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Recent studies have revealed a surprising degree of functional specialization in rodent

visual cortex. It is unknown to what degree this functional organization is related to the

well-known hierarchical organization of the visual system in primates. We designed a

study in rats that targets one of the hallmarks of the hierarchical object vision pathway

in primates: selectivity for behaviorally relevant dimensions. We compared behavioral

performance in a visual water maze with neural discriminability in five visual cortical areas.

We tested behavioral discrimination in two independent batches of six rats using six pairs

of shapes used previously to probe shape selectivity inmonkey cortex (Lehky and Sereno,

2007). The relative difficulty (error rate) of shape pairs was strongly correlated between

the two batches, indicating that some shape pairs were more difficult to discriminate

than others. Then, we recorded in naive rats from five visual areas from primary visual

cortex (V1) over areas LM, LI, LL, up to lateral occipito-temporal cortex (TO). Shape

selectivity in the upper layers of V1, where the information enters cortex, correlatedmostly

with physical stimulus dissimilarity and not with behavioral performance. In contrast,

neural discriminability in lower layers of all areas was strongly correlated with behavioral

performance. These findings, in combination with the results from Vermaercke et al.

(2014b), suggest that the functional specialization in rodent lateral visual cortex reflects

a processing hierarchy resulting in the emergence of complex selectivity that is related

to behaviorally relevant stimulus differences.

Keywords: shape discrimination, rodent behavior, visual water maze, electrophysiological recording, population

coding

Introduction

Interest in the use of rodents for research into the neurobiological underpinnings of vision has
grown in recent years. While most studies focus upon early stages of information processing up to
primary visual cortex (V1), more and more studies have started to delineate the surprisingly large
number of cortical visual areas beyond V1.

Significant advances have been made in describing the functional properties of many regions in
rodent cortex that process visual information. In particular, reports in mice show that several of
these areas are organized hierarchically (Marshel et al., 2011; Wang et al., 2012) and functionally
specialized (Andermann et al., 2011; Glickfeld et al., 2013). Anatomical and electrophysiological
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studies in rats have revealed many extrastriate regions that
receive direct input from V1 and show retinotopical organization
using electrophysiology (Montero et al., 1973; Espinoza and
Thomas, 1983; Thomas and Espinoza, 1987) or anatomical
methods (Olavarria and Montero, 1984; Malach, 1989; Vaudano
et al., 1991; Coogan and Burkhalter, 1993; Montero, 1993).
Although naming schemes vary, areas found lateral to V1 are
often referred to as lateromedial (LM), laterointermedial (LI),
laterolateral (LL). Studies into other functional properties of
rat extrastriate regions are rare but are much needed. The
value of rodent models would increase tremendously if evidence
shows that neural response patterns and functional differences
between areas can be linked to behavioral performance of the
animals. Up to now there is only very indirect evidence for
such a relationship. For example, it was shown recently that rats
are able to learn complex shape discrimination tasks in which
they exhibit invariance to changes in pose, illumination, and/or
position (Zoccolan et al., 2009; Tafazoli et al., 2012; Vermaercke
and Op de Beeck, 2012). The behavioral capacity for position
invariance might very well be based upon position invariance at
the neural level, which was shown recently (Vermaercke et al.,
2014b).

Here we provide a more direct test of the degree to which
functional differences at the neural level are related to behavioral
performance. As a working hypothesis, we would expect that
the functional hierarchy and specialization in rodent visual
cortex reflects how the representational format of information
is changed into a format which is useful for making behavioral
decisions, as is assumed by current models of vision in primates
(Dicarlo and Cox, 2007; Pinto et al., 2008). If this hypothesis
is true, then we expect that behavioral performance would
be correlated with neural selectivity in non-primary cortical
areas, more than with neural selectivity in primary visual
cortex.

The experiments reported here attempt to make a first step
toward answering these questions. We characterized the ability
of rats to discriminate pairs of shapes in a behavioral two-
alternative forced choice task. Subsequently, the same stimulus
set was presented to naive, awake animals while neural responses
in five cortical areas (V1, LM, LI, LL, and TO) were recorded for
the same set of shapes. Our results show that neural selectivity
for shape differences in lower layers of extrastriate visual areas,
but not in upper layers of primary visual cortex, is related to
behavioral discrimination performance.

Materials and Methods

This is the primary report of the behavioral experiment, for which
we provide all experimental details. The neurophysiological
data were first reported elsewhere (Vermaercke et al., 2014b).
The current description of these data focuses upon the most
relevant aspects and new analyses in order to relate these neural
recordings to the outcome of the behavioral study.

Animals
The behavioral experiment included 12 FBN F1 rats (F1-
Hybrids, first generation offspring of crossing the Fisher and

Brown-Norway strains). They were obtained fromHarlan animal
research laboratory (Hsd, Indianapolis, Indianapolis) at an age
of 5 months and were housed in groups of six per cage, further
referred to as two batches of six animals. For identification, we
colored each rat’s tail with 1 to 6 circles using a black marker.
All procedures for animal housing and testing were approved by
the KU Leuven Ethical Committee for animal experiments and
were in accordance with the European Commission Directive of
September 22nd 2010 (2010/63/EU).

Behavioral Experiments
Behavioral Setup
For the behavioral task, we implemented the visual water-maze
setup (V-Maze) described previously (Prusky et al., 2000; Wong
and Brown, 2006; Vermaercke et al., 2014a). The setup consisted
of a trapezoid pool, filled with transparent water at 26◦C, and two
screens (Dell 17′′ LCD monitors, 1024 × 768@60Hz) placed at
the long end of the pool (Figure 1A). The animal was released
into the water at the short end of the pool. From there, it has
to find a submerged platform located in front of one of two
screens. The reflection of the stimuli on the water obscured the
platform. The rats had to learn which of two stimuli predicts
the location of the platform. A 50 cm long divider was placed
in between the two screens to force the animal to make a
choice at that point. When crossing this point, we scored the
trial as correct or incorrect depending on the location of the
platform. Scoring was automated using online analysis of video
images (LogitechWebcam Pro 9000) implemented inMatlab and
allowing continuous tracking of the animal’s position. All animals
had to stay in the water until the platform was found. After a
wrong decision, they were left on the platform 15 s longer. After
being taken out of the water, a rat was placed under a heating
lamp. Its turn for a next trial would come after all other rats of
the batch completed a trial.

Stimuli
For studying shape processing, we selected 6 of the 8 shapes from
the study by Lehky and Sereno (2007): a square, a diamond in
a square, a triangle, the letter lambda, the letter H and a plus
sign (Figure 1B). The exact choice of the stimuli was decided
based upon the neuronal responses in inferior temporal cortex
(IT) as obtained by Lehky and Sereno and included those shapes
that displayed the largest variability in neural discriminability
according to their data. The luminance level of each shape (i.e.,
the number of white pixels) was equalized. The mean width of
the bounding box (the minimal rectangle containing all white
pixels) around each shape was 27.3◦, ranging from 23 to 33◦.
Stimuli were presented on a black background filling the entire
display. The length of the divider determined the maximal size of
the stimulus; at this point the animals had to make decision (see
further). These shapes are able to drive populations of monkey
anterior inferior temporal neurons, an area in monkeys which is
considered as the final stage of processing in the ventral stream.
At the same time they are simple black and white stimuli that
contain most information in the lower spatial frequencies. This
allows processing by the rat visual system with its limited visual
acuity.
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FIGURE 1 | Behavioral setup, stimuli, and results. (A) Top-view of the

behavioral setup. Animals were released at the short end of the water maze

and had to find the submerged platform in one of the two arms. The identity of

the shapes presented on the screens at the end of each arm predicted the

platform location. (B) The six shape pairs used in the behavioral experiment.

(C) Learning curves for one pair (triangle vs. letter H) that was readily learned

and one pair (plus vs. letter H) that was not learned in the allocated time. Red

and blue horizontal lines indicate sessions that were used to calculate mean

performance. (D) Mean performance over the last four sessions of the

experiment ordered according to average performance per pair (i.e., over two

animals). Blue bars indicate performances of rats from batch 1; red bars show

data for rats from batch 2. The results show that the six pairs used in this

study yield a wide range of performances. Error bars indicate binomial

confidence intervals at the 0.05 level.

Shaping Phase
This phase was not part of the actual experiment, but was meant
to familiarize the animals with the setup and the goal of the task:
finding the location of the submerged platform. We used two
very easy stimuli (black vs. white screen), of which one (the white
screen) was consistently associated with the platform. In the first
trials we released the animal right in front of the platform. In this
phase they had to learn that a platform can be found somewhere
and that this is the only way out of the water maze. Consequently,
we released them gradually further away from the screen, until
they were placed beyond the divider. At this time, the animal had
to make a decision in which arm to look first. The position of the
white screen and associated platform (left or right) was pseudo
randomized by starting at a random position in the following
scheme LRLLRLRR (Prusky et al., 2000). All rats learned to solve
this task after a week of two times 10–12 trials per day.

Experimental Phase
After the animals were used to being put in the water and
searched for the platform readily and consistently picked the

correct side in the shaping phase, transition was made to the
actual experiment. In this experiment, each animal was presented
with one pair of shapes. The behavioral experiment included six
of the 15 possible pair-wise combinations of the six shapes. We
selected three shapes as targets and combined them with either
a dissimilar or a similar distractor, with (dis)similarity derived
from the dissimilarity matrix obtained for area IT by Lehky and
Sereno. As a result, we obtained three hypothetically easy and
difficult pairs, which wouldmaximize the variability in behavioral
discrimination performance of these pairs if discriminability in
monkeys would be fully or partially related to discriminability in
rats.

The experiment included two batches of six rats. We
performed the experiment until the average performance across
all six rats in a batch was above 70% correct for at least four
successive 10 or 12-trial sessions. This criterion was chosen fairly
low because we were looking for differences in difficulty between
shape pairs so we expected some pairs to be more difficult and
not result in a learning curve yet. With a criterion of 70%, there is
ample room for individual shape pairs to be associated withmuch
lower or much higher performance than the criterion. The two
batches needed respectively, 17 and 16 sessions to reach criterion.
We calculated proportion correct trials over the last 4 sessions
for each pair (this proportion is further referred to as behavioral
performance or BEH).

Physical Similarity Measures
We obtained measures of physical (dis)similarity for these shapes
based on pixel-wise or Euclidean distances (PIX) between pairs
of shapes, defined as the number of pixels with a different value
(binary: black or white) in the two shapes using the formula:

Pixnm =

∑ ∑

√

(Sn − Sm)
2 m > n

where n andm indicate indices of different stimuli and the double
sum operates over rows and columns of the resulting difference
matrix. These values were then normalized, by dividing by the
maximum, and rescaled to fit between 0.5 and 1 by dividing by 2
and adding 0.5. We also determined the response of a population
of simulated V1 neurons (V1Sim). For this we used a simplified
version of the approach described in Pinto et al. (2008). We first
smoothed the images (768 by 1280 px) using a Gaussian low-
pass filter (FWHM = 20px, ∼=1.5cpd, the approximate acuity
of our rats; see Prusky et al., 2002) and normalized to have
zero mean and unit standard deviation. Next, the images were
convoluted with 80 filters (a combination of five frequencies:
0.04, 0.08, 0.15, 0.30, and 0.60 cpd (Girman et al., 1999), and 16
orientations encompassing the full circle), with the size of each
filter adjusted to include two cycles. All filters were normalized
to have zero mean and norm one. The resulting response matrix
R was compared between the 15 possible pairs of shapes and we
calculated discriminability D as:

Dnm = 1− corr
(

Rn
(

i, j, f
)

,Rm
(

i, j, f
))

m > n

where indices n and m refer to one of the six images, and index f
refers to one of the 80 filter response planes. Indices i and j refer to
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image pixels in each filter response plane. The 15-element vector
of D-values is rescaled to fit between 0.5 and 1 as before and will
be further referred to as V1Sim.

The pixel-based distance (PIX) and the simulated V1 distance
(V1Sim) were highly correlated across all shape pairs (r = 0.899,
p < 0.0001; N = 15 shape pairs), indicating that for this stimulus
set the calculation of physical dissimilarity is not very sensitive to
the particular method and parameters used.

Electrophysiological Experiment
The primary report of the neural data is provided by Vermaercke
et al. (2014b). Here we focus upon one experiment (“Experiment
4: Selectivity for moving shapes”) from that study which included
the same stimuli as the behavioral study.

Animal Preparation and Surgery
All experiments and procedures involving living animals were
approved by the Ethical Committee of the university and
were in accordance with the European Commission Directive
of September 22nd 2010 (2010/63/EU). As also described
by Vermaercke et al. (2014b), we performed microelectrode
recordings in awake hybrid Fischer/Brown Norway F1 rats
(n = 9 males), obtained from Harlan Laboratories, Inc.
(Indianapolis, IN). Rats aged between 3 and 12 months,
anesthetized using ketamine/xylazine, received a stereotaxically
positioned 2mm diameter circular craniotomy at −7.90mm
posterior and 3.45mm lateral from bregma. In most animals
(N = 6), a metal recording chamber with a base angle of 45◦

was placed on top of the craniotomy. A triangular head-post was
fitted on top of bregma (see Figure 2). In three animals, V1 was
entered orthogonally to the cortical surface, at the same location.
This enabled us to record from all cortical layers in V1. A CT scan
of the head confirmed the position of the recording chamber and
craniotomy. Buprenorphine (50µg/kg, i.p.) was administered
postoperatively every 24 h as long as the rat showed signs of pain.
When the animal was comfortable with being head restrained
for at least 1 h and 30min, we started with our recording
sessions.

Electrophysiological Recordings
As described by Vermaercke et al. (2014b), a Biela microdrive
(385µm per turn) containing a 5–10 M� impedance tungsten
electrode (FHC) was placed on the recording chamber. For
the diagonal recordings, the electrode was manually moved
into the brain under an angle of 45◦ in steps of less than a
quarter turn of the Biela drive (385µm per full turn), thereby
entering five different visual areas: V1, LM, LI, LL, and TO.
Action potentials were recorded extracellularly using a Cheetah
system with headstage amplifier (Neuralynx, Bozeman, MT).
The signal was filtered to retain the frequencies from 300 to
4000Hz and digitized at 32556Hz. Action potential spikes were
recorded when they crossed a threshold set well above noise level.
Recordings started from the brain surface and continued until we
had penetrated through the five different areas and did not find
visual responses anymore or the animal started to show signs of
stress. During the first few penetrations, to obtain a basic idea of
the retinotopy along the electrode track, wemanually determined

FIGURE 2 | Schematic drawing of the rat skull with locations of

implanted headpost and recording chamber and layout of lateral visual

areas. This figure shows how our implants were laid out on the rat skull. The

headpost was placed over bregma to leave enough room for the recording

chamber and ample skull surface to attach dental acrylic. We made the

craniotomy at AP −7.90 and ML 3.45 and centered the recording chamber

over these coordinates. The resulting electrode track (red arrow) would

typically enter cortex in the binocular part of V1 and would subsequently

traverse areas LM, LI, LL and TO.

the unit’s receptive field (RF) position every 200–400µm using
continually changing shapes or small drifting circular sinusoidal
gratings that could be moved across the screen. Units were
recorded in all five areas at different depths, with mainly upper
layers sampled in V1 and lower layers in the other areas with at
least 200µmbetween recording positions during a single session.
Cortical depth within each area was reconstructed based on
stained histological slices. For the experiment focusing on upper
and lower layers in V1 using orthogonal penetrations, depth
could simply be derived from the z-travel of the microdrive. Area
boundaries were determined by the reflections of the retinotopic
map, which were usually accompanied by obvious changes in
elevation of the RF centers. A recording session generally lasted
between 2 and 3 h. After removing the electrode, cleaning and
capping the recording chamber, the animal was released from the
head holder, and rewarded with water in its home cage (animals
were water deprived prior to the recording session and only
received small drops of water during recording). In each animal,
we could generally perform between 10 and 15 penetrations
over a period of several months. After the recording session,
action potential waveforms were assigned to individual units
using off-line clustering with KlustaKwik (for more details on
waveform discrimination and signal quality, see Vermaercke et al.
2014b).

Visual Stimulation during Electrophysiology
Stimuli were presented to the right eye on a 24′′ LCD monitor
(Dell, Round Rock, Texas; 1280× 768 pixels, frame rate= 60Hz,
mean luminance= 24 cd/m2, 102× 68◦) at a distance of 20.5 cm
from the eye at an angle of 40◦ between the rostrocaudal axis
and the normal of the screen. Visual stimuli were presented
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with custom-developed stimulation software using Matlab (The
MathWorks, Natick, MA) and the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997). The setup was placed within a
closed, dark cabinet.

The six shapes described above were presented at identical
size and contrast around the optimal position within the RF.
The mean width of the bounding box around each shape was
27◦, ranging from 23 to 33◦ (stimulus size was matched to the
behavioral experiment). Because other experiments (Montero
and Jian, 1995) suggested that neural responses in head-
restrained animals are more sustained and more selective when
stimuli are moving, the shapes were translating around this
optimal RF position at four differently orientated axes of
movement, separated by 45◦ (horizontal, vertical, and the two
diagonals). The moving stimulus was shown for 4 s and the
movement along each axis took 1 s. The order of the four
movement axes was randomized within each 4 s presentation.
During the movement along one axis, the shape started at
the center (optimal) position, moved 8◦ (77 pixels) away from
this center position in 167ms and then moved backwards
to the opposite side of the center position in 333ms. This
movement was mirrored once to complete 1 s and then the
movement seamlessly continued in a different orientation.
These orientations were shuffled in each trial, resulting in 24
combinations of 6 shapes× 4 orders of orientations.

Data Analysis
Behavior
We calculated proportion correct trials over the last four sessions
for each pair and calculated 95% confidence intervals for
each performance using the Matlab function binofit (shown as
error bars in Figure 1D). We compared differences between
performances for different shape pairs using permutation
analysis in which we shuffled the identity of correct and incorrect
trials. For these vectors, we then computed average performance
correct and recorded the difference between these for each
combination of pairs over 10000 iterations. When the actual
difference was outside of the 95% confidence interval of this
distribution, we declared the difference as significant.

Neural Responses
For each neuron, we calculated the number of spikes elicited by
each shape per trial, averaged across the 4 s stimulus presentation
time. Then, we subtracted baseline activity, which was calculated
as the average number of spikes in a 2 s interval preceding each
stimulus presentation. Units were included when they showed a
net response above 2Hz for at least one of the shapes (i.e., non-
responsive units were excluded; similar results were obtained if
they were included).

To determine how well a population of neurons can
discriminate between different stimuli, we implemented a linear
classifier read-out similar to the one used by Rust and Dicarlo
(2010) (see also Hung et al., 2005; Li et al., 2007; Vangeneugden
et al., 2011). This read-out scheme is one possible way to assess
the amount of information a population of units could serve
to a downstream neuron, assuming this neuron applies a non-
linear operation on the summed inputs. Starting with the spike

count responses of a population of N neurons to P presentations
ofM images, each presentation of an image resulted in a response
vector x with a dimensionality of N by 1, where repeated
presentations (trials) of the same images can be envisioned as
forming a cloud in an N-dimensional space. Linear support
vector machines (SVM) were trained and tested in pair-wise
classification for each possible pair of shapes (6 shapes result in 15
unique pairs). A subset of the population vectors (trials) collected
for both shapes were used to train the classifier. Performance was
measured as the proportion of correct classification decisions for
the remaining vectors/trials not used for training (i.e., standard
cross-validation). The penalty parameter C was set to 0.5 (as in
Rust and Dicarlo, 2010) for every analysis.

For correlations with behavior, we retained the data for the 6
shape pairs, which were also used in the behavioral experiment.

Reliability and Significance of SVM Performance
To equalize the number of cells and trials used across visual areas,
we applied a resampling procedure. On every new iteration, we
selected a new subset of cells (without replacement) with the
number of cells equal to the lowest number of cells recorded
in a single visual area, and a random subset of trials (without
replacement). We averaged over 100 resampling iterations
to obtain confidence intervals for the performance. We also
computed chance performance by repeating the same analysis
100 times using shuffled condition labels (thus 100 times 100
resampling iterations).

Chi-Square and Permutation Analysis
We used chi-square to assess how well neural classification
performance for all six pairs arematched between neural data and
either physical dissimilarity or behavioral performance. We used
the formula:

ChiSq =

n
∑

i

(Oi − Ei)
2

Ei

where the index i indicates the ith stimulus pair of n pairs.
O represents the observed values, in our case the classifier
performance based on neural population responses to the ith
pair. E indicates the expected values, in our study either physical
dissimilarity or behavioral discriminability.

We employed permutation statistics to test the null hypothesis
that the matching of shapes is not important. In order to destroy
all pairwise relations, we shuffled the vector of observed values
(O). We exclude shuffles that had one or more element in the
original position (the pattern of results is identical without this
restriction). We tested for a significant dependency between both
sets of six performances by shuffling the O-values over all unique
permutations (N = 265 after selection out of 720 total). P-values
were calculated by measuring the proportion of values that are
more extreme than the actually observed value.

Permutation Analysis of Correlation Values
We used similar procedures as described in the previous section
to analyze the correlation data.
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Data Analysis to Compare Neural Population

Discriminability with Behavioral Difficulty
Based upon earlier work in humans and other primates (Dicarlo
and Cox, 2007; Op de Beeck et al., 2008), we expect a high
correlation between V1 discriminability and physical, pixel-
based (or V1-simulated) distances between stimuli but not
between V1 and behavioral discriminability. At the same time,
we expect a high correspondence between TO and behavioral
discriminability, but not between TO and physical distances. To
test this prediction, we constructed the transformation index H
that captures this relation:

H =
[

Z
(

TO,Behavior
)

− Z (TO, Pix)
]

−
[

Z
(

V1,Behavior
)

− Z (V1, Pix)
]

where TO and V1 refer to the neural population discriminability
of the 6 shape pairs in area TO and V1, respectively. Behavior
corresponds to animal performance on these pairs; and Pix refers
to the pixel-wise difference between the shapes of these pairs.
The operator Z corresponds to the sample Pearson correlation
between both performances after Fisher-Z transformation. High
values of the index would provide support for our assumption
that there is a transition from pixel-related discriminability in V1
to behavior-related discriminability in TO. This index was also
calculated for permuted data (same procedure as above) and we
used the 95th percentile value as the threshold for significance of
the obtained index.

Results

Behavioral Shape Discrimination
One specific hallmark of the ventral visual pathway in primates
is that neural responses and neural discriminability are more
related to behavioral performance for higher-level regions than
for e.g., V1, where we expectmore correspondence withmeasures
of local pixel-level differences.

To test whether this is true in rodents as well, we first obtained
behavioral data from 12 rats about the relative discriminability
of different shape pairs. These rats were trained in a visual
water task (see Figure 1A) to discriminate between different
shape pairs, one shape pair per rat. Six shape pairs of the 15
possible pairs were included and two rats were trained per shape
pair (see Figure 1B), one in each batch of six rats. We equated
the length of training across rats/pairs. Based upon primate
literature, we would expect that those shape pairs that would be
associated with the best behavioral discrimination performance
at the end of training would also be associated with a higher
neural discriminability in the higher areas in the identified rat
visual pathway, but not in area V1. Given animals have to find
the target shape while moving around in a water maze, it would
also be unlikely that a simple V1 representation, lacking position
invariance, would be sufficient to drive the animals’ decision
process.

After 17 and 16 behavioral training sessions for the first and
second batch respectively, average performance across all rats
reached the criterion of 70% correct. We noticed clear differences
in performance between the shape pairs (Figure 1C). A few shape

pairs were associated with performance close to 100% correct,
while two other shape pairs were associated with performance
close to the chance level of 50%. This variation in performance
across shape pairs generalized from the first to the second batch
of six animals (blue and red bars in Figure 1D): the variation in
performance across shape pairs was highly correlated between
the two batches (r = 0.92, P = 0.009, N = 6 shape pairs).
To assess whether the ordering was important, we pooled the
data for two animals per pair and performed a permutation
test to compare the average performance between all possible
combinations of shape pairs (see Methods). We found the all
differences to be significant, except for those between pair 2–3,
3–4, and 5–6. We conclude that the order matters for most pairs
and that correlations based on these data are meaningful.

With the data of just the first batch of rats, it would
have been conceivable that the differences between shape pairs
would be related to interindividual differences between the rats,
given that each shape pair was tested in a different animal.
However, the near-perfect replication of the across-pair variation
in performance in the second batch of animals argues against
this alternative hypothesis in terms of interindividual differences.
This alternative hypothesis is also not consistent with the fact that
all rats had shown a very similar performance in the preceding
shaping phase (mean = 0.91, SD = 0.06, N = 12), in which rats
were trained in the general task layout using full field white and
black stimuli. To quantify this, we paired rats that would receive
the same shape pair in the next phase, calculated their average
performance obtained during the last four shaping sessions and
performed a paired t-test: [t(5) = 0.4008; P = 0.7051, N = 6].
The small differences in performance were also not correlated
(r = 0.05, P = 0.9245, N = 6), excluding any preexisting
similarities between the rats that would explain striking similarity
in performance for the shape pairs. This suggests that the
two batches start out as fairly homogeneous groups that react
in a consistent way when confronted with different stimulus
pairs.

We quantified the average time animals needed to make a
decision; this includes swim time from the start of the trial until
the animal passed the divider. Median reaction times were 5.73
and 5.47 s for both batches [N = 1045 and 1145 trials; Q25–
75 = (4.94 9.30) and (4.80 6.76) s]. These values are comparable
to the presentation duration used for the electrophysiological
recordings.

Neural Discrimination Performance
The data described here form a subset of a larger dataset
reported earlier (Vermaercke et al., 2014b). This earlier study
characterized responses of single neurons and populations in rat
primary visual cortex (V1) and 4 extrastriate areas (LM, LI, LL,
and newly found area TO). We focus here on the extent to which
each of the five defined cortical areas allows the discrimination
of the six shape pairs. While showing these shape stimuli, we
recorded from a total of 631 (114, 104, 166, 107, 140 for areas
V1, LM, LI, LL, and TO, respectively) neurons. After selecting
responsive neurons to which each shape had been presented at
least 12 times, we retained 413 single units (88, 63, 131, 68, and
63; this yields 63 neurons per SVM subsampling). The percentage
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of responsive neurons was 77, 61, 79, 64, and 45 for areas V1,
LM, LI, LL, and TO, respectively. Between neurons there was a
large variation in exact receptive field position (Vermaercke et al.,
2014b).

Averaged across the six shape pairs, we found reasonable and
strongly significant population decoding performance in every
area [Figure 3A; V1 = 92.33%, t(5) = 15.7517, P = 0.0000;
LM = 82.54%, t(5) = 15.7517, P = 0.0000; LI = 83.53%,
t(5) = 15.7517, P = 0.0000; LL = 78.00%, t(5) = 15.7517,
P = 0.0000; TO= 71.99%, t(5) = 15.7517, P = 0.0000; error bars
show SEMs]. When performing the permutation analysis using
shuffled trial labels, we obtain chance level estimates of which
the 95th percentile is shown as red horizontal bars in Figure 3A;
all corresponding p-values for each area fall below the 0.0001
level.

We also tested whether differences between areas reached
significance by doing a similar permutation analysis using
shuffled area labels. We did this for all pair-wise comparisons and
found classification performances in all areas to be significantly
different, except for the difference between LM and LI. All these
analyses gave similar results when performed after matching
the average firing rates between areas (data not shown, see
Vermaercke et al., 2014b for details on a similar matching
procedure). On a more detailed level of analysis, we find
that performance for all shape pairs is fairly high in V1, but
shows a differential pattern in higher areas (see Figure 3B).
Discrimination performance for four out of six shape pairs
decreases slightly over areas, for two other pairs performance
decrease is stronger.

Because we are interested in correlating neural responses to
behavioral performance, we performed a control analysis to rule
out that correlations with area V1 would be distorted/diminished
by a ceiling effect with a generally high neural discriminability.
To control for this, we included a progressively lower number
of cells (N = 63, 40, 25, 10) for each SVM resampling. This
will bring down the average performance level, which would

allow for a pattern that could be compressed by overall high
performance, to reappear. The curves in Figure 3C confirmed
that this manipulation was effective: SVM models based on a
smaller amount of cells show a lower overall performance. When
examining the shape of the curve, we find only minor changes in
the relative differences between shape pairs.

Correlations between Pixel-Based Differences,
Neural Responses, and Behavior
We combined data from the behavior and electrophysiology
experiment to determine which of the cortical areas are more
likely to underlie shape discrimination. We also included a
measure of pixel-wise differences, which captures low-level
similarity of the shapes [see Methods; responses of a simulated
population of V1 neurons (V1Sim) yielded highly similar results].
The correlation between PIX and behavioral performance was
non-significant (r = 0.110, P = 0.84, N = 6 shape pairs),
which potentially allows us to find differential correspondences
between the neural responses and either physical properties or
the behavioral output of the animal.

Figure 4A shows scatter plots of the neural discriminability
against either the pixel-based differences (top row) or the
behavioral discrimination performance (bottom row). For
physical dissimilarity, we pooled both measures, PIX and V1Sim,
because they were highly correlated. For the behavioral results,
we pooled the performances of both animals that had to learn the
same pair (error bars are calculated over both animals; individual
error bars are shown in Figure 1D). On a qualitative level, the
dots seem to be close to the identity line in V1 for physical
measure and diverge in higher areas. The opposite trend is
seen for BEH where correspondence improves drastically toward
higher areas.

To quantify these effects, we use two separate measures
of correspondence: chi-square (see Methods) and Pearson
correlations. Both are presented with permutation statistics (see
Methods).

FIGURE 3 | Overview of neural data. (A) Average SVM classification

performance for the six shape pairs used in this study, for each of

the five areas. Red bars indicate significance threshold based on

shuffled condition labels. Error bars indicated SEM over six pairs. (B)

Classifier performance for individual pairs, pair numbers correspond to

those used in Figure 1B. Performance for pairs five and six falls to

chance toward higher areas. (C) Results for the control analysis in

which we reduced the number of units included in individual

sub-samplings of the SVM classifier. Average performance decreases

with lower number of cells included, but the overall pattern of

classification is preserved. The order of shape pairs corresponds to

that in Figures 1B,D.
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FIGURE 4 | Correlations between neural responses, pixel similarity,

and behavioral performance. (A) Scatterplots of neural discriminability data

for six shape pairs in five cortical areas compared to physical dissimilarity

(average between PIX and V1Sim measures; top row) and behavioral

performance (average for two rats; bottom row). Correspondence with

physical dissimilarity is high for V1 and decreases toward higher areas; i.e.,

points fall further from the diagonal identity line. In contrast, behavioral

performance is increasingly well matched to neural discriminability toward

higher areas, with points falling closer to the diagonal. Error bars indicate SEM

over both physical dissimilarity measures in top row, SEM over both animals in

bottom row and SEM for neural data in both. (B) Chi-square values are

reported for each scatter plot shown in (A). Black bars show chi-square values

between physical dissimilarity and neural data. Gray bars show chi-square

values for neural data and behavior. Red vertical lines indicate the random

distribution obtained through permutation analysis. Stars indicate significant

chi-squares values at the 0.05 level. (C) Correlations as a measure of

correspondence of neural discriminability with pixel-based differences (black

bars) and with behavioral performance (gray bars). Red vertical lines indicate

the random distribution obtained through permutation analysis. Stars indicate

significant correlations at the 0.05 level.

Figure 4B shows chi-square values for both PIX (black bars,
V1 = 0.08 p < 0.0001, LM = 0.16 P = 0.4300, LI =

0.26 P = 0.3429, LL = 0.35 P = 0.3755, TO = 0.39 P =

0.1858) and BEH (gray bars, V1 = 0.75 P = 0.1518, LM =

0.23 P = 0.0076, LI = 0.21 P = 0.0220, LL = 0.14 P =

0.0336, TO = 0.08 P = 0.0308), the red vertical lines indicate
the distribution of values obtained through the permutation
analysis (see Methods). If a bar is outside of the overlaid red
line, the observed value is significant and we can reject the
null hypothesis that the order of pairs is not important. This
shows us that neural responses patterns in V1 and PIX are more
similar than expected by chance. The neural responses in the
four extrastriate areas show a significant correspondence with
BEH.

In Figure 4C we show the correlation values for both PIX
(black bars, V1 r = 0.88, P = 0.02; LM r = −0.09,P =

0.86; LI r = −0.10,P = 0.85; LL r = −0.07,P = 0.89; TO
r = −0.27,P = 0.60) and BEH (gray bars, V1 r = 0.44,P =

0.38; LM r = 0.91,P = 0.01; LI r = 0.85,P = 0.03; LL
r = 0.84,P = 0.04; TO r = 0.83,P = 0.04), again the red vertical
lines indicate the distribution of values obtained through the
permutation analysis (see Methods). The correlation with PIX
is only significant for neural data in V1, while BEH correlates
significantly with response pattern obtained in extrastriate areas.
Here we report correlations including only the six shape pairs
used in the behavioral experiment. The correlations with pixel-
based differences show a very similar pattern when calculated
using data from all 15 possible shape pairs (these correlations are
reported in Vermaercke et al. (2014b).

Thus, Chi-square values and correlations show a consistent
effect for TO compared to V1, with a strong correlation between
neural discriminability and behavioral performance in TO and
no correlation in V1. For Chi-square values the change from V1
and TO seems to occur gradually, with intermediate results in
the intermediate brain regions, while for correlations all non-V1
areas have a strong correlation with behavior.

We did not make a priori predictions about the nature
of shape representations in intermediate areas along the
pathway. Predictions were very clear-cut, however, for how the
representation of shape should be different when comparing
the two extreme areas: we expected V1 neural discriminability
to correlate well with pixel-based stimulus differences, and
TO neural discriminability to correlate well with behavioral
performance. We constructed a “transformation index” that
captures this shift in the nature of shape representations in
one value (see Methods). This index essentially results in one
number that tells us how the similarity of neural responses to
stimuli (PIX) and behavior (BEH) changes from V1 to TO. For
chi-square, this value is -0.9763, outside of the range (−0.0399
0.0434) and significance p < 0.001. For correlations, the
significance of the empirically observed transformation index
[2.37, outside of the range (−2.1930 1.7294)] was p < 0.05. Thus,
the prediction of a transformation in how shape is represented
from V1 to TO was confirmed by the data.

Fine Transition of Representations in V1
We performed a similar analysis with the V1 data from the
orthogonal penetrations in which we distinguished between
upper and lower layers. This is a relevant additional dataset
because in the diagonal recordings the V1 data are biased
toward the upper layers (see Vermaercke et al., 2014b). Thus,
we can consider upper-layer recordings in the orthogonal
penetrations as a replication attempt of the results from the
diagonal penetrations, while the lower-layer recordings provide
new data to test whether there is already a transformation of
shape selectivity within V1.

We classified all units beyond a depth of 500 micron
as belonging to the lower layers (for more information, see
Vermaercke et al., 2014b).We recorded in total from 131 neurons
in three animals (V1 Upper or V1U: 61, V1 Lower or V1L:
70). After selection based on responsiveness and number of
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trials, we retained 44 units in V1U and 57 units in V1L. Using
these new (non-overlapping) V1 data we find a further finer
transition within V1. In terms of average classifier performance
for the six shape pairs, both subdivisions of V1 achieve high
scores (V1U = 94.11%, V1L = 88.78%, see Figure 5B; the
data for V1 and LM from the previous section are replotted
for reference, colors match those in Figure 3A). When we
run our permutation analysis on the scatterplot data shown
in Figure 5A, we find that V1 and V1U show significant
chi-square values for PIX (V1: P = 0.0138, V1L: P =

0.0055, see Figure 5C), while V1L and LM show significant
chi-square values for BEH (V1L: P = 0.0507, LM: P =

0.0151).
The correlations between neural responses in V1 andV1U and

PIX show a similar pattern (V1: r = 0.8821, P = 0.0140, V1U:

FIGURE 5 | Summary of neural data collected in upper and lower layers

of V1. (A) Scatter plots showing neural discriminability of six shape pairs in

upper and lower layers of V1 relative to physical dissimilarity (average between

PIX and V1Sim measures; top row) and behavioral performance (average for

two rats; bottom row). Results from Figure 4 of the V1 and LM recordings from

the diagonal penetrations are re-plotted here for visual comparison. Error bars

indicate SEM over both dissimilarity measures in top row, SEM over both

animals in bottom row and SEM for neural data in both. (B) Average SVM

classification performance for the six pairs in upper layers of V1 (V1U, shown in

black) and lower layers of V1 (V1L, shown in black). We also show the data for

V1 and LM (gray bars) shown in the Figure 3A, for comparison. Overall

performance is high in all four areas. Error bars show SEM for six shape pairs.

(C) Chi-square values for the scatterplots shown in (A). V1U results are very

similar to the results obtained in V1 in the diagonal recordings. V1L results fall in

between V1 and LM from the diagonal recordings. Red vertical lines indicate the

random distribution obtained through permutation analysis. Stars indicate

significant chi-squares values at the 0.05 level. (D) The correlations for the data

shown in (A). Again, V1U is more comparable to the data we collected in V1

during diagonal recordings and V1L forms an intermediate step in between V1

and LM. Red vertical lines indicate the random distribution obtained through

permutation analysis. Stars indicate significant correlations at the 0.05 level.

r = 0.8367, P = 0.0062, see Figure 5D), and V1L and LM relate
more to BEH (V1L: r = 0.7982, P = 0.0202, LM: r = 0.9072,
P = 0.0106). Parametric tests show that the correlation between
V1L and BEH is not significant (P = 0.057), which contradicts
the result from the permutation statistic, so it would be prudent
to say that the lower layers in V1 may form an intermediate step
between upper layers in V1 and LM.

The pattern that emerges is that the representation in the
upper layers is most similar to PIX/V1Sim while lower layers
are already shifted partially toward the extrastriate regions (see
Figure 5A). One interpretation could be that upper layers receive
information from thalamus and after initial processing, transmit
it further to downstream areas. After this first step of information
reformatting, neural discriminability in V1L starts to resemble
behavioral performance and this becomes even clearer in
area LM.

Discussion

We obtained a behavioral measure of shape similarity from two
independent groups of rats. We also recorded neural responses
to individual stimuli in yet another group of naïve rats. Taken
together, both datasets allowed us to determine which cortical
area is most likely to underlie behavior. As expected, primary
visual cortex encodes the stimuli in terms of simple features,
which is well captured by pixel similarity and convolution-
type models. Higher areas show more similarity to behavioral
responses, with highest area TO showing the best fit. These results
indicate that visual information is transformed from representing
simple features to a representation that is used to drive behavior,
a process reminiscent of ventral stream in non-human primates
(Op de Beeck et al., 2001; Dicarlo et al., 2012). As reported by
Vermaercke et al. (2014b), neural responses in area TO also tend
to be most robust to changes in stimulus position, which would
make these responses more reliable to be used in behavioral
decision making. At least to some degree, invariance is needed
to complete a swim trial, so performance would not be expected
to depend purely on physical differences between stimuli. The
representation of a shape in V1 is highly dependent on it’s
retinal position, which changes drastically during swimming.
Basing performance on the population response in V1 would
be sub-optimal during a swim task, even though it has a better
capability of reliably encode patterns in the outside world.
At least in our untrained animals, the neural data show that
even though responses to shapes are reduced in higher areas,
the representation becomes more informative to the task as
populations of neurons in these areas prefer the same shape in
different positions.

The previous reported work of Vermaercke et al. (2014b)
examines many properties of neuron in multiple areas along a
diagonal track through lateral visual cortex. Based on retinotopy,
latency and to some extent, receptive field size, they defined
five different areas. Using neural responses elicited by the six
shapes, they were able to characterize that the representation
of information changes over areas. Moreover, by presenting
stimuli at different positions within the receptive field, they
found evidence for increasing generalization performance for

Frontiers in Neural Circuits | www.frontiersin.org 9 May 2015 | Volume 9 | Article 24

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Vermaercke et al. Neural representations underlying rat behavior

the same shape at the other position, indicative of position
tolerance. Taken together, these data indicate that the five areas
are part of a hierarchical network that may be involved in shape
processing. The current study focuses on a subset of the shape
pairs to investigate how well naïve animals would be able to
differentiate between them at the behavioral level. By quantifying
the representations in each of the areas, we were able to pinpoint
some of the transformations the visual information undergoes.
There appears to be a sharp transition between areas V1 and LM,
however, as shown in Table 1 of Vermaercke et al. (2014b), the
pattern of transition between areas depends on what feature is
being investigated. Some features show a stepwise pattern (not
always V1 vs. other areas), other properties (e.g., orientation
tuning) change gradually over areas.

The present study is obviously limited by the simplicity of the
stimuli used, and the low number of different stimuli. Future
studies should be conducted with more stimuli and with more
stimulus pairs. This would require a more automated setup,
unlike the labor-intensive visual water maze used in the present
study. Typically, rats show relatively fast learning curves and high
accuracy rates in this visual discrimination water maze, more
so than often obtained in tasks using liquid or food rewards
(Zoccolan et al., 2009; Meier et al., 2011; Tafazoli et al., 2012;
Vermaercke and Op de Beeck, 2012; Alemi-Neissi et al., 2013).
The level of motivation might be considerably higher when
animals have to escape from a water tank. Despite these benefits,
the visual-water task includes a low number of trials per session,
and each trial has to be started manually by the experimenter.
This limits the number of stimuli for which reliable performance
estimates can be obtained.

Future studies could make use of parametric stimulus sets that
are constructed to test specific predictions on how rats process
visual objects (e.g., rotated views of objects, morphs between
two know prototypes, different classes of objects etc.). Here we
correlated behavioral data with neurophysiological recordings in
other, naïve animals. Ideally, future studies would perform the
neural recordings during the execution of the behavioral task so

that direct and more causal relations between neural responses
and behavioral outcomes can be investigated.

As a follow-up to the present study, we continued training
with the first batch so that all animals eventually were trained
in all six pairs followed by a recall phase in which performance
for all pairs was checked. The data from this further testing are
hard to interpret because of interference between the different
shape pairs (e.g., already higher than chance performance on
the first day of a new pair), but in the present context it is
relevant that average performance in this recall phase was well
above 70% correct, for each animal (75.86, 78.82, 83.30, 86.08,
79.68%). For one pair (+ vs. H) performance was still rather low
(66.34%), suggesting that it might be extremely hard for the rats
to disentangle the representations of both stimuli. Nevertheless,
discrimination performance was above chance even for this pair,
indicating that all the shape pairs can eventually be learned by
the animals, most likely even up to close to 100% correct with
long enough training. For further work it would be interesting
to investigate the neural representation in these areas during
and after training. Using chronically implanted electrodes or

two-photon imaging, it should even be possible to monitor
neural population and to characterize how the representations
in the different cortical areas are changing due to the training.
Causal manipulations within the same animal (e.g., lesions,
optogenetics or pharmacology) will be crucial in shedding light
on the importance of each visual area for shape processing and
behavior.
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