval of clinical trials for its vac-
cine based on inactivated virus. Both Sinopharm Group overseas phase III
clinical studies were conducted in cohorts of more than 60,000 global volun-
teers and included greater than 6months of observation data, which showed
that antibodies aremaintained at high levels, resulting in a 79.34% protection
rate.97,98 On November 23, 2020, AstraZeneca announced that its AZD1222
vaccine, produced in collaboration with Oxford University, could provide an
average effectiveness of 70% against SARS-CoV-2.99 On January 29, 2021,
Johnson & Johnson announced that its single-dose new coronavirus vaccine
(JNJ-78436735) in the phase III clinical study had reached all primary clinical
6 The Innovation 2, 100116, May 28, 2021
endpoints andplanned to submit an emergency use authorization application
to the FDA. At 28 days following a single-dose vaccination, this vaccine had
an overall effective rate of 66% in the prevention of moderate and severe
COVID-19. Overall, enough vaccines for most populations would be neces-
sary to decrease infection cases and stop the outbreak of COVID-19.100

Unfortunately, vaccine efficacy can be limited by the emergence of novel
strains in human populations. In particular, the 20I (B.1.1.7) lineage from the
United Kingdom, the South African 20H (B.1.351) lineage, and the Brazilian
20J (P.1) lineage (Figure 2) have spread globally due to their higher infectivity.
Whether the existing vaccines remain effective against the newer virus vari-
ants has become a problem of great concern to both scientists and the gen-
eral public, and several studies have (and continue to) explored the threat to
vaccine protection posed by these variants. For example, the Pfizer
BNT162b2 vaccine exhibited 95% efficacy against the original SARS-CoV-2
strain.101 However, recent in vitro studies investigating the efficacy of serum
of BNT162b2-vaccinated volunteers showed roughly equivalent neutraliza-
tion of recombinant viruses expressing the P.1- and B.1.1.7 spikes, and a
two-thirds reduction in efficacy for neutralization of those bearing the
B.1.351 spike.102 Similar results were obtained in an in vitro study of theMod-
erna mRNA-1273 vaccine in which researchers constructed a pseudovirus
expressing complete spike proteins of the B.1.1.7 or B.1.351 variants. Im-
mune serum was obtained from eight subjects from a phase I clinical trial
and the degree of viral neutralization by these sera was determined. While
the immune sera showed no significant neutralization of the B.1.1.7 variant,
the neutralized B.1.351mutant titer was reduced by 6.4-fold, but remained at
a high level (1/290).

TheNovavaxNVX-CoV2733 vaccine is a recombinant protein vaccine pro-
duced using proprietary recombinant nanoparticles. Interim results of a
phase III trial carried out in the UKwithmore than 15,000 volunteers aged be-
tween 18 and 84 years, including 27% over 65 years old, revealed an 85.6%
efficacy of the vaccine against the B.1.1.7 variant, compared with 95.6%
against the original strain. However, a phase II trial of NVX-CoV2733 in South
Africa with more than 4,400 participants showed an overall efficacy of 49.4%
(95% confidence interval [CI]: 6.1–72.8). The significant drop in the efficacy
compared with the UK trial was due to the B.1.351 variant, carrying an
E484K conversion, which is now predominant in South Africa. Sequencing
of virus isolated from 27 South African SARS-CoV-2 cases indicated that
93% involved the B.1.351 variant.103 It warrants mention that this study
included 240 volunteers who were HIV-positive, and when this group was
excluded from the analysis the protective efficacy was 60% (95% CI: 19.9–
80.1).104 Recently, a study was conducted to investigate neutralizing activity
against the B.1.1.7 and B.1.351 variants by the inactivated virus vaccines
BBIBP-CorV (Sinopharm) and CoronaVac (Sinovac) by comparing the serum
neutralization titer of 50 patients with two doses of either BBIBP-CorV or
CoronaVac vaccine with that of sera from 34 convalescents collected at
5 months after COVID-19 infection with COVID-19. The results suggested
www.cell.com/the-innovation
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Table 2. Current progress in vaccine development

Strategy Developer Protective effect Cross-protection effect

Inactivated virus (PiCoVacc) Sinovac, with National Institute for
Communicable Disease Control
and Prevention

a protective effect of 67% in Chile
(real-world data)

slightly reduced effectiveness against
B.1.1.7 spike-expressing recombinant
virus and 3.3-fold reduction against
B.1.351 spike-expressing recombinant
virus (in vitro)

Inactivated virus Wuhan Institute of Biological Products,
Sinopharm, with Wuhan Institute of
Virology, Chinese Academy of Sciences

the positive conversion rate of
neutralizing antibody was 99.06%,
and the protective effect was
72.51%

–

Inactivated virus (BBIBP-CorV) Beijing Institute of Biological Products,
Sinopharm, with Institute of Viral
Disease Control and Prevention

the positive conversion rate of
neutralizing antibody was 99.52%,
and the protective effect
was 79.34%

roughly equivalent against B.1.1.7
spike-expressing recombinant virus,
but 2.5-fold lower efficacy against
virus expressing the B.1.351 spike
(in vitro)

Virus vector (Ad5) CanSino Biological Inc. with Beijing
Institute of Biotechnology

a protective efficacy against all
symptoms of 68.83% (phase III
clinical trial)

–

Virus vector (ChAdOx1) University of Oxford, with AstraZeneca the protective effect was 76%
(phase III clinical trial), although
some thrombotic events occurred;
no definitive causal relationship
between vaccine and thrombosis
was found

–

LNP-mRNA (mRNA-1273) Moderna, with National Institute of
Allergy and Infectious Diseases

94.1% effective in phase III trial
(95% CI: 89.3–96.8)

roughly equivalent against B.1.1.7
spike-expressing recombinant
viruses, but 6.4-fold lower against
B.1.351 spike-expressing virus

LNP-mRNA (BNT162b2) BioNTech, with Fosun Pharma
and Pfizer

95% in a clinical trial involving
~44,000 participants; the effective
rate for preventing severe illness
is 100%

roughly equivalent against P.1 spike-
and B.1.1.7 spike-expressing
recombinant viruses, but ~2/3
reduction in efficacy against
B.1.351 spike-expressing virus
(in vitro study)

Protein subunit (NVX-CoV2733) Novavax 95.6% against the original strain
(phase III trial in the UK)

85.6% effective against the B.1.1.7
variant (phase III trial in the UK); the
protective efficacy was 60% (95% CI:
19.9–80.1) with 93% of cases involving
the B.1.351 variant (phase II trial in
South Africa)

Virus-vectored (Ad26) Janssen Pharmaceutical Company 66.9% effective (95% CI: 59.0–73.4) –

Protein subunit (ZF2001) Anhui Zhifei Longcom
Biopharmaceutical, with Institute
of Microbiology, Chinese Academy
of Sciences

the positive conversion rate was
96.6% in the phase II clinical trial,
and the neutralizing antibody titer
was 102.5

geometric mean titer was 106.1
(95% CI: 75.0–150.1) against the
original virus strain and 66.6 (95%
CI: 51.0–86.9) against the B.1.351
variant
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that the B.1.1.7 variant showed little resistance to neutralization by either the
convalescent or vaccinated sera, whereas B.1.351 showed 2-fold higher
resistance to convalescent serum and 2.5- to 3.3-fold higher resistance to
vaccinated serum than the original strains.105 The current progress in main
vaccine development is summarized in Table 2. Comparison details of the
vaccines are provided in Table S1.

To better control the epidemic and reduce immune escape caused by vi-
rus mutations, Moderna developed the mRNA-1273.351 vaccine targeting
the B.1.351 S protein. Moderna then developed a multivalent vaccine,
mRNA-1273.211, which combined mRNA-1273 targeting the original strain
and mRNA-1273.351 targeting B.1.351, to thus provide a broader range of
protection. In vivo studies in a murine model indicated that vaccination
with mRNA-1273.351 could increase the neutralizing antibody against the
B.1.351 lineage, and that this vaccine thus far showed the highest efficacy
for broad, cross-variant neutralization.

DISCUSSION
COVID-19 has spread globally to over 200 countries with more than 40

million confirmed cases and one million deaths as of November 1, 2020.5
ll
The total cases of COVID-19 are expected to be higher than reported due
to the difficulty in identifying false-negative mild and asymptomatic cases.
Moreover, accurate and reliable clinical diagnosis requires experienced pro-
fessionals, while the use of symptom-suppressivemedications before exam-
ination can also confound diagnosis. Inmost countries, an increasing trend in
confirmed cases during the early stages of the outbreak is followed by an
exponential growth trajectory before the epidemic peaks. Therefore, it is diffi-
cult to compare the rates of infection and fatality between countries due to
differences in the stages of outbreak, highly variable scopes of population
testing, differences in the burden on their respective health care systems,
as well as the general health status of the population, and differences in
average population demographics.106 Moreover, the elderly and people
with underlying chronic disease were more susceptible to infection by
SARS-CoV-2 at the beginning of the outbreak.

The most common symptoms of early infection include mild fever,
dry cough, and fatigue, while nasal congestion, diarrhea, and sore throat
are rarely reported. However, some people close to COVID-19 patients,
or in family cluster cases, initially showed no fever or respiratory symp-
toms but exhibited non-respiratory or cardiac-associated symptoms,
The Innovation 2, 100116, May 28, 2021 7
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such as palpitation, arrhythmia, and cardiac shock accompanied by res-
piratory symptoms, dyspnea, or, occasionally, in the worst cases,
ARD.107,108 Although asymptomatic infection can be difficult to define
in the early stages of infection, many patients eventually develop pneu-
monia; therefore, the clinical presentations range from asymptomatic to
fatal multiple organ failures.

Binding of SARS-CoV-2 to the host ACE2 receptor activates fusionwith the
host cell and subsequent viral replication, leading to pyroptosis in the host cell
and release of the virus. This process causes damage-associated molecular
patterns, which are recognized by neighboring epithelial cells, alveolar epithe-
lial cells, and vascular endothelial cells, consequently triggering a pro-inflam-
matory response. The inflammatory signal cascade entails cytokine release,
which in turn recruitsmonocytes,macrophages, andT cells to those infection
sites. Furthermore, these cytokine bursts can generate a pro-inflammatory
feedback loop, resulting in a cytokine storm, eventually damaging pulmonary
structure and function.109 In addition, ACE2 regulates the renin-angiotensin
system, which could be downregulated as viral load increases, thereby influ-
encing fluid and electrolyte levels, and enhancing inflammatory response,
vascular permeability, and infiltration of lymphocytes into the airway. Pulmo-
nary recruitment of circulating immune cells and lymphocyte infiltration ulti-
mately results in peripheral lymphopenia.

In summary, COVID-19 represents an urgent, worldwide health crisis. Sys-
tematic and rigorous review of genomic variations in SARS-CoV-2 and origin
tracing of COVID-19 will benefit the prevention, diagnosis, and therapeutic
strategies for patients suffering from COVID-19.
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