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2Campus de Ciències de la Salut, Edifici Biomedicina I, Department of Basic Medical Sciences, Universitat de Lleida-IRBLleida, 25198, Lleida, Spain
3Department of Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden

Keywords

Altitudinal and latitudinal gradient, Bufo

calamita, genetic diversity, microsatellite

markers.

Correspondence

Joan Fibla, Campus de Ciències de la Salut,
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Abstract

Across altitudinal and latitudinal gradients, the proportion of suitable habitats

varies, influencing the individual dispersal that ultimately can produce differen-

tiation among populations. The natterjack toad (Bufo calamita) is distributed

across a wide geographic range that qualifies the species as interesting for a geo-

graphic analysis of its genetic variability. Five populations of B. calamita in the

Sierra de Gredos (Spain) were studied in an altitudinal gradient ranging from

750 to 2270 m using microsatellite markers. In addition, we analyzed the latitu-

dinal genetic variation in B. calamita within a global European distribution

using genetic diversity parameters (mean number of alleles per locus [Ma] and

expected heterozygosity [HE]) obtained from our results and those published in

the literature. The low level of genetic differentiation found between popula-

tions of B. calamita (Fst ranging from 0.0115 to 0.1018) and the decreases in

genetic diversity with altitude (Ma from 13.6 to 8.3, HE from 0.82 to 0.74) can

be interpreted by the combined effects of discontinuous habitat, produced

mainly by the high slopes barriers and geographic distance. In the latitudinal

gradient, genetic diversity decreases from south to north as a consequence of

the colonization of the species from the Pleistocene refugium. We conclude that

the genetic variability in B. calamita along its wide altitudinal and latitudinal

geographic distribution mainly reflects the colonization history of the species

after the last glacial period.

Introduction

Genetic variation is required for the evolution of popula-

tions in response to environmental changes (Reed and

Frankham 2003). Environmental factors such as altitude,

topography, and glacial history may influence genetic vari-

ation. Across altitudinal and latitudinal gradients, the pro-

portion of suitable habitats varies, influencing the

individual dispersal that ultimately can produce differentia-

tion among populations (Palo et al. 2003; Stéphanie et al.

2003). In fact, different selective pressures acting on local

environments across latitudinal and altitudinal gradients

added to a subjacent genetic diversity may derive from a

local adaptation (Slatkin 1987; Palo et al. 2003; Bonin

2006; Rogell et al. 2009). However, the historical events

experienced by a population can also drive local differenti-

ation. In species with a wide geographic distribution and a

glacial colonization history, it can be difficult to discrimi-

nate between genetic diversity that results from postglacial

colonization patterns and genetic differentiation that results

from habitat influences (e.g., local selective pressures,

recent habitat fragmentation; Allentoft et al. 2009). As

these two processes act at very different spatial and tempo-

ral scales, they can have different effects on genetic diver-

sity and fitness (Swindell and Bouzat 2006)

In amphibians, metapopulation structures generally

have a high gene flow that can preclude complete differ-

entiation between populations over large geographic

distances (Brede and Beebee 2004). In fact, the migratory

range of species determines its capacity to maintain the

genetic cohesion within local populations that favors the

persistence of the species in its distribution range (Smith

and Green 2005). Thus, the dispersal range, the popula-

tion size, and the genetic relationships between individuals
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are essential to understanding the evolution of a species

(Petit et al. 2001). In this sense, the study of genetic

variability is important to determine the levels of genetic

differentiation among populations at both geographic and

altitudinal distance scales. Genetic differentiation between

populations was positively correlated with geographic

distance in several amphibian studies (e.g., in Rana temp-

oraria, Palo et al. 2004; in Pelophylax esculentus, Arioli

et al. 2010) at a large scale. The impact of altitudinal

gradient on dispersal and gene flow seems to differ

between species. For example, genetic variation was nega-

tively correlated with altitude in the frog Rana luteiventris

(Funk et al. 2005) and in the salamander Ambystoma

macrodactulym (Giordano et al. 2007), whereas no corre-

lation was detected in Rana chensinensis (Zhan et al.

2009). Genetic differentiation by geographic (isolation by

distance) or altitudinal distance (a combination of isola-

tion by distance and isolation by geographic barriers)

evolves over time and arises from the balance of local

genetic drift within populations and dispersal of individu-

als between populations.

The natterjack toad (Bufo calamita) is distributed

across a wide geographic range (Sinsch 2008) that quali-

fies the species as interesting for a geographic analysis of

its genetic variability. Previous studies of geographic

genetic differentiation using polymorphic microsatellite

loci in B. calamita in lowland populations (at 0–400 m)

of the southern Iberian Peninsula found no genetic differ-

entiation between populations separated by more than

100 km (Marangoni 2006). Little population differentia-

tion and a lack of isolation by distance pattern were also

found in populations in several breeding sites with differ-

ent salinity levels in southern Spain (Gomez-Mestre and

Tejedo 2004). However, species distribution studies cover-

ing a broad latitudinal range show a negative correlation

between genetic variation and distance from the Iberian

Peninsula, which is the Pleistocene glacial refuge from

which all extant populations are derived (Beebee and

Rowe 2000; Rowe et al. 2006). In contrast, the altitudinal

effect in B. calamita genetic variability has not yet been

assessed.

This study analyses the impact of both altitude and

geographic distance, in an effort to expand what is known

about B. calamita genetic variability. We used expected

heterozygosity and allelic richness as components of

genetic diversity. Some authors consider that allelic rich-

ness is an important measure of genetic diversity and a

relevance key in conservation programs (Petit et al. 1998;

Simianer 2005; Foulley and Ollivier 2006). Allelic diversity

is particularly important from a long-term perspective

because the limit of selection response is mainly deter-

mined by the initial number of alleles regardless of the

allelic frequencies (Hill and Rasbash 1986) and because it

reflects better past fluctuations in population size. As the

maximum altitudinal range of natterjacks distribution is

in the mountains of the Iberian Peninsula (at 2400 m in

the Sierra de Gredos and 2540 m in the Sierra Nevada;

Sinsch 2008) we chose five populations inhabiting the

Sierra de Gredos ranges from 750 to 2270 m. The study

aimed to (i) characterize the genetic diversity of each

population, (ii) analyze the genetic differences among

populations in an altitudinal gradient, (iii) analyze

whether mountains constitute natural barrier for B. cala-

mita affecting genetic diversity among populations across

an altitudinal gradient, and (iv) evaluate the consequences

of mountains as barriers across European distribution,

studying its latitudinal genetic variation using genetic

diversity parameters obtained from published studies.

Material and Methods

Study sites and population sampling

A total of five populations of natterjack toads (B. calamita)

(Fig. 1) were studied on the north side of the Sierra de

Gredos (Central Iberian System, Spain), following the

altitudinal gradient of the mountains: Navaluenga,

Nav750; La Dehesa del Barraco, Deh920; La Cedrera,

LaC1470; Cavadores, Cav2100; and Navasomera, Nas2300

(Supporting Table S1) (Fig. 2). The climate is Mediterra-

nean with an average mean temperatures range from 6 to

12°C, with a range between 0 and 2°C during the coldest

months (December, January, and February) and 20–22°C
during the hottest months (July and August) depending

on the altitude (Ninyerola et al. 2005). Precipitation

ranges from 1000 to >2000 mm (Palacios et al. 2003).

The breeding sites of B. calamita in the Sierra de Gredos

Figure 1. A detailed photography of a male individual of the

natterjack toad Bufo calamita, in the studied zone of Sierra de Gredos

(Spain).
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are humid meadows and ponds at lower sites, and glacial

lagoons at higher altitudes.

Toads were captured at the local breeding ponds dur-

ing the spring reproduction period. They were released in

situ after sex determination, snout-vent length (SVL)

measurement, and toe-clipping (third toe of the right

hind limb). The toes were stored in 70% ethanol at room

temperate. The DNA was extracted from the first pha-

lange of a toe clipped using the Chelex100 protocol

described in (Walsh et al. 1991). The other two phalanges

were used for skeletochronological analysis that had been

the aim of another study (Oromi et al. 2012).

Microsatellite analysis

Genetic analysis was based on the study of eight microsat-

ellite loci previously described by Rowe et al. (1997)

(Bcall1, Bcall2, Bcall3, Bcall4, Bcall5, Bcall6, Bcall7)
and Rowe et al. (2000) (Bcall10). Following the method-

ology used by (Gomez-Mestre and Tejedo 2004) genotypes

at microsatellite polymorphism were determined by

polymerase chain reaction (PCR) amplification using fluo-

rescence labeled primers. Briefly, the oligo forward of each

set of primers was stained by one of the four FAM, VIC,

NED, and PET fluorochromes. PCR for each set of prim-

ers contained: 2.5 mmol/L MgCl2, 0.1 mmol/L BSA,

0.25 mmol/L dNTPs, Taq DNA polymerase 1 U, forward

and reverse primers 0.25 lmol/L each, and DNA 2 lL (50

–150 ng) in 20 lL of PCR buffer 19. The PCR amplifica-

tion was performed by first denaturing at 94°C for 5 min,

followed by 40 cycles of 1 min at 94°C, 1 min at 62°C,
and 1 min at 72°C. A final extension step was carried out

by incubating samples during 10 min at 72°C. Amplified

products were resolved by capillary gel electrophoresis on

a Genetic Analyser 3130 (Applied Biosystems, Foster City,

CA) using POP-7 polymer. Allele sizes were determined

using GeneScan-500 LIZ standard marker (ABI-PRISM,

Applied Biosystems). Genotype calls were obtained using

GeneMapper Software v. 4.0.

Data analysis

Allele and genotype frequencies, number of alleles per

locus, mean number of alleles per locus (Ma), and

expected (HE) and observed (Ho) heterozygosity were esti-

mated using the Microsatellite Toolkit (Park 2001). Allelic

richness (AR) was obtained for each population using

FSTAT v. 2.9.3 (Goudet 2001). Ma, AR, and HE were used

as indicators of genetic diversity. Although AR reflects

better past fluctuations than Ma (Hill and Rasbash 1986),

both genetic diversity parameters were used in order to

compare our results with those published in the literature

in which Ma has been used as a measure of diversity. The

influence of altitude on the HE, AR, and Ma was esti-

mated by fitting data to several simple regression models.

We chose the double reciprocal model for HE, S-curve

model for AR, and reciprocal-X model for Ma predictions

because they provided the best fit, defined as maximum

R². The analysis was performed using the statistical pack-

age STATGRAPHICS Plus 5.0. Genotype frequencies were

tested for conformity to Hardy–Weinberg equilibrium by

GENEPOP v.3.4 (Raymond and Rousset 1995) using the

Markov chain method with 10,000 permutations. This

package was also used to estimate the fixation indices

Fst and Rst and to evaluate marker-to-marker genotypic

disequilibrium adjusting for Bonferroni correction. As all

markers used are in different chromosomes (Rowe et al.

1997, 2000), the genotypic linkage equilibrium was tested

as a measure of locus association that could inform us

about population structure.

The analysis of genetic structure was made with an ini-

tial comparison within and among the three sampling

regions (Altitudinal groups: (i) less than 1000 m: Nav750

and Deh920, (ii) between 1000 and 2000 m: LaC1470,

and (iii) more than 2000 m: Cav2100 and Nas2300). The

data were analyzed with a molecular analysis of variance

(nested AMOVA) using ARLEQUIN v. 3.1 (Excoffier

et al. 2006). The geographic and altitudinal pattern of

genetic variation was analyzed using a partial Mantel test

(10,000 permutations) carried out between genetic

distance matrices (based on Fst) and geographic and

altitudinal distance matrices using the PASSAGE v.2. soft-

ware (Rosenberg and Anderson 2011). A third constant

matrix was used in both tests (geographic matrix for Fst
and altitude correlation; altitude matrix for Fst and geo-

graphic correlation) for the accurate estimation of Mantel

test statistics.

Latitudinal genetic variation

In addition to data obtained in this study, B. calamita

genetic diversity data were compiled from literature

(Supporting Table S2). In total, 57 populations from dif-

ferent localities of natterjack toad distribution were

included in the data analysis. The mean number of

alleles per locus (Ma, n = 34) and the expected hetero-

zygosity (HE, n = 57) were used as estimators of genetic

diversity. The influence of latitude on the Ma and on

the HE was estimated by fitting data in two-simple

regression models: the lineal model and the exponential

model, which represent two predefined hypothesis. The

lineal model is expected when genetic diversity decrease

constantly along the latitudinal gradient following an

isolation by distance pattern. However, the exponential

model is expected in the presence of barriers bursting

the continuous decrease in genetic diversity from the

2020 ª 2012 The Authors. Published by Blackwell Publishing Ltd.
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glacial refuge across the latitudinal gradient. We also

analyzed the data separately between the populations

from Spain (glacial refuge) and those past the Pyrenees

(post glacial colonization) in order to evaluate the

expansion of the species. The analysis was performed

using the statistical package STATGRAPHICS Plus 5.0.

Results

Population genetic diversity

The eight microsatellite markers used were polymorphic

in all populations and the number of alleles per locus

varied from 14 for Bcall7 to 36 for Bcall4. We identi-

fied a total of 174 different alleles; 32 were present in all

populations (common alleles) and 72 were observed in

unique populations (private alleles). HE ranged from

0.44 at Cav2100 to 0.93 at Nav750 (Supporting Table

S3), very close to Ho values. Deviation from Hardy–
Weinberg equilibrium was observed for Bcall3 in the

Cav2100 population, caused by heterozygote deficiency

that could be explained by nonamplifying alleles. After

Bonferroni correction for multiple tests, a significant

deviation from genotypic linkage equilibrium was found

in six of the total 139 locus pair tested (data not

shown). The low deviation from linkage equilibrium

observed could be interpreted as a relaxed population

structure.

Altitude correlated significantly and inversely with the

parameters of genetic diversity, explaining the 85.02% of

the variance in percentage of HE (HE = 1/[1.44276 +
161.275/Altitude]; r = �0.922, P = 0.026, Fig. 3a), the

77.01% of the variance in AR (AR = exp [1.95193 +

374.979/Altitude]; r = 0.877, P = 0.05; Fig. 3b), and the

92.55% of the variance in Ma (Ma = 6.70675 + 5278.81/

Altitude; r = 0.96, P = 0.008; Fig. 3c).

Differences between populations, measured by Fst and

Rst were low, ranging from 0.0115 to 0.1018 and 0.0062

to 0.1148, respectively. The partial Mantel test used to

evaluate the correlation of Fst matrices with geographic

and altitudinal distance matrices, showed significant cor-

relations of Fst (r = 0.75, t = 2.48, Ptwo-tailed = 0.013) with

geographic distance according to the hypothesis of isola-

tion by distance. In addition, Fst (r = �0.65, t = �2.22,

Ptwo-tailed = 0.025) correlated inversely with altitude. In

contrast, the results from AMOVA indicated a lack of

population structure, with a 94.95% of overall variation

within populations (Table 1).

Latitudinal genetic variation

In the 57 European populations distributed in a south–
north latitudinal gradient, HE correlated inversely with

Figure 2. Gredos mountain map of elevation including the location of the five populations considered in this study.

Table 1. Molecular analysis of variance (AMOVA) at Sierra de Gredos

populations.

Source df SS Varcomp % Var

Among groups 2 23.66 0.053 2.69

Among populations

within groups

2 10.58 0.046 2.35

Within populations 369 693.90 1.880 94.96

Total 373 728.15 1.980 100

df, degree freedom; SS, sum of squares; Varcomp, variance compo-

nents; % Var, proportion of total variance attributable to each

source.

ª 2012 The Authors. Published by Blackwell Publishing Ltd. 2021

N. Oromi et al. Genetic Variability in Bufo calamita



latitude, explaining 80.46% of the variance in percentage

(regression model: HE = 1.834 � 0.028 9 latitude; r =
�0.90, P < 0.00001; Fig. 4a). Ma also showed an inversely

significant relationship with latitude, explaining 81.35%

of the variance (regression model: Ma = exp [5.789

� 0.089 9 latitude]; r = �0.928, P < 0.00001; Fig. 4b).

The separate analysis considering the Iberian Peninsula as

the glacial refuge showed that HE and Ma did not vary sig-

nificantly with the latitude in the Iberian populations (HE,

lineal regression model: r = 0.02, P = 0.92, Fig. 5a; Ma

exponential regression model: r = �0.16, P = 0.53,

Fig. 5b), whereas these parameters correlated inversely

across the latitudinal gradient due to the barrier of the

Pyrenees to the north (HE regression model: HE = exp

[3.329 � 0.083 9 latitude], r = �0.74, P < 0.0001, R2 =
52.74%, Fig. 5a; Ma regression model: Ma = exp

[4.476 � 0.064 9 latitude], r = �0.56, P = 0.017, R2 =
32.24%, Fig. 5b). Our results emphasize a decrease in

genetic diversity at the glacial barrier to north latitudinal

gradient in the European B. calamita distribution and a

wide variation in genetic diversity in the Iberian Peninsula.

Discussion

Amphibians are considered particularly vulnerable to

environmental changes as a consequence of their low

capacity for dispersal (Blaustein et al. 1994). Genetic

studies in amphibians have been mainly focused in locally

distributed populations with a high risk of isolation, espe-

cially those living in fragmented habitats, which can be at

risk of extinction from demographic, environmental, and

genetic stochasticity (reviewed in Allentoft and O’Brien

2010). Nevertheless, the effects of environmental factors

such as altitude and latitude on genetic differentiation

can only be addressed by analyzing data from species with

a wide geographic range of distribution, as is the case of

B. calamita. Our study is the first to analyze the genetic

variation in B. calamita across altitudinal ranges. First we

demonstrated how altitude constitutes a barrier decreas-

ing genetic diversity from low altitudes to high altitudes,

and second how the Pyrenees constituted a natural barrier

across an European latitudinal gradient, demonstrating

the relevance of mountain systems as barriers for amphib-

ian populations.

Altitudinal variation and population genetic
diversity

Our results show that altitude is inversely correlated with

genetic diversity of B. calamita populations in the Sierra

de Gredos. Geographic isolation at high altitudes and a

low population size could explain these results. Although

we are not able to estimate population size, a low popula-

tion size in high altitudes of Sierra de Gredos can be

assumed because we observe both: a low number of indi-

viduals during the activity period and a low number of

spawns in the breeding sites. Despite the decrease in

genetic diversity found in highland populations of the

Sierra de Gredos, HE and Ma values are close to those

observed in lowland populations of the south Iberian

Peninsula (Gomez-Mestre and Tejedo 2004; Marangoni

2006). Therefore, these results emphasized the high

variability in genetic diversity in the Iberian Peninsula

probably due to the landscape heterogeneity.

Fst and geographic distance showed significant correla-

tions according to the isolation by distance pattern.

A significant correlation was also found between Fst and

Figure 3. Genetic diversity and altitude relationship. Mean expected

heterozygosity (a) and allelic richness (b) for each population. Each

point represents a population sample. Confidence limit (95%) is

shown in the figure.
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altitude. We noted that, in addition to geographic dis-

tance, the altitude distance analyzed in our study included

some intrinsic variables, such as temperature, slope, and

forest cover. Therefore, we suggest that the levels of

genetic differentiation among populations of B. calamita

in the altitudinal range of Sierra de Gredos are due to the

combined effects of discontinuous habitat, produced

mainly by the high slopes barriers, and geographic dis-

tance. As Marangoni (2006) did not find differences

between populations in a geographic distance of more

than 100 km in a lowland area, we can consider the dif-

ferences found in our study to be mainly contributed by

the altitudinal gradient.

In despite of the significant variation in Fst in the geo-

graphic and altitudinal gradient, the low Fst – statistics

and the results of AMOVA indicated that there has been

significant gene flow between all populations over histori-

cal time (historical perspectives). The landscape features

seem to be adequate for gene flow, influencing genetic

variations within and between populations (Stéphanie

et al. 2003). Therefore, the effects of altitude in the genetic

population structure seem to be minor, as suggested by

the high gene flow observed between populations in differ-

ent altitudes which can induce an incomplete separation

of populations over large geographic (Brede and Beebee

2004) and altitudinal (this study) distances. The correlations

found between genetic distance and altitudinal and

geographic distance are probably due to the habitat dis-

continuities (especially high slopes) that generate less

interconnection among populations. In fact, connectivity

of local populations by dispersers is great in the Iberian

Peninsula indicating a considerably large metapopulation

system (Sinsch et al. 2012). The differentiation among

natterjack toad populations is only remarkable in frag-

mented habitats where populations are isolated (Allentoft

et al. 2009; Rogell et al. 2010).

Latitudinal genetic differentiation

Genetic diversity of Sierra de Gredos populations differs

from that of other European regions. Following the

genetic characteristics found in the Iberian Peninsula (Go-

mez-Mestre and Tejedo 2004; Marangoni 2006), Gredos

populations had higher allelic diversity than the same spe-

cies in Europe (Rowe et al. 1998; Beebee and Rowe 2000;

Rowe et al. 2006). Whereas in Gredos populations the Ma

ranged between 8.38 and 13.63, populations in northern

Europe ranged between 1.63 and 5.13 (Beebee and Rowe

2000; Frantz et al. 2009). It was notable that genetic diver-

sity in the extremes of species distribution is low, for

example, Ma in Poland was 2, despite the fact that popula-

tions in these areas are numerous and large (Beebee and

Rowe 2000). Populations are more isolated in the periph-

Figure 4. Genetic diversity and latitude relationship. Mean expected

heterozygosity (a) and allelic richness (b) for each population. Each

point represents a population of this study and compiled from

literature (see Supporting Table S2 for details).

Figure 5. Genetic diversity and latitude relationship. The separately

analysis considering the Iberian Peninsula as the glacial refuge. Mean

expected heterozygosity (a) and mean number of alleles per locus (b).

Each point (black circles, Iberian populations; white squares, northern

populations) represents a population.
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eral regions of the B. calamita distribution area (Beebee

1983; Rogell et al. 2010) and the genetic variation

decreased as a result of increased population differentia-

tion (Petit et al. 2001). These results have been supported

in studies about migratory ranges carried out in populations

from Britain, which considered that these populations

cannot maintain connectivity of neighboring local popula-

tions (Sinsch et al. 2012). On the contrary, metapopulation

dynamics seem to be much greater in populations from

the Iberian Peninsula (Sinsch et al. 2012) with high

genetic diversity and gene flow (Marangoni 2006).

As we noted, the Ma and HE variables showed a

decrease in genetic diversity in the latitudinal gradient of

B. calamita distribution. This difference is especially

exemplified with Ma, which shows a relatively high range

of variation in the populations from Spain without latitu-

dinal influence. On the contrary, in the populations from

north of the Pyrenees to Sweden (at 49–58.5ºN) genetic

variability decreases in the latitudinal gradient. These

results are consistent with the hypothesis that the Iberian

Peninsula was a refuge for B. calamita during the Pleisto-

cene, where all populations expanded from the south to

the north during the postglacial period (Beebee and Rowe

2000; Rowe et al. 2006). However, the incorporation of

our data, in which the wide latitudinal variation in the

Iberian Peninsula is included, contributes to a better

interpretation of the colonization event. In the previous

studies, Beebee and Rowe (2000) and also Rowe et al.

(2006) have found that HE correlated strongly with the

geographic distance measured from south Spain. Our new

data show that this correlation is not significant in the

Iberian Peninsula that present a high genetic diversity;

although it is strongly notable from the barrier of the

Pyrenees to the north.

In conclusion, the pattern of genetic diversity of B. cal-

amita showed throughout its geographic distribution area

mainly reflects the colonization history of the species after

the last glacial period. This was suggested by previous

studies in the latitudinal gradient (Beebee and Rowe

2000; Rowe et al. 2006) and by this study at both latitudi-

nal and altitudinal gradients. However, in our study we

emphasize that the latitudinal variation is only notable

since the barrier of the Pyrenees to the north. In addition,

the studies of genetic structure (this study) and home

range (Sinsch et al. 2012) evidenced that some popula-

tions can be genetically isolated by distance and prone to

local extinction.
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