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Human epidermal growth factor receptor 2 (HER2) is an important prognostic and predictive factor in breast cancer. HER2
is overexpressed in approximately 15%–20% of invasive breast carcinomas and is associated with earlier recurrence, shortened
disease free survival, and poor prognosis. Trastuzumab (Herceptin) a “humanized” monoclonal antibody targets the extracellular
domain of HER2 and is widely used in the management of HER2 positive breast cancers. Accurate assessment of HER2 is thus
critical in the management of breast cancer. The aim of this paper is to present a comprehensive review of HER2 with reference
to its discovery and biology, clinical significance, prognostic value, targeted therapy, current and new testing modalities, and the
interpretation guidelines and pitfalls.

1. Introduction and HER2 Biology

In 1981, Shih et al. discovered novel transmissible genes
which caused transformation of NIH 3T3 cells upon trans-
fection of DNA obtained from rat neuroblastomas [1].
Subsequently, the same group identified a 185,000 Dalton
phosphoprotein obtained from the sera of young mice
injected with secondary transfectants containing neuroblas-
toma transforming sequence [2]. This neu oncogene was later
identified in genomes of fetal rat neuro/glioblastomas cell
lines derived from tumors induced by ethylnitrosurea [3].
The nucleic acid sequence of the neu gene was homologous
to the erb-B oncogene and the neu-associated tumor anti-
gen p-185 was antigenically related but distinct from the
epidermal growth factor (EGF) receptor. Two other groups
by screening the human genomic library using v-erbB as
screening probes independently isolated similar erb-B related
genes HER2 [4] and c-erbB-2 [5]. Upon further analysis,
neu, HER2, and c-erbB-2 were identified as identical genes
mapping on the same chromosome location [4, 6]. In 1985,
the amplification of this gene in DNA prepared from tissue
of human mammary carcinoma was first demonstrated by
King et al. [7].

HER2 is a member of the epidermal growth factor
(EGF) receptor family which consists of four members:

EGFR (HER1, erbB1), HER2 (erbB2), HER3 (erbB3), and
HER4 (erbB4). The HER2 gene is located on chromosome
17q12 and encodes a 185-kDa protein product which is
a transmembrane receptor protein with tyrosine kinase
activity [8–10]. The receptor is structurally composed of
an extracellular ligand-binding domain, transmembrane
domain, and an intracellular tyrosine kinase catalytic
domain. Upon activation by a ligand, the receptors dimer-
ize and undergo transphosphorylation to activate various
intracellular signaling pathways which mediate cell prolifer-
ation and differentiation [11, 12]. The cellular mechanism
of HER2 activation is not completely understood, and
there is no known stimulatory ligand for HER2 receptor
homodimers. The HER2 receptor can, however, dimerize
with other members of the EGFR family to form het-
erodimers, and these heterodimers involving HER2 have
been shown to be more potent and stable [13]. In addition,
crystal structures of rat HER2 have revealed a constitutively
activated extracellular domain in the absence of a ligand
[14].

Soon after its discovery, several in vivo and in vitro
studies highlighted the oncogenic potential of HER2. Over-
expression of HER2 was shown to be associated with cellular
transformation and tumorogenesis in NIH 3T3 cells and
human mammary epithelial cells [15–17]. In transgenic
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mice, overexpression of HER2 led to development of mam-
mary tumors and induction of metastatic disease [18–20].

2. Prognostic Value of HER2

The prognostic value of HER2 amplification in human
breast cancers was first determined by Slamon et al. in
1987 [21]. They evaluated tissues from 189 primary breast
cancers and determined the role of HER2 as an independent
prognostic factor. HER2 amplification was also shown to
be a predictor of overall survival and time to relapse
[21]. Currently, there are at least 107 published studies
involving 39,730 patients that have discussed the prognostic
significance of HER2 gene amplification (as assessed by
southern blot, slot blot, polymerase chain reaction [PCR],
fluorescent in situ hybridization [FISH] and chromogenic
in situ hybridization [CISH]), and protein overexpression
(as analyzed by western blot, immunohistochemistry [IHC],
and enzyme-linked immunosorbent assay [ELISA]) [22]. Of
these, 95 (88%) studies showed HER2 gene amplification
or protein overexpression in breast cancer as an important
predictive factor by either univariate or multivariate anal-
ysis. Multivariate analysis was performed on 93 studies of
which 68 (73%) showed HER2 as an independent adverse
prognostic factor. However, in 13 (12%) studies there
was no correlation between prognosis and HER2 status
[22].

In node-positive patients, HER2 amplification or protein
overexpression has been shown to be a poor predictor of
clinical outcome [21, 23–35]. A recent study by Gilcrease
et al. has shown that any degree of HER2 overexpression
(1+, 2+ or 3+) was associated with increased tumor
recurrence and decreased patient survival in a node-positive
cohort of breast cancer patients (n = 91) treated with
doxorubicin-based chemotherapy without trastuzumab [36].
A different study showed a distinct, intermediate outcome
in patients with low-level HER2 amplification by FISH,
with a ratio of 1.5–2.2, compared to HER2 unamplified
tumors and tumors with HER2 ratios greater than 2.2
[37].

The predictive value of HER2 in node negative patients
has been contentious. While some studies verify the adverse
predictive value in node negative patients [24, 32, 35,
38–47], others have found no significant correlation with
clinical outcome [23, 25, 29–31, 48–51]. The differences
in these study conclusions may be attributed to a mul-
titude of factors including differences in the number
of patients, patient population including those receiving
systemic adjuvant therapy, length of followup, and most
importantly HER2 status determination and interpretation
techniques.

3. Predictive Value of HER2

In addition to the prognostic significance in breast can-
cer, HER2 amplification and protein expression has been
shown to predict and modulate response of conventional
chemotherapeutic agents.

3.1. Combination Chemotherapy. Conflicting studies have
been reported regarding the benefit of combination
chemotherapy with cyclophosphamide, methotrexate, and
fluorouracil (CMF) in HER2-positive tumors. Some studies
have shown decreased responsiveness of HER2-positive
tumors to CMF therapy. Gusterson et al. reported a
randomized study involving 1,506 breast cancer patients
enrolled in the international (Ludwig) breast cancer study
group trial V [30]. The patients were divided into sub-
groups of lymph-node positive (n = 746) and lymph-
node negative (n = 740) patients. The patients in the
node-positive group were given prolonged chemotherapy
or a single cycle of perioperative chemotherapy (PeCT),
and patients in the node-negative group were given single
cycle of PeCT or no chemotherapy. They concluded that
for node-positive patients, the effect of prolonged CMF
chemotherapy, and for node-negative patients, the effect
of PeCT on disease-free survival, was greater in HER2-
negative tumors when compared to HER2-positive tumors
defined as focal or diffuse membrane positivity by IHC
[30]. Similar results were shown in a subgroup of breast
cancer patients (n = 179) with low-risk lesions without
significant in situ component [43]. In this subgroup, the
HER2-positive tumors (focal or diffuse membrane staining
by IHC) showed significant decrease in disease-free survival
at 5 years (40% versus 80%; P < .0001) and overall
survival (P = .0001) compared to HER2 negative tumors
[43].

In contrast to these observations, a controlled clinical
trial involving 386 node positive breast cancer patients with a
20-year followup who received 12 monthly cycles of adjuvant
CMF (n = 207) or no further treatment after radical
mastectomy (n = 179) showed that both HER2-positive
(intermediate or strong membrane staining by IHC) and
HER2-negative tumors benefited from treatment which was
assessed by relapse-free survival and cause specific survival
compared to the untreated patients [52]. These findings were
confirmed by other large randomized study which had a
median followup of 28.5 years [53].

3.2. Anthracycline-Based Chemotherapy. Though some stud-
ies have indicated that patients with locally advanced
HER2 overexpressing breast cancers receiving prolonged
or high-dose anthracycline-based chemotherapy show no
significant change in survival [54], treatment failure [55],
and development of distant metastasis [56] when com-
pared to HER2-negative patients, most studies show bene-
fit of anthracycline-based chemotherapy in HER2-positive
tumors. Of 1572 patients with lymph node-positive early
breast cancer enrolled in Cancer and Leukemia Group
B (CALGB) trial randomized to receive high, moderate,
and low doses of cyclophosphamide, doxorubicin, and
fluorouracil, 442 random tumor samples were obtained and
assessed for HER2 expression by IHC [57]. The results
indicated that patients with high HER2 expression (≥50%)
who received high-dose chemotherapy had a significantly
longer disease-free survival and overall survival as compared
to the patients with no or low HER2 expression (<50%)
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[57]. Similar observations of improved response to high-
dose anthracycline-based chemotherapy in HER2 amplified
lymph node-positive breast cancers have also been shown by
other studies [58, 59].

This was further confirmed in a recent large randomized
study involving tissues from 710 premenopausal women with
axillary lymph node-positive breast cancer where amplifi-
cation of HER2 (HER2 to chromosome 17 ratio of ≥2)
was associated with clinical responsiveness to anthracycline
containing chemotherapy containing cyclophosphamide,
epirubicin and fluorouracil (CEF) when assessed for relapse-
free survival and overall survival compared to patients
receiving CMF or tumors that lacked amplification of
HER2 [60]. Anthracyclines are topoisomerase inhibitors, and
the response to these agents in HER2-positive tumors is
postulated to be due to coamplification of topoisomerase
II α (topo2a) gene which is located close to the HER2
gene on chromosome 17 [61–63]. Studies have shown that
amplification of topo2a occurs exclusively in presence of
HER2 amplification and that in the majority of tumors,
topo2a amplification correlates with topo2a overexpression
[64].

3.3. Tamoxifen. Approximately 75% of all invasive breast
carcinomas are positive for estrogen receptors (ER) or
progesterone receptors (PR) [65]. Even though HER2-
positive tumors show a significantly decreased expression
of ER or PR in comparison to HER2-negative tumors, a
substantial proportion still express ER or PR [66]. Patients
with advanced breast cancer expressing hormone receptors
(HR) show increased (70%–80%) response to Tamoxifen
therapy, though overall up to 50% of HR-positive tumors
will not benefit, and approximately 10% of HR-negative
tumors will respond to treatment [67]. Experimental and
clinical evidence particularly in advanced-stage cancer have
suggested an association between HER2 overexpression and
resistance to endocrine therapies in general [68–73]. In
a recent prospective study of 516 consecutive stage I-
II patients, clinical outcome after 5–10 years following
tamoxifen-based adjuvant therapy was compared between
HR-positive/HER2-positive subgroup (n = 51) and HR-
positive/HER2-negative subgroup (n = 129) [74]. Cases
were considered HER2-positive if membrane staining in
>1% was identified in tumor cells. The study concluded
that the disease-free survival and overall survival in patients
receiving Tamoxifen alone or after chemotherapy was sig-
nificantly lower in HR+/HER2+ group when compared to
HR+/HER2− group [74]. In another retrospective study,
node-negative breast cancer patients randomly assigned to 2-
year adjuvant Tamoxifen or no further therapy were analyzed
for HER2 protein overexpression by IHC [75]. After a
median followup of 12 years, univariate analysis showed
that adjuvant Tamoxifen significantly prolonged disease-free
survival and overall survival in HER2-negative cases whereas
it had no effect in HER2-positive cases (membrane staining
in >10% cells) [75].

In contrast to the above, a randomized controlled trial of
282 patients with ER positive tumors treated with adjuvant

oophorectomy and Tamoxifen were evaluated for HER2
protein expression [76]. Univariate analysis showed risk
reduction for all treated patients in both HER2-positive (n =
73) and HER2-negative subgroups (n = 209) with a greater
benefit in the HER2-positive group [76]. In another study by
Berry et al., HER2 status in 651 ER-positive, node-positive
patients was evaluated by three different methods (IHC,
FISH, and PCR), and clinical outcome was evaluated after
Tamoxifen therapy [77]. They concluded that the disease-
free survival and overall survival in the patients receiving
Tamoxifen was not influenced by the HER2 status of the
tumors [77].

3.4. Taxanes. Paclitaxol (Taxol), one the first taxanes exam-
ined in clinical trials has been shown to be effective
against many cancers considered refractory to conven-
tional chemotherapy. Paclitaxol exerts its cytotoxic effect by
inhibiting microtubule disassembly and promoting tubulin
polymerization, thus disrupting cell division [78]. Though
in vitro studies have demonstrated resistance to taxanes in
transfected mammary cells overexpressing HER2 [79, 80], in
vivo studies have shown contradictory results. Baselga et al.
studied the sensitivity of taxanes in women with metastatic
breast cancer [81]. The response rate for taxanes was
significantly greater in HER2-positive tumors (65%) versus
HER2-negative tumors (36%). This sensitivity remained
even after controlling for confounding variables which
correlated with HER2 overexpression [81]. Similar benefits
from paclitaxel containing regimens have also been shown
by other studies in patients with HER2 gene amplification
or protein overexpression and metastatic breast cancer [82,
83]. Contrasting to these observations, a randomized study
involving 474 women showed that the response rate and
overall survival were not related to HER2 status, and there
was a trend towards shorter median time to treatment failure
among women with HER2-positive tumors [84].

4. HER2-Targeted Therapy

4.1. Discovery of Trastuzumab. The high incidence of HER2
gene amplification and protein expression in breast cancer
and its prognostic and predictive value make HER2 an
attractive target for development of therapeutic agents. In
1985, soon after the discovery of HER2, a monoclonal
anti-p185 antibody was shown to revert neu-transformed
NIH 3T3 cells into a nontransformed phenotype [85].
Monoclonal antibodies targeting the extracellular domain of
HER2 were subsequently developed by several laboratories
[86–88]. Several other in vitro studies have confirmed the
antineoplastic properties of monoclonal antibodies directed
against HER2 expressing tumor cells demonstrated by inhi-
bition of anchorage-dependent growth [89, 90], monolayer
tumor growth [91], and colonies in soft agar [91–93] or by
sensitizing the HER2 overexpressing cells to tumor necrosis
factor alpha [92]. In addition, in vivo studies of monoclonal
antibodies directed against HER2 have also shown to inhibit
tumor cell growth in transgenic mice [90, 93].
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The use of these murine antibodies, however, is limited
clinically due to the development of neutralizing human
antibodies upon long-term use. To circumvent this dilemma,
one of the most potent growth inhibitory anti-p185HER2,
designated muMAb4D5 was humanized by gene conversion
mutagenesis [91, 94]. This fusion gene (rhuMAb HER2)
combined murine antigen-binding loops and human vari-
able region framework residues and IgG1 constant domains.
The product trastuzumab (Herceptin), a humanized mon-
oclonal antibody specifically targeting the extracellular
domain of the HER2 receptor, was launched in 1998 after
approval by the US Food and Drug Administration (FDA).
There are several proposed mechanisms of trastuzumab
action including inhibition of HER2 shedding, inhibition
of PI3K-AKT pathway, inhibition of cyclin E/cdk2 complex
activity, attenuation of cell signaling, antibody-dependent
cellular cytotoxicity, and inhibition of tumor angiogenesis
[95, 96].

4.2. Efficacy and Safety of Trastuzumab. Following preclinical
testing, the first clinical evidence of anti-HER2 targeted
therapy was provided by phase II trials reported by Baselga
et al. [97]. The study was performed in 46 patients with
metastatic breast cancer with HER2 protein overexpression
with at least 25% of tumor cells exhibiting membrane
staining as measured by IHC. All patients were given single-
agent therapy with trastuzumab. The overall response rate
(complete and partial remission) in assessable patients (n =
43) was 11.6%. Additionally, 37% of the patients achieved
minimal responses or stable disease. These results were
confirmed by larger multinational clinical trial involving 222
women with HER2-positive metastatic breast carcinoma that
had progressed after chemotherapy. After treatment with
trastuzumab monotherapy, the overall response rate was
15% (8 complete and 26 partial responses) with a median
duration of response of 9.1 months [98]. In another study
by Vogel et al., trastuzumab was given as first-line treatment
in 114 randomized HER2-positive breast cancer patients
with metastatic disease [99]. The overall response rate in
this group was 26%. More significantly, the response rate in
tumors with 3+ staining by IHC (strong complete membrane
staining in >10% tumor cells) was 35% compared to absence
of response in tumors with 2+ staining (weak to moderate
complete membrane staining in >10% tumor cells). The
response rate in tumors with HER2 gene amplification by
FISH was 34% compared to 7% in tumors that were negative
by FISH [99].

Phase III trials were reported by Slamon et al., where
469 women with progressive metastatic HER2 positive breast
cancers were randomly assigned into two groups [100].
The first group (n = 234) received standard chemother-
apy alone, and the second group (n = 235) received
standard chemotherapy plus trastuzumab. Patients who
received chemotherapy with trastuzumab showed longer
time to disease progression (median, 7.4 versus 4.6 months),
higher rate of response (50% versus 32%), longer duration
of response (median, 9.1 versus 6.1 months), lower rate
of death at 1 year (22% versus 33%), longer survival

(median, 25.1 versus 20.3 months), and a 20 percent decrease
in risk of death [100]. Favorable clinical outcome was
also noted when trastuzumab combined with Paclitaxel
was administered after doxorubicin and cyclophosphamide
to patients enrolled in National Surgical Adjuvant Breast
and Bowel Project (NSABP) B-31 and the North Central
Cancer Treatment Group (NCCTG) N9831 trials with
surgically removed HER2-positive breast cancers [101].
Similar results have been reported by other phase III trials
evaluating response of HER2-positive breast cancers treated
with neoadjuvant chemotherapy and trastuzumab [102–
104].

During the clinical trials of trastuzumab, it was observed
that a small proportion of patients developed cardiotoxicity
manifested as congestive heart failure, cardiomyopathy,
and/or decrease in ejection fraction [98]. Occurrence of
these unexpected adverse events prompted a retrospective
review of all patients enrolled in seven phase II and III
trials. The analysis revealed increased risk of developing
cardiac dysfunction in patients receiving trastuzumab [105].
The severity was observed to be greatest in patients receiv-
ing trastuzumab with anthracycline and cyclophosphamide
(27%), compared to those receiving trastuzumab and pacli-
taxel (13%) or trastuzumab alone (3%–7%). It was also
noted that though the cardiac dysfunction was symptomatic
in most patients (75%), standard treatment for congestive
heart failure led to improvement in most patients (79%).
Overall, it was concluded that in spite of these adverse effects
treatment was justified in patients with metastatic breast
cancer due to the improved overall survival following therapy
[105].

4.3. Newer HER2-Targeting Drugs. Lapatinib (Tykerb) is a
novel reversible dual inhibitor of HER2 and EGFR tyrosine
kinases [106, 107]. The antitumorogenic properties of this
drug was examined in human normal and tumor-derived cell
lines by in vivo and in vitro studies [108] and in patients
with advanced malignancies [109]. Lapatinib was approved
by the FDA in 2007 for use in previously treated advanced
metastatic breast cancers which overexpressed HER2 in
combination with Capecitabine [110]. In a randomized
phase III clinical trial, 324 women with previously treated
locally advanced or metastatic HER2-positive breast cancer
were assigned to receive Lapatinib with Capecitabine or
Capecitabine alone [111]. The patients with combination
therapy had 49 (30%) disease progression events compared
to 72 (45%) events with monotherapy. Additionally, the
median time to progression was 8.4 months for patients
receiving combination therapy compared to 4.4 months in
patients receiving monotherapy [111]. In a similar phase
III trial of 399 women, addition of Lapatinib showed
prolongation of time to progression and a trend towards
improved overall survival [112].

Other HER2-targeting agents which are still being devel-
oped and are in preclinical testing stages include Pertuzumab
(Omnitarg), which binds HER2 and sterically hinders the
recruitment of HER2 into heterodimers [113], and Ertumax-
omab, a bispecific antibody targeting HER2 and CD3 [114].
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Targeted therapy with MDX-H210 [115] and 2B1 [116] have
shown limited response in initial clinical trials.

5. 2007 ASCO Update of HER2 as Marker for
Breast Cancer

The American Society of Clinical Oncology (ASCO) pub-
lished an update of recommendations for use of HER2 as a
marker for breast cancer [117]. According to these updated
guidelines, HER2 should be evaluated in every primary
invasive breast cancer either at the time of diagnosis or
at recurrence in order to guide selection of trastuzumab
for treatment. Recommendations were also made regarding
utility of HER2 to predict response to specific chemother-
apeutic agents. It was suggested that if chemotherapy was
considered in a patient with HER2-positive breast cancer, an
anthracycline should be considered. For trastuzumab-based
therapy, it was suggested that a nonanthracycline regimen
may produce similar outcome. The benefit of taxane-based
chemotherapy was considered controversial, and use of
HER2 to guide its use was not recommended.

6. HER2 Testing

The importance of HER2 as a prognostic, predictive, and
therapeutic marker in invasive breast cancer is well recog-
nized, and therefore, it is critical to validate and standardize
testing techniques in order to make an accurate assessment
of HER2 status. The significant contradictions in various
studies can at least in part be attributed to differences
in HER2 testing and interpretation [118–121]. Techniques
which have been used to assess HER2 protein overexpression
are immunohistochemistry, ELISA analysis of tumor cytosols
or serum, and Western blot, and methods used to evaluate
HER2 gene amplification include Southern blot, slot blot,
CISH, FISH, and PCR [22].

Use of solid matrix blotting techniques like Southern
blot, slot blot, and especially Western blot are significantly
limited due to the dilutional artifacts in the tumor sample. In
breast cancer specimens, these artifacts may be composed of
benign breast ductal cells, acini, stromal cells, inflammatory
cells, and vascular structures resulting in false negative
cases [120–122]. Additionally, false positive results may be
obtained due to inclusion of in situ carcinoma which can
express high levels of HER2 [123–126]. In addition, these
techniques need a large amount of tissues which would
not be available in biopsy specimens. PCR is a sensitive
technique; however, it is also affected by dilutional artifacts,
and the analysis is time consuming and labor intensive [120].
The absence of simultaneous morphological assessment in
the above studies is also a significant disadvantage.

Contrary to the above, analysis by IHC and FISH
can be automated and allow the simultaneous assessment
of tumor morphology while eliminating difficulties with
dilution artifacts.

6.1. HER2 Immunohistochemistry. IHC analysis of HER2
is a simple-to-perform, widely available and inexpensive

test. It is nevertheless affected by several variables including
tissue-fixation methods, reagents, assay protocols, antibody
sensitivities and specificities, and scoring systems [118, 127–
129]. In general, testing of freshly frozen tissues is more
reliable than paraffin-embedded tissues as formaldehyde
causes cross linking of proteins hindering the access of
antibody to the epitope [118, 122, 130]. However, practically,
it is not possible to have fresh tissues available in all
cases especially when testing at reference laboratories and
analyzing archival tissues.

The reagents and antibodies used in an assay are other
critical factors. Antibodies differ in their sensitivity to detect
HER2 epitopes. The important considerations in an assay
are the type of antibody used, clonality of the antibody
(monoclonal versus polyclonal), and the dilution factor
used. Studies comparing different antibodies have shown
marked variation in HER2 detection [118, 131, 132]. Press
et al. conducted a study analyzing sensitivity and specificity
of 7 polyclonal and 21 monoclonal anti-HER2 antibodies
on paraffin-embedded tissues of 187 breast cancers with
known HER2 protein overexpression and gene amplification
analyzed by Northern blot, Western blot, IHC, and Southern
blot performed on frozen tumor specimens [118]. The
sensitivity of the antibodies ranged from 6% to 80% and
none of the antibodies were able to detect all the cases of
breast cancer with HER2 overexpression. In a recent study
with the help of College of American Pathologists (CAP),
HER2 proficiency was evaluated with use of HER2 peptide
analyte controls. Of the 109 participants, who returned
evaluable stained slides, suboptimal staining was identified
in 20 (18.3%) cases. The causes of failure in these cases were
antigen retrieval errors (35%), antibody or staining protocol
problems (20%), or a combination of both (45%) [133].

Several studies have shown correlation between
membrane-staining pattern of HER2 and protein
overexpression [118]. Though cytoplasmic staining can
be recognized in cases of breast cancer, it has not been
shown to correlate with gene amplification [118], HER2
mRNA levels [134, 135], or have an association with
poor prognosis in a subset of node-positive women [34].
One study, however, has shown an association between
moderate to strong cytoplasmic staining of HER2 with poor
prognosis [136]. Another limitation of IHC scoring system is
interobserver variability, particularly in cases with moderate
(2+) membrane staining [137, 138].

The two FDA-approved IHC-based tests for testing
HER2 overexpression are HercepTest (Dako, Carpinteria,
CA) which uses A085 polyclonal antibody and Pathway
(Ventana, Tucson, AZ) which uses 4B5 monoclonal antibody.
The overall concordance between DAKO HercepTest and
clinical trial assays (CTA) in 548 breast tumor specimens
was 79% [139]. However, a 2+ score by HercepTest did
not correlate well with the CTA, where approximately 42%
of cases with HercepTest 2+ score were negative by CTA
(0–1+) [139]. The low specificity of HercepTest was also
highlighted by other studies [132, 140]. The Pathway kit was
first introduced in 2002 when it used a monoclonal antibody
CB11. This antibody was replaced by a new monoclonal
antibody 4B5 in 2008, which showed sharper membrane
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staining and less background staining when compared to
CB11 and a higher correlation with FISH with an excellent
interlaboratory reproducibility when evaluated in a total of
322 breast cancer patients [141].

6.2. HER2 Fluorescent In Situ Hybridization. FISH is a more
reliable, reproducible, sensitive, and accurate procedure
which is less affected by tissue fixation and analytical
variables compared to IHC. It also offers the benefit of
simultaneous evaluation of morphology and gene amplifi-
cation. Relative to solid matrix blotting procedures, analysis
of HER2 gene amplification by FISH showed a sensitivity of
98% and specificity of 100% [142]. The technique, however,
is more complex and labor intensive than IHC.

The FDA-approved FISH-based tests for HER2 amplifi-
cation are PathVysion (Abbott Molecular, Des Plaines, IL),
INFORM (Ventana, Tucson, AZ) and HER2 FISH pharmDx
(Dako, Carpinteria, CA). The PathVysion HER2 probe kit is a
dual color FISH (D-FISH) assay which uses probes targeting
HER2 gene and chromosome 17 centromere. The HER2 gene
amplification is calculated based on the ratio of HER2 gene
copies per chromosome 17 copy number. On the other hand,
the INFORM assay is a single-color FISH (S-FISH) assay
with a HER2 probe alone. In this assay, the HER2 gene
amplification is calculated as an absolute value of HER2 gene
copy number per tumor nucleus.

Several studies have assessed the use of tissue microarrays
as an efficient method to analyze HER2 gene amplification by
FISH in a high-throughput manner [143–145].

6.3. Concordance between FISH and IHC. In general, there is
concordance between tumors scored as 3+ by IHC and FISH,
while cases scored 2+ by IHC showed the most discrepancy
[146–154]. Correlation studies in 2279 cases with invasive
breast carcinoma showed a concordance of HER2 status
between IHC and both D-FISH (87%) and S-FISH (86%)
[155]. Specifically, excellent concordance was seen in groups
scored 0, 1+, and 3+ by IHC for both D-FISH (97%) and
S-FISH (96%), while the most discordant category was the
group scored 2+ [155].

In a multicenter study involving 426 women with breast
carcinoma being considered for trastuzumab study, the
correlation of IHC by HercepTest and FISH by PathVysion
was analyzed [156]. It was found that only 2/270 (0.7%) of
IHC 0 or 1+ cases were FISH positive and 6/102 (5.9%) IHC
3+ cases were FISH negative. Of the 54 cases with 2+ staining,
only 26 (48%) showed HER2 gene amplification by FISH
[156]. Several other studies have also shown absence of gene
amplification in subset of cases which were scored 2+ by IHC
[147, 149, 153, 154, 157, 158]. Hence, a combined approach
with IHC and FISH analysis was recommended for accurate
HER2 testing particularly for cases with moderate staining
with IHC [137, 148, 149, 152, 157].

In a study evaluating clinical outcomes of 799 patients
enrolled in 3 clinical trials with 2+ and 3+ scoring on IHC, it
appeared that clinical benefit from trastuzumab therapy was
restricted to patients with FISH positive (78%) metastatic
breast cancers with higher overall response rate and longer

duration of survival when compared to FISH negative (22%)
patients [159]. Hence, they concluded that analysis by FISH
is a preferred method to select patients for trastuzumab
therapy [159]. Other studies have also suggested the use of
FISH as a superior method which should be done as the first
line of HER2 status assessment [160–162] or at least in all
cases scored 2+ or 3+ by IHC [163, 164]. In contrast to the
above, an analysis of 2963 breast cancer specimens obtained
from 135 hospitals and cancer centers showed that the FISH
test had a significantly higher failure rate (5% versus 0.08%),
reagent cost ($140 versus $10), longer testing time (36 hours
versus 4 hours), and interpretation time (7 minutes versus
45 seconds) in comparison to IHC testing [165]. It was
concluded that HER2 status determination is most effective
by using IHC as the methods of choice and performing FISH
in cases with moderate (2+) staining [165].

7. Current Issues with HER2 Testing

Several studies have identified a subset of false positive breast
cancers that are IHC 3+ and negative by FISH ranging from
3% to 22% of all positive cases [146, 148, 153, 156–158, 160].
These inconsistencies may be due to several causes including
variability in tissue fixation and processing, intratumoral
heterogeneity, and polysomy of chromosome 17 [166, 167].

7.1. Effect of Polysomy 17 on HER2 Testing. Polysomy of
chromosome 17 is frequent, and depending on the definition
of polysomy, it may be seen in 20%–30% of invasive breast
carcinomas [168–171]. Analysis of polysomy 17 requires the
use of dual color FISH, and its presence can complicate
accurate assessment of HER2 status [172]. Studies have
shown polysomy 17 as a contributing factor in a small
subset of tumors, which were IHC3+ but lacked HER2 gene
amplification [166, 169, 171].

While some studies have shown an association between
unamplified polysomy 17 tumors with IHC 3+ protein
expression and adverse prognostic features [173], these
observations have not been validated by others [170, 174]. A
study by Hofman et al. reported a response to trastuzumab
monotherapy in FISH-negative tumors with polysomy 17
[175]. However, in a recent study involving 405 patients with
metastatic breast cancer, it was observed that polysomy 17 in
absence of HER2 amplification did not predict the response
to Lapatinib with Paclitaxol compared to paclitaxel alone
[176].

A recent analysis of HER2 status by array comparative
genomic hybridization in breast carcinoma samples (n = 97)
has shown that polysomy 17 is a rare event and suggest
that the cases detected by FISH represent amplification
of chromosome 17 centromere rather than true polysomy
[177].

7.2. Intratumoral Heterogeneity. Another pitfall in accurate
HER2 status determination and discordance between FISH
and IHC is the presence of intratumoral heterogeneity.
Several studies have reported the presence of intratumoral
heterogeneity of HER2 in breast cancers [178–181], which
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may reflect genetic divergence in the tumor cells during
clonal evolution [182]. Intratumoral heterogeneity can also
contribute to discordance in results between primary and
asynchronous metastatic and recurrent tumors [180, 183],
synchronous metastatic tumors [184] and small biopsy
specimens [180, 181].

A study analyzing HER2 protein expression in patients
with locally advanced breast cancers who received neoad-
juvant chemotherapy (n = 39) and patients who did not
receive chemotherapy (n = 60) reported that the HER2 IHC
scores significantly reduced in patients who received therapy
(28.5%) compared to those who did not (11.7%) [185]. In
contrast, examination of HER2 amplification in needle core
biopsies and subsequent excisions of 100 patients showed
excellent concordance, even in a subset of patients who
received neoadjuvant therapy, suggesting that heterogeneity
is not a significant confounding factor when analyzing HER2
by FISH [186].

In 2008, the CAP/American College of Medical Genetics
Cytogenetics resource committee panel defined and provided
practice guidelines for breast tumors with genetic hetero-
geneity [187]. Genetic heterogeneity of HER2 is defined
as presence of greater than 5% but less than 50% of
infiltrating tumor cells with a HER2/CEP17 ratio of greater
than 2.2 [187]. Currently, the clinical significance of genetic
heterogeneity and possible benefit from anti-HER2 therapy
is not known and additional clinical trials are required.

8. Newer Modalities of HER2 Testing

8.1. Chromogenic In Situ Hybridization. In 2008, FDA-
approved SPOT-Light HER2 CISH assay (Invitrogen, Carls-
bad, CA) which uses formalin-fixed paraffin-embedded
sections and can be used to detect HER2 as a primary test or
as a reflex test in IHC equivocal (2+) cases. Amplification by
this method is defined as HER2 gene enumerated as greater
than 5 dots, clusters (small or large), or a combination
per nucleus in a majority (>50%) of carcinoma cells [188].
This is further categorized into low and high amplification.
Nonamplification is defined as 1–5 dots of HER2 gene per
nucleus present in a majority (>50%) of carcinoma cells
[188].

Tanner et al. first described the utility of CISH as an
alternative to FISH [189]. A high concordance between FISH
and CISH has been established by several other studies [190–
194]. In a recent study involving 226 consecutive cases of
invasive breast carcinomas obtained from two institutions,
tissues were evaluated for HER2 protein expression and
amplification by IHC (HercepTest), FISH (PathVysion),
and CISH (SPOT-Light) [195]. They compared the results
between FISH and CISH using the manufacturer’s criteria
(nonamplified and amplified) and the ASCO/CAP criteria
(nonamplified, equivocal, and amplified). The concordance
between CISH and FISH for positive and negative results
was 98.5% and 98.6% at the two institutions using the
manufacturers’ criteria and 99% and 99.1% using the
ASCO/CAP criteria [195]. The advantages of CISH include
ability to analyze the test by light microscopy, preservation

of morphologic features, permanent signals which will not
fade with slide storage, lower reagent costs, and need for less
expertise than FISH [193, 196].

8.2. Metallographic In Situ Hybridization. Silver In Situ
Hybridization (SISH) is an automated enzymatic metallo-
graphic ISH technique that is based upon deposition of
silver at the target site following an enzymatic reaction. The
signals are permanent and can be assessed by bright field
microscopes. In a multi-institution study of 298 invasive
breast carcinomas, concordance between HER2 gene ampli-
fication by SISH and FISH was 96.6% when analyzed by FDA
approved criteria and 98.9% when analyzed by ASCO/CAP
guidelines after excluding equivocal cases [197]. In addition,
the study showed high interobserver reproducibility. Other
studies have also shown SISH to be an accurate method to
detect gene amplification in paraffin-embedded formalin-
fixed tissue [198, 199] and cytology preparations [200].

Other bright field metallographic techniques which have
been studied for analyses of HER2 status include gold-
facilitated in situ hybridization [201] and EnzMet GenePro
which allows simultaneous detection of HER2 gene status by
deposition of silver and protein expression [202].

8.3. Brightfield Double In Situ Hybridization. Brightfield
Double In Situ Hybridization (BDISH) is a recently
described automated technique which utilizes two probes
targeting HER2 gene and chromosome 17 centromere (CEN
17) and allows simultaneous analysis of morphological
features by a brightfield microscope [203]. Their analysis
of 94 breast cancer cases demonstrated a high concordance
between HER2 FISH and BDISH using the historical scoring
method (98.9%) and the ASCO/CAP criteria including the
FISH equivocal cases (95.7%) and after excluding the FISH
equivocal cases (100%) [203].

9. Current ASCO/CAP Guidelines for HER2
Testing and Interpretation

Accurate assessment of HER2 status is critical in manage-
ment of patients with invasive breast cancer. In an attempt
to standardize HER2 testing and to improve the accuracy
and reproducibility of the test results, the American Soci-
ety of Clinical Oncology/College of American Pathologists
(ASCO/CAP) panel has made recommendations for HER2
interpretation and testing [204]. The panel recommended
determination of HER2 status in all cases of invasive
breast carcinoma. Algorithms for interpreting HER2 gene
amplification by FISH and protein expression by IHC
are provided. The guidelines by ASCO/CAP define an
HER2 IHC staining of 3+ as uniform intense membrane
staining in >30% of invasive tumor cells as compared
to previously defined >10% strong staining. Cases with
weak to moderate complete membrane staining in at least
10% of cells are considered equivocal (2+), and in these
cases, HER2 gene amplification with fluorescent in situ
hybridization (FISH) should be tested. For FISH, the tumor
is negative for HER2 gene amplification if the ratio of
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HER2 gene signals to chromosome17 signals is <1.8 or
HER2 gene copy number is <4.0, equivocal when the ratio
is 1.8–2.2 or HER2 gene copy number is 4.0–6.0 and
positive if the ratio is >2.2 or HER2 gene copy number
is >6.0. Guidelines for tissue processing include keeping
the time from tissue acquisition to fixation as short as
possible and fixation in 10% neutral buffered formalin
for 6–48 hours. Additional guidelines for optimal test
validation, internal quality assurance procedures, external
proficiency assessment, and laboratory accreditation are also
provided.

9.1. Impact of New ASCO/CAP Guidelines. Studies analyzing
the impact of the new ASCO/CAP guidelines have shown
an improved concordance between IHC and FISH results,
improved accuracy, and decrease in number of inconclusive
FISH tests after raising the cutoff level to greater than
30% invasive tumor cells for HER2 3+ tumors [205–
207]. Other studies have additionally shown decrease in
interobserver variability by application of the new criteria
[208]. In another study, however, there was no change in
concordance between FISH results and IHC3+ cases and
all the 27 cases scored as 3+ by IHC remained 3+ after
using the new threshold [209]. In our retrospective study,
12 (8.5%) of 141 cases had 11%–30% of invasive tumor
cells with intense membrane staining which would have
their status changed from 3+ to 2+ (equivocal) based on
the new guidelines [210]. The overall concordance between
FISH and IHC was improved; however, up to 3% of
patients would be disallowed from receiving anti-HER2
therapy based on the new guidelines. Thus, the important
question remains whether improved concordance translates
into better prediction of response to anti-HER2 therapy. This
is also critical in light of recent data, which demonstrated
benefit of trastuzumab in patients with HER2 overexpression
(IHC 3+) regardless of whether there was evidence of
gene amplification [211, 212]. A retrospective analysis of
2268 patients from N9831 adjuvant trastuzumab phase III
trial where enrollment was based on previous criteria of
HER2 IHC > 10% (3+) or FISH ≥ 2.0 showed that a
small percentage (1.5%) of patients eligible for trastuzumab
therapy under FDA-approved definitions would not be
eligible by the new ASCO/CAP guidelines. Additionally,
the trastuzumab effect appeared similar for HER2-positive
patients regardless of ASCO/CAP or FDA-approved guide-
lines [213].

10. Conclusions

In conclusion, the confirmed clinical advantages of HER2-
targeted therapy in patients with HER2-positive disease
necessitate that all patients continue to be tested for
HER2 status on diagnosis [204, 211]. When conducting
HER2 testing, we should be aware of various analytical
and clinical factors that may affect the testing results
and the clinical significance of false positive or negative
results.
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